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ABSTRACT

Health Information Technology has spurred the development of distributed

systems known as Health Information Exchanges (HIEs) to enable the shar-

ing of patient records between different health care organizations. Partici-

pants using these exchanges wish to disclose the minimum possible amount

of information that is needed due to patient privacy concerns over sensitive

medical information. Therefore, broker-based HIEs aim to keep limited in-

formation in exchange repositories and to ensure faster and more efficient

patient care. It is essential to audit these exchanges carefully to minimize

the risk of illegitimate data sharing. This thesis presents a design for au-

diting broker-based HIEs in a way that controls the information available in

audit logs and regulates its release during audit investigations based on the

requirements of applicable privacy policy. In our design, we utilized formal

rules to verify access to HIE and adopted Hierarchical Identity-Based En-

cryption (HIBE) to support the staged release of data required for audits

and a balance between automated and manual reviews. We test our method-

ology with a consolidated and centralized audit source that incorporates a

standard for auditing HIEs called the Audit Trail and Node Authentication

Profile (ATNA) protocol with supplementary audit documentation from HIE

participants.
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CHAPTER 1

INTRODUCTION

Broker-based HIEs have been utilized to enable institutions to ensure the

secure transmission of patient medical documents using well-known infras-

tructures such as XDS [1]. Brokers retain the index for each document as well

as the repository address where each document is stored instead of using a

centralized repository for documents. Broker-based exchanges provide some

level of indexing, provide for the transport of data, and are equipped with

security measures such as authentication and audit, often without storing

key data themselves except during transmission. These systems have come

into wide use in the healthcare field and the goal of HIEs is to be adopted for

the international sharing of EHRs to disclose medical records in a standard

format.

An additional benefit of the broker system is that the amount of medical

data kept on the HIE side for sharing medical records between different orga-

nizations can be minimized to mitigate HIE consumers privacy concerns. For

example, in the United States, there are many state-sponsored HIE systems

where the state is reluctant to hold EMR data themselves because of citizen

concerns about sharing health data with government. Broker systems can

improve patient care as well as prevent unnecessary disclosure of information

during the exchange.

However, it is a challenge for broker-based HIEs to protect the privacy of

information in their audit logs, including any supplementary documentation,

during the audit process that is used for ongoing monitoring and specific

investigations of potentially illegitimate access to medical records. The more

audit data the HIE holds, the better it can ensure the legitimacy of access to

medical records through its audits, but the more risk there is that the audit

process itself will compromise privacy. Furthermore, doing manual audits is

typically not feasible since thousands of accesses to the HIE occur every day.

Hence, the auditing process needs to be automatic, which will require the
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HIE to keep as much standardized audit information as possible so that it is

there when needed.

The goal of this thesis is to suggest the design for a privacy-preserving au-

dit infrastructure that includes both automated auditing using a logic-based

audit algorithm and staged disclosure through HIBE of information neces-

sary to conclude an effective audit. In particular, we developed an audit

subsystem in which HIBE [2] is used in coordination with a logic-based au-

dit algorithm [3] to limit the information disclosed to the auditor to only that

which is needed for the specific audit in question. Our system uses HIBE to

encrypt sensitive data on the audit logs assigning appropriate levels of sen-

sitivity. The auditor uses the audit algorithm to decide which parts of the

log need to be decrypted in order to determine whether a legitimate treat-

ment relationship exists between the patient and the accessing HIE provider.

HIBE provides a convenient way to encrypt audit logs at a fine granularity

(i.e., each event is encrypted using keys derived from the identifiers partic-

ipating in that event) and limits auditors to decrypting the minimum data

required. HIE transmission of information occurs frequently, yet audits are

relatively rare, so our framework provides an effective and efficient audit pro-

cedure for such limited and infrequent decryption of data. We also propose

the idea of extending the audit algorithm to provide understandable expla-

nations about any particular access rather than only indicating whether an

access is consistent with or in violation of applicable policy. We design an

audit architecture that augments HIEs using the ATNA [1] profile, the cur-

rent standard for HIE audits; supports HIBE encryption of audit logs; and

an provides an explanation-enabled audit procedure. A key feature of the

design inspired by the state HIEs in Maryland and Illinois is the ability to

combine the ATNA data with external documentation that is fed into the

audit algorithm. Our main contribution lies in the design and implementa-

tion of a practical system using both a novel encryption technique and audit

algorithm.

The rest of this thesis is organized as follows. Chapter 2 provides back-

ground on HIEs and HIBE, and Chapter 3 discusses related work. Chapter 4

is an overview of the architecture of our design and an introduction to our

sample audit scenario. Next, Chapter 5 details the hierarchical encryption al-

gorithm. Chapter 6 introduces the audit algorithm used in our architecture,

and provides an example of how our our infrastructure is used to audit access
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and to produce explanations of audit results. Chapter 7 presents the imple-

mentation of our prototype and the results of our evaluation of it. Chapter

8 points out the limitations of this work. Finally, Chapter 9 incorporates

a user access control mechanism into the audit architecture and discusses

how this work could be extended in the future to other access control uses.

Chapter 10 shows conclusion.

This thesis draws heavily on joint work described in the CODASPY paper

by Oh et al. [4]. The author of this dissertation primarily worked on the

topics in Chapters 4 and 6 which are discussed in [4] and on the material in

Chapter 7, which is not included in [4].

3



CHAPTER 2

BACKGROUND

2.1 Audit Standard for HIE

A Health Information Exchange (HIE) is a system for parties to electronically

transmit health-related information between various organizations. HIEs

promise benefits such as reducing duplication of services and supporting

the connection across statewide, regional and local services; however, many

health-care providers are reluctant to use HIE due to patient concerns about

privacy, since an HIE enables individual health information to be collected

in a centralized repository [5]. To appease privacy concerns, the National

Institute of Standards and Technology (NIST) recommends twelve services

[6] to protect data from being compromised and create a secure HIE envi-

ronment. One of these twelve services involves collecting and communicating

audit logs that define, identify, and communicate security-related events and

data that should be gathered, consistent with applicable policy. According to

the Maryland Health Care Commission [7], HIE has to implement periodic

audit procedures to determine whether improper access, use, or disclosure

has been made, informing HIE consumers or other authorized users when an

audit indicates a policy violation. These audits review, at a minimum, the

following information: Identity of Protected Health Information (PHI) orig-

inator, description of the consumer’s actions, identity of the users accessing

the patient record, the organization the users are involved in, access date and

time, source and type of PHI, date and time the PHI became available to

the HIE, the user’s date of registration with HIE and the user’s access level

during access.

The Audit Trail and Node Authentication (ATNA) [1] Profile, an IHE

Integration standard, is an audit mechanism reflecting such security guide-

lines, with three strengths. First, it generates and keeps audit records in a
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centralized audit repository controlled by a security officer; it can be readily

adapted to the typical HIE environment involving Cross Document Sharing

(XDS) [1] and it would be compliant with HIPAA [8]. IHE stipulates events

that must be recorded in the audit trail, which are defined in XDS.b [9]. Sec-

ond, ATNA is compatible with diverse types of healthcare enterprises since it

generates audit logs based on existing standards, such as HL7 [10]. To make

it compatible, the ATNA profile suggests using Security Audit and Access

Accountability Message XML Data Definitions for Healthcare Applications

(RFC-3881) [11], which define an XML schema to report security-related

events described with other standards such as ASTM [12], HL7, and DI-

COM [13]. Third, ATNA offers certificate-based bi-directional authentication

between users and nodes before transactions occur to provide data integrity

and secure transmission. The ATNA logs contain information relevant to a

security audit (which patient’s PHI was accessed, which user accessed it, and

what user or node authentication failures were reported), to identify specific

evidence of policy violations with any particular access after the fact.

In short, ATNA provides infrastructure for auditing the HIE. It is still

necessary to develop ways to stipulate policies and carry out the analysis of

audit events on ATNA standard audit logs. Moreover, it may be necessary to

work with external sources of information that are not present in ATNA logs

to achieve the overall goals of auditing the HIE. For instance, if one wishes

to use billing records to confirm that an access to a record has been made to

provide a (billed) service, then it may be desirable to integrate billing records

into the underlying analytic engine rather than trying to make billing records

a part of ATNA.

2.2 Hierarchical Identity Based Encryption

HIBE [14, 2, 15, 16, 17] is a form of IBE for hierarchical structures. IBE

allows a sender to encrypt messages based on a receiver’s identity, such as an

e-mail address. The sender can encrypt a message for the receiver using IBE

before the receiver gets a secret key from a KGC. The KGC generates a secret

key to a user commensurate with the level of sensitivity of the data that the

user needs to access. The private key will allow access at that level, or depth,

in the hierarchy and at all lower levels and will also delegate authority to the

5



holder of the private key to generate secret keys to users at lower levels. In

other words, this is one-way access and delegation, so that a user at level k

can generate a secret key for a user at any level lower than k, but lower level

users can not use their secret keys to make secret keys for users at higher

levels in the hierarchy. Upper level users who generate lower level keys are

referred to as parents in the hierarchical structure. The HIBE system uses

the following five algorithms.

HIBE.Setup : (k, L) 7→ {mk,Pub} takes security parameter k and maximum

depth L, and outputs a master key mk and public parameters Pub.

HIBE.Extract : (Pub,mk, ID) 7→ skID takes the public parameters Pub, the

master key mk and an identity ID = (id1, ..., id`) of depth `(≤ L), and outputs

a secret key skID for the identity ID.

HIBE.Delegate : (Pub, skID′ , ID) 7→ skID takes the public parameters Pub,

a parent’s secret key skID′ where the parent’s identity ID′ = (id1, ..., id`′) of

depth `′(< ` ≤ L), and the child’s identity ID = (id1, ..., id`) of depth `. Then

the algorithm outputs a secret key skID for the identity ID.

HIBE.Encrypt(Pub, ID,Msg) 7→ CT takes the public parameters Pub, an

identity ID and a message Msg, and outputs a ciphertext CT.

HIBE.Decrypt : (Pub, skID,CT) 7→ Msg takes the public parameters Pub, a

secret key skID and a ciphertext CT, and outputs a message Msg.

We will later describe how to use HIBE for a workable system to encrypt

external data for later use by HIE auditors, as well as describing the se-

curity procedures that will effectively limit access to that external data in

the course of a formal complaint regarding legitimacy of access. There are

various HIBE systems that satisfy different properties and security goals. It

is important to select an HIBE system for our system with constant and

small ciphertext such as [2], since such a system will provide storage and

decryption efficiency regardless of hierarchy depth. Encrypted sensitive data

should rarely be decrypted for maximum patient privacy protection; how-

ever, encrypted sensitive data needs to be stored by HIE in the event of a

health privacy infringement investigation. Therefore, our HIBE systems will

use minimal ciphertext size to achieve maximum privacy protection with a

minimum of storage space.
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CHAPTER 3

RELATED WORKS

3.1 Audit Healthcare Domain.

Due to the wealth of private patient information shared in distributed HCOs,

a secure audit is indispensible to identifying specific evidence when suspicious

access is detected. Previous works have envisaged a scientific and technical

approach to audit the healthcare system. Gunter et al. [18] introduce ARIP

to establish appropriate access rules for HCOs based on their work flows

and social networks by analyzing audit logs and attributes of HCOs. Their

methodology is similar to ours in analyzing audit logs to justify access to

patient health information. However, their work is not feasible for infras-

tructure currently in place at HCOs, while our work is applicable to the

real-world heterogeneous healthcare environment with IHE standard based

audit infrastructure. In addition, Fabbri and LeFevre [19, 20] have proposed

explanation-based auditing, which enables patients to review access to their

health records with human interpretable explanations. They adopt machine

learning approach to automatically generate log explanation while we use the

logic-based algorithm to identify the legitimacy of access based on the privacy

policy. In addition, they apply their algorithm to existing hospital logs only

and do not actually produce interface with any existing front-end healthcare

system. Moreover, while their explanations describe the reason for a par-

ticular user access, they cannot use the explanation to automatically show

legitimacy relative to a given policy. In contrast, our work directly checks

the legitimacy of access based on applicable privacy law and policy. Some

prior work takes a technical approach, adopting ATNA to ensure HIPAA

compliance and attempting to integrate diverse HCOs. Gregg [21] builds an

audit interface utilizing ATNA for the audit logs from a PACS. Azkia et al’s

similar work [22] converts ATNA audit records generated by their system to

7



be incorporated into the Organization Based Access Control (OrBAC) pol-

icy. However, their works do not show how their policy model is specifically

applicable to existing policies and, nor does it consider privacy concerns dur-

ing audit while our work encodes ONC guidance into first-order logic and

includes encryption for privacy-aware audit.

3.2 Audit Log Encryption.

The HIE audit log presents unique challenges because it can and should be

used as a tool for detecting inappropriate access to private IIHI, and yet ac-

cess to such information in the healthcare environment often involves special

situations that make it hard to limit the ability of providers to access IIHI.

These special situations include emergencies. We share the goal of previous

encryptions of audit logs [23, 24, 25] to not only protect against malicious

attackers, but also to limit exposure of private information in the log to an

authorized auditor. Our approach is different from previous methods for

encrypting audit logs because we supplement internal log information with

external data, which we encrypt with HIBE, allowing auditors to access only

the minimum necessary data. In doing so, our scheme creates an identity,

a descriptive label, using terms that do not need to be encrypted, such as

unidentifiable codes for patient, provider, and type and date of visit, for

the audit log entry, allowing the auditor to find the log needed without the

more cumbersome encrypted keyword approach previously used. In previous

schemes, such as Waters et al. [25], the auditor has to match all encrypted

keywords with a given trapdoor that contains those words. This makes it

secure but extremely inefficient.

3.3 Misuse Detection of Bitcoin

Bitcoin is an internet currency created in 2009 that is fully decentralized; it

has no association with banks or governments [26]. Bitcoin operates in blocks

of transactions that form chains that show that a sequence of transactions

were verified by a majority of the Bitcoin network’s computing power. This

majority power is presumed to be made up of honest users and so the system
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now trusts people to do the right thing. However, Bitcoin is used only min-

imally for actual trading transactions, and misuse, such as double-spending

[27, 28], has been reported, the measure for which is generally simply ad-

vertising the misuse if it is detected. If an audit mechanism were developed

that could properly audit breaches of security in a privacy-preserving man-

ner, bitcoins could become more widely accepted. Our infrastructure and

HIBE key system could be useful for that purpose.

3.4 Algorithms for Policy Compliance Checking.

We build on Garg et al.s algorithm reduce for auditing policies over incom-

plete logs [3]. We inherit the policy language used by the reduce algorithm,

which is a first-order logic that can encode first-order LTL formulas. Policies

that are naturally specified in LTL can be easily translated to formulas in

this logic. There has been much work on compliance checking of policies ex-

pressed in LTL [29, 30, 31, 32, 33, 34]. Most of the work focuses on runtime

monitoring. In contrast, we assume that logs are recorded by audit agents,

and post-hoc audit is applied to these logs. To our knowledge, reduce is the

only policy-based log audit algorithm that can handle incomplete logs. We

leverage reduces capability to handle incomplete logs to integrate encrypted

logs. One of our contributions is to extend reduce to further generate expla-

nations for the output of the algorithm.
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CHAPTER 4

OVERVIEW

4.1 Audit Architecture

Figure 1 illustrates HIE with its ATNA repository, HIE consumers such as

hospitals and the relationship of our proposed audit infrastructure to these.

The audit infrastructure will be used to check the legitimacy of each ac-

cess to HIE and to generate a corresponding log explanation. The audit

system consists of an audit data processor (ADP), audit agent, audit algo-

rithm and auditor viewer. The ADP collects HIE ATNA logs and external

documentation which is subsequently encrypted converts them into specific

DB schema of the Audit Logs. Converted audit records are stored in the

Audit Logs through the audit agent. The audit algorithm informs specific

encrypted information additionally needed to verify legitimacy of access af-

ter first iteration and the audit agent identifies and decrypts them. The

audit algorithm ultimately verifies whether the access is legitimate with de-

crypted audit records. In addition, the ADP has the Key Generate Center

(KGC) issuing a secret key for the decryption at the particular level of sensi-

tivity of additionally required information that the algorithm has identified

to confirm legitimacy of access. After the auditor viewer formats the result

of the audit algorithm in a more user friendly format, human interpretable

log explanation is presented in the auditor viewer upon request or periodic

auditing.

4.1.1 Health Information Exchange (HIE)

We have simulated the HIE system based on IHE Integration profile transac-

tions [9]. When a doctor submits a medical record to HIE for a new patient,

a new patient index is created by the HIE’s patient identity actor, the doc-
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Figure 4.1: HIE Audit Infrastructure

ument goes through the HIE’s document repository, and meta data for the

document location is kept in the HIE’s document registry. HIE provides the

document viewer which is an interface for use by a requesting client to re-

quest medical documents through the HIE. When such a request is made,

it goes through the document registry, which obtains the patient ID stored

in the HIE’s master patient index (MPI). A document repository ID and

document ID are then sent back to the document viewer for the request to

be transmitted to the holder of the document. When the HIE’s document

source receives a patient medical document from the HIE consumer such as

a hospital which is an originator of a Document, it is transmitted through

the document repository, which acts as a broker to send the document to

the requesting client. The HIE also has the electronic referral actor which

handles the referral process electronically. Apart from this, there is a master

provider directory with a continually updated list of healthcare providers,

consistent with the IHE Integration Profile Transaction add/update.

4.1.2 External Parties

We call the owners of supplementary external documentation the external

parties assuming that the hospitals and the PMP will routinely provide doc-
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umentation related to each HIE access, such as medical bills, patient regis-

tration, and prescriptions to the ADP, for use in subsequent audits. The link

between the HIE and the ADP is the ID-CRM, which will link each exter-

nal party’s internal patient identifier and its user ID and hospital ID with

the HIE’s patient ID, user ID and hospital ID, the latter being described in

one of IHE standards, Patient Identifier Cross-referencing (PIX). Sources of

the external documentation include the PMP, the patient registration (PR),

and the medical billing (BL). The PMP [35] is a centralized repository man-

aged by the state of Illinois and prescribers and dispensers are required to

report prescription details for controlled substances. The PMP reports the

prescription details such as recipient’s name, address and drug code of con-

trolled substances to prove the treatment relationship with a patient whose

health information is accessed via the HIE. The details about the external

documentation simulation are presented in Chapter 7.

4.1.3 Audit data Collector (AC) Path

Our simulated HIE generates XML-based ATNA logs generated by IHE Inte-

gration Profile transactions as follows: Patient Identity Feed (ITI-8), assign-

ing new patient ID to a new patient, which is subsequently stored in MPI;

Provide and Register Document Set-b (ITI-41), submitting a medical docu-

ment for a new patient to the document repository; Retrieve Document Set

(ITI-43), retrieving a patient’s medical document upon request; and Elec-

tronic Referrals. The ATNA logs are then stored in the ATNA repository.

The sensitive entries in the ATNA logs and external documentation will be

encrypted using Hierarchical Identity based Encryption in the ADP. Specific

encryption procedures are introduced in Chapter 5. Once encrypted, all ci-

phertext and plaintext entries coming through the ADP will be stored in the

Audit Logs as audit records and will wait for a request to analyze them.

4.1.4 Access Analysis (AA) Path

When an auditor tries to audit HIE logs, he/she has to connect to a web

auditor portal, the auditor viewer. The auditor is not allowed to access to

other parties in audit infrastructure, which prevents being directly disclosed
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to audit records. Once an auditor makes a request to analyze a specific

access shown in HIE log, an auditor’s query including patient ID, provider

ID and event time is sent to the audit agent. Based on this auditor-defined

condition, the audit agent looks for matched information among plain text

information. Before sending it to the audit algorithm called reduce, the audit

agent converts it into the predicate table schema which the audit algorithm

can read. In addition, HIE policy is encoded in a language that reduce

understands and then encoded policy is also transmitted to reduce. reduce

then starts the first iteration.

4.1.5 Supplement Resolution (SR) Path

After investigating a log entry, reduce returns results indicating what specific

supplementary information is necessary to determine legitimacy of access,

which is called residual. Based on all pieces of residual, the audit agent can

infer patient ID, hospital ID, event time and what kinds of information it

needs, such as patient visit history. That is, the audit agent can identify

necessary IDs and specifically required encrypted column names based on

the instances and name of returned the predicates in residual. When the

audit agent sends a data ID or multiple IDs, the KGC creates a secret key or

multiple secret keys and sends to the audit agent. The audit agent decrypts

the requisite information which is identified based on residual and captures

it in the predicate table schema. Finally, it sends additional the predicate

tables to the audit algorithm for the second iteration. The decryption process

is circumstantiated in Chapter 5.

4.1.6 Explanation Creator (EC) Path

After reduce checks whether the audit records conform to policy, it returns

true and explanation containing satisfying sub-clause and substitutions if

the policy is satisfied. If not, reduce returns false and explanation including

unsatisfying sub-clause and substitutions. The details about explanation

generated by the algorithm are described in Chapter 6. Based on return

values, the auditor viewer translates them into human-understandable The

explanations and provides them to the auditor. Serious policy violations
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associated with access are sent to the HIE consumers through the notification

proxy shown in Figure 1.

4.2 Audit Scenario

We illustrate an audit scenario using the infrastructure in Figure 4.1. Assume

that an auditor verifies Dr. John Kosta’s access to Alice’s medical record

disclosing her mental health based on the ONC privacy policy [36]. To verify

access, patient medical billing documentation issued after the observation in

the emergency room must be seen. The policy is encoded below:

ϕpol =

∀p1, p2,m, q, t, ty, va, tp, vl, o, p, c.(send(p1, p2,m, t)∧

hasattrof(m, q)∧

includes(m, ty, va))∧

patientInfo(q, tp, vl, t)∧

organization(p2, o, t)∧

insuranceInfo(q, p, c, t))

⊃ (∃t′.medical-bill(q, visit− history, t′)∧

timein(t, t′, t+365)∧

visits-in-bill(q, p2, vl, o, t
′))

∨(∃t′.medical-bill(q, observation, t′)

∧timein(t, t′, t+365)

observes-in-bill(q, p2, ty, va, o, t
′))

∧insurance(q, p,c, t′))

In words, if the log shows that entity p1 sends to entity p2 a message m at

time t, m describes patient q at time t, m includes ty such as observation ID

and va such as order type and observation value , then patient q is provided

with service vl in the hospital, such as inpatient, p2 works in organization o,

patient q has a insurance plan p of company c , consequent patient’s medical

bill issued within one year involves patient’s insurance company c, plan p

and other entries have to be matched with one of the following cases: First,
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order information in medical bill includes that provider p2 from the hospital

o makes an order va for patient q at time t′. Second, visit history information

in medical bill contains that patient q visits provider p2 in the hospital o for

vl service at time t′. Third, observation information in medical bill shows

that provider p2 observes patient q in the hospital o at time t′ and the result

indicates that observation ID is ty and observation value is va. Dr. Kosta’s

access generated an ATNA log whose name is the Retrieve Document Set

defined by IHE standard. Every time ADP gathers external documentation

from the PMP and HIE facilitated hospitals regularly, the ADP encrypts it

before sending to Audit Agent’s Audit Logs repository.

Once the audit records are imported in the Audit Logs, it waits for the

auditor viewer’s request. A few month later, the auditor makes a request to

analyze Dr. Kosta’s access. The auditor viewer sends Dr. Kosta ’s HIE user

ID (kos12), Alice’ patient ID (eeb728473e1949a) and the specific access event

time (2013:09:08:10:18:41) for subsequent audit agent’s queries matched log

entries from the Audit Logs repository. Once the audit agent locates them, it

converts them into the predicate table schema , for example, send(p1,p2,m,t),

required by reduce and encodes the policy in a first-order logic. Then, the

audit agent sends them to reduce for the first iteration. After this first step,

reduce returns residual inferring required specific encrypted columns and a

searching key to find matched precise rows in the table of the Audit Logs.

The audit agent requests secret keys to the KGC based on combination of

a primary key with specific column name which will be decrypted. Espe-

cially, in this scenario, since residual informed that necessary supplementary

information is Predicate1 requiring decryption up to level1 or Predicate2 re-

quiring decryption up to level2, the KGC has three choices to issue secret

keys, dIDlevel2
, dIDlevel1

and both. Eventually, the KGC sends dIDlevel2
to decrypt

lower level. This is one of key advantages using HIBE in this paper. Hav-

ing retrieved secret key, the audit agent decrypts required specific columns

which are (provider-level1, visitsInBill-level2) in the Audit Logs and puts them

in visits-in-bill table again. The log entries conform to the policy and reduce

returns true and the explanation. Based on reduce’s returned values, the

auditor viewer creates the following human-understandable explanation:

Dr. Kosta’s access to Alice’s record is justified because Alice’s medical bill

shows that she visits Dr. Kosta in emergency at time t.
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If the auditor viewer presents specific explanations showing serious policy

violations, the viewer consequently informs the HIE consumers of the viola-

tion, which will be processed through the notification proxy. This reporting

process is enforced by our audit system.
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CHAPTER 5

HIERARCHICAL ENCRYPTION

In this chapter, we describe how we encrypt and decrypt external audit logs,

specifically documentation, from the HCOs using HIBE for privacy protec-

tion during audits. There are various HIBE schemes that satisfy different

properties and security goals. It is important to select a HIBE scheme with

constant, small-size ciphertexts, e.g. [2], since such a scheme will optimize

storage cost regardless of hierarchy depth. Even though privacy infringement

investigations are rare in practice and encrypted sensitive data will seldom

be decrypted, it must nonetheless be stored by the audit subsystem.

5.1 External Data Hierarchy and Identity

Suppose that the data in some external documentation D has been par-

titioned hierarchically into n degrees of sensitivity, resulting in data

D1, . . . ,Dn, where Dn is the data in the documentation that is most sen-

sitive, and D1 is the data that is the least sensitive. In our system, all data

in Dn will be encrypted using an IBE identifier IDn = (id1). We suggest this

identifier be derived from non-sensitive descriptive information such as the

HCO’s identity, the patient’s identity, degree of sensitivity, and time. Data in

Dn−1 will be assigned an identifier IDn−1 = (id1, id2) and so on. Finally, data

in D1 will be assigned an identifier ID1 = (id1, ..., idn). As an example, the

billing table shown in Table 5.1 is hierarchically organized into 3 sensitivity

patient HCO date level1 level2 level3

eeb7... Carl... 2013... EncID1,1(cs..) EncID1,2(HE...) EncID1,3(73.8)
d994... Pro... 2013... EncID2,1(ra..) EncID2,2(MC...) EncID2,3(279)
4221... NW... 2013... EncID3,1(pq..) EncID3,2(PL...) EncID3,3(11.6)

Table 5.1: observes-in-bill table
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levels. Information concerning observation result that a patient receives is

level 3 sensitive (most sensitive), observation type is level 2 sensitive, and

provider information is level 1 sensitive (least sensitive).

5.2 Billing Data Encryption

Table 5.1 shows encrypted patient observation information taken from illus-

trative medical bills. Consider data D that contains exactly the first row of

the table. Within D, data at the highest level of sensitivity, D3(= 73.8), will

be assigned identity ID3 = (id1) which is the concatenation eeb728473e1949a

|| Carle07RQ12 || 2013:09:08:10:18:41 || level3 of non-sensitive identifying in-

formation. The identity of less sensitive data, D2(= HE...), is ID2 = (id1, id2),

where id2 = level2. Finally, the identity of the least sensitive data D1(= cs...)

is ID1 = (id1, id2, id3), where id3 = level1. External documentation at

each level of sensitivity (D1, ..., Dn) is encrypted using the assigned iden-

tities IDi (1 ≤ i ≤ n). For i = 1 to n, the ADP or the HCOs run

HIBE.Encrypt(Pub, IDi,Di) to get a corresponding ciphertext EncIDi
(Di). For

example, EncID1,3(73.8) in Table 5.1 represents the encryption of the data D3.

The corresponding HIBE encryption would be HIBE.Encrypt(Pub, ID1,3, 73.8)

where ID1,3 = ID3.

This example is illustrative: All external documentation in our system is

organized in tables and encrypted with the HIBE. Identities used for encryp-

tion may have cell-, column- or table-granularity, depending on the nature

of the documentation.

5.3 Issuance of Secret Keys and Decryption

When the audit algorithm requests encrypted data, the audit agent requests

an appropriate secret key from the KGC for decryption. Assume that the

audit agent needs the secret key corresponding to IDk. To issue an appropri-

ate secret key to the audit agent, the KGC runs HIBE.Extract(Pub,mk, IDk)

using its master key mk to get skIDk
. After receiving skIDk

from the KGC,

the audit agent runs HIBE.Decrypt(Pub, skIDk
, EncIDk

(Dk)) to obtain Dk. If

the audit agent needs additional information at any level k′ that is lower
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than k, the audit agent runs HIBE.Delegate(Pub, skIDk
, IDk′) to get a secret

key skIDk′
, and then runs HIBE.Decrypt(Pub, skIDk′

, EncIDk′
(Dk′)) to get Dk′ .

This does not require communication with the KGC.
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CHAPTER 6

AUDIT WITH EXPLANATIONS

We first review an audit algorithm, reduce [3], that our infrastructure builds

on. Then we present an algorithm simplify that augments the output of

reduce with an intuitive explanation of why a certain access is justified or

unjustified.

6.1 An Audit Algorithm for Incomplete Logs

Garg et al. [3] develop an algorithm for finding violations of a policy on system

logs. Their algorithm takes into consideration incompleteness of information

in logs. Incompleteness has many practical causes. For example, if the policy

carries the obligation “a notice must be sent in the next 30 days”, then before

the 30 day deadline is reached, the log may not contain enough information

to decide whether or not this obligation is met. Similarly, non-mechanizable

facts such as “some responsible party has a reasonable belief that...”, on

which policies often rely, cannot be represented in automatically generated

system logs.

To account for incompleteness, the reduce algorithm uses a best-effort ap-

proach; it checks as much of the policy as possible given the available log

and returns a residual policy that captures policy conditions which could

not be verified. The residual policy can be examined by human auditors or

re-checked by invoking reduce when more information is available. Formally,

policies are represented in first-order logic and log incompleteness is mod-

eled using three-valued logic, where a log is viewed as an abstract structure

that maps a predicate (fact) P to tt, when P is true; ff, when P is false; or

uu, when information about P is not available. For an atomic predicate P

mapped to tt, ff or uu by the log, reduce returns >, ⊥ and P respectively.

The algorithm recursively reduces the sub-formulas of the policy formula
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and the residual formula mostly preserves the structure of the input policy

formula.

A second problem addressed by Garg et al.’s work is that checking pol-

icy compliance with first-order quantification over an infinite domain is, in

general, undecidable. To resolve the issue, Garg et al. restrict policies to a

fragment of first-order logic through syntactic and other statically verifiable

conditions. In this restricted fragment, both the universal and existential

quantifiers are guarded by a condition, written c. The quantifiers have forms

∀x.c(x) ⊃ ϕ and ∃x.c(x) ∧ ϕ, and it is guaranteed (statically) that the

number of substitutions for x that makes c true is always finite. With these

restrictions, both universal and existential quantifiers can be handled eas-

ily. Garg et al. argue that even the restricted logic is very expressive; in

particular, all of the HIPAA Privacy Rule can be represented in it.

When reduce produces an actual audit decision (policy violation or not)

instead of a residual policy, it helps the audit process to have an intuitive

explanation of why that decision was made. For instance, it is helpful to know

that a physician’s access to a medical record in a hospital was allowed because

the patient was referred to that hospital, or because that the patient visited

that facility. In this chapter, we describe an extension to the reduce algorithm

that provides such an explanation. Since we build on reduce directly, we

inherit solutions to both problems mentioned above from Garg et al’s work.

6.2 Explanation Generation

We begin by introducing the syntax of policies and explanations. Then, we

describe an extended reduce algorithm that returns in the output additional

information about the internal computation of reduce to help generate an

explanation subsequently. Finally, we present the explanation generation

algorithm and prove its correctness.

6.2.1 Policy syntax

Following the prior work [3], we use a first-order logic as the policy speci-

fication language. We summarize the syntax of formulas and explanations

in Figure 6.1. We write α to denote formulas and ϕ to denote generalized
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Conj clause C ::=
∧

i ϕi

Disj clause D ::=
∨

i ϕi

Formula α ::= 〈`〉P | 〈`〉> | 〈`〉⊥ | 〈`〉C | 〈`〉D
| 〈`〉∀~x.(c ⊃ ϕ) | 〈`〉∃~x.(c ∧ ϕ)
| σ B ϕ

Generalized form. ϕ ::= α | expl(>, γ) | expl(⊥, γ)
Explanation γ ::= ` | ` ◦ γ | γ1 ⊕ γ2 | σ B γ

Figure 6.1: Syntax of formulas and explanations

formulas, which are either formulas or audit decisions (> = no violation, ⊥
= violation) coupled with explanations γ. Formulas include atomic predi-

cates, true (>), false (⊥), conjunctions (∧) and disjunctions (∨) of formulas

(denoted C and D, respectively), and first-order quantifiers (∀ and ∃). Each

formula is annotated with a policy label, written `. Labels have no semantic

meaning except to establish a syntactic link between an explanation and the

original formula from which the explanation was derived. The formula σBϕ

means that the substitution for free variables in ϕ is σ. This formula itself is

not used for policy specification. It can appear in residual formulas output

by our extended reduce algorithm. c denotes a restricted class of formulas

borrowed from [3]; readers may ignore the distinction between c and α for

the purpose of understanding this chapter.

An explanation γ corresponds to a sub-tree of labels of a formula’s ab-

stract syntax tree. An explanation is only meaningful relative to a formula.

Explanations can be a single label, which points to a leaf position of the

formula. A concatenated explanation ` ◦ γ is an explanation for a formula

labeled by ` at the root, where γ is, recursively, the explanation of the root’s

children. An explanation can also combine explanations from branches of a

conjunction or disjunction (denoted γ1⊕ γ2). Finally, an explanation can be

guarded by a substitution σ (syntax: σ B γ).

6.2.2 Extended Reduce Algorithm

The reduce algorithm, as presented in [3], takes as argument a policy for-

mula α and an audit log L and returns a residual policy α′, which may be >
(no violation), ⊥ (violation) or another formula called the residual formula

(meaning that critical information is absent from the log; α′ must be checked
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reduce(L, 〈`〉P, σ) =


〈`〉> if L(Pσ) = tt

〈`〉⊥ if L(Pσ) = ff

〈`〉P if L(Pσ) = uu

reduce(L, 〈`〉
∧n

i=1 ϕi, σ) = 〈`〉
∧n

i=1 reduce(L, ϕi, σ)
reduce(L, 〈`〉∀~x.(c ⊃ ϕ), σ) =

let {σ1, . . . , σn} ← ŝat(L, c · σ)

{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ, σ · σ1)}ni=1

ψ′ ← ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ)
return 〈`〉(σ1 B ψ1 ∧ . . . ∧ σn B ψn ∧ ψ′)

reduce(L, σ′ B ϕ, σ) = σ′ B reduce(L, ϕ, σ · σ′)
reduce(L, expl(>(⊥), γ), σ) = expl(>(⊥), γ)

Figure 6.2: selected rules for reduce

when more information is available). To extend reduce to generate expla-

nations, we change it to take as input a policy represented as a generalized

formula ϕ, a log L and, additionally, a substitution σ for free variables of ϕ.

The output of our extended reduce algorithm is also a generalized formula.

If the output is α, it means that some information necessary for audit is

missing from the log, and α is the residual policy to be checked when that

information becomes available. The output expl(>, γ) means that there is

no policy violation and γ explains why that is the case. Similarly, the output

expl(⊥, γ) signals a policy violation justified by explanation γ.

Selected rules for the extended reduce algorithm are presented in Fig-

ure 6.2. When the formula is atomic 〈`〉P , reduce returns 〈`〉>, 〈`〉⊥ and

〈`〉Pσ, when L(Pσ) is tt, ff and uu, respectively. For a universally quan-

tified formula 〈`〉∀~x.(c ⊃ ϕ), reduce first finds the set S of substitutions for

~x that make c true, using a special function called ŝat in [3]. The details

of ŝat are unimportant here; the only important point is that S is always

finite. The output of reduce is the conjunction of all the formulas obtained

by reducing ϕ(~x)σσi, for each σi in S, and ψ′, which is the same universally

quantified formula as the input formula, except that the guard of the quan-

tifiers includes an additional constraint that the substitutions S need not be

considered. The substitution σi marks ψi to help explanation generation.

The last clause ψ′ is necessary in the residual formula because we do not as-

sume a priori that the log L determines all possible substitutions for ~x that

will satisfy c in future.
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sc(
∧n

i=1 ϕi) =



simplify(ϕi) n = 1
expl(⊥, γ) if simplify(ϕ1) = expl(⊥, γ)

or sc(
∧n

i=2 ϕi) = expl(⊥, γ)
expl(>, γ1 ⊕ γ2) if simplify(ϕ1) = expl(>, γ1)

and sc(
∧n

i=2 ϕi) = expl(>, γ2)
ϕ′1 ∧ ϕ′2 if simplify(ϕ1) = ϕ′1

and sc(
∧n

i=2 ϕi) = ϕ′2 and ϕ1 or ϕ2 = α

Figure 6.3: Simplify for conjunctive formulas

simplify(〈`〉>) = expl(>, `)
simplify(〈`〉

∧n
i=1 ϕi) =

expl(⊥, ` ◦ γ) if sc(
∧n

i=1 ϕi) = expl(⊥, γ)
expl(>, ` ◦ γ) if sc(

∧n
i=1 ϕi) = expl(>, γ)

〈`〉C if sc(
∧n

i=1 ϕi) = C
simplify(σ B ϕ) =

expl(⊥, σ B γ) if simplify(ϕ) = expl(⊥, γ)
expl(>, σ B γ) if simplify(ϕ) = expl(>, γ)
σ B α if simplify(ϕ) = α

Figure 6.4: Selected rules of simplify

When the input formula is guarded by a substitution σ′ (case σ′ B ϕ),

reduce checks the formula with a composed substitution σσ′ because the free

variables in ϕ can be in the union of the domains of σ and σ′. The residual

formula is still guarded by σ′. When the input is a pair of > (⊥) and an

explanation, reduce simply returns the input formula, since the formula has

already been reduced (perhaps in a prior invocation of reduce).

6.2.3 Explanations

Next, we define a function simplify that takes a generalized formula and

returns another generalized formula, in simpler form. The function simplify

serves a dual purpose. First, it rewrites the original formula using basic

rules of logic, e.g., it replaces ϕ ∧ > with ϕ. Second, and more importantly,

if the input formula is equivalent to either > or ⊥, it produces a succinct

explanation of why that is the case by combining and selectively retaining

explanations from the original formula. So, the output of simplify is either

a residual policy formula α, or a binary answer (> or ⊥) paired with an

explanation γ.
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We present a few key rules for simplify in Figure 6.4. If the input is 〈`〉>,

then the input formula (>) is trivially satisfied and the output is simply

> coupled with the explanation, which in this case is simply the label `.

Hence, the output is expl(>, `). For input conjunctions 〈`〉
∧n

i=1 ϕi, we use a

sub-routine sc, which returns the result of simplifying the conjunctive clause

(explained later). When sc returns an explanation, simplify returns the same

explanation extended with the top-level label of the entire conjunction: `◦γ.

When sc returns a formula α, simplify wraps α with the label `. Disjunction

is similarly handled, though not shown. When the input is σ B ϕ, simplify

is invoked on the formula ϕ. If simplify(ϕ) returns expl(>, γ) or expl(⊥, γ),

then the final explanation guards γ with substitution σ. If simplify(ϕ) returns

a formula α, the output is the formula σ B α. Although not shown, simplify

returns the input as is if the input begins with a quantifier.

The sub-routine sc for conjunctive formulas is listed in Figure 6.3. sc is

defined inductively on the number of conjuncts. In the base case, there is only

one formula, so sc calls simplify. In the inductive case, if the simplification

of the first formula ϕ1 or the simplification of the rest of the conjunction

(
∧n

i=2 ϕi) is logical falsity (expl(⊥, γ)), then the entire conjunction can be

rewritten to false and the explanation of why this conjunction is false is

the same as that of the branch that makes it false (i.e., γ). On the other

hand, if both branches can be simplified to (expl(>, γi)), then the entire

conjunction is true and the explanation combines the explanations of both

branches (written γ1 ⊕ γ2). When at least one of the branches can only

be simplified to a formula, the entire conjunctive formula is neither true

nor false, and therefore we cannot generate an explanation. Instead, the

simplified formula is a conjunction. There is a similar simplification sub-

routine for disjunctions, where the roles of truth and falsity are reversed. We

omit the straightforward details.

Level 1 (least) Level 2 Level 3 (most)

provider-id (p2) service-type (vl) OBS-value(va)
INS-company (p) INS-plan (c)

OBS-type (ty)

Table 6.1: Sensitivity levels in the audit scenario
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6.3 Example Scenario

In this chapter, we present a simple audit scenario that illustrates reduce,

simplify and HIBE.

6.3.1 Policy

Suppose a HIE’s policy for data sharing is that a provider p1 can send detailed

information about a patient q to another provider p2 if, within a year of such

sharing, p2 bills the insurance company for services provided to q at p2. The

encoding of a HIE’s policy for data sharing is shown below. A provider p1

can send a patient document m to a provider p2 at time t (send(p1, p2,m, t)),

where (1) m describes patient q (hasattrof(m, q)), (2) m includes detailed

information ty and va about the patient, e.g., ty is the type of observation q

is under and va is the result of the observation (includes(m, ty, va, t)), (3) q is

classified as type tp and provided with service vl at t (patientInfo(q, tp, vl, t)),

(4) p2 works in organization o (organization(p2, o, t)), and (5) organization

o records that patient q has an insurance plan p from company c at time

t (insuranceInfo(q, p, c, t)); then there should be a consequent patient med-

ical bill of type b at time t′ (medical-bill(q, b, t′)), t′ should be within 365

days of the data sharing, the organization o should note that q has an in-

surance plan c with company p (insurance(q, p, c, o, t′)), and either the bill

is from q’s visit to p2 or for an observation carried out by p2 on q. Predi-

cates visits-in-bill(q, p2, vl, o, t
′) and observes-in-bill(q, p2, ty, va, o, t

′) represent

p2’s records of medical bills of the two specific types.

ϕpol = 〈DISC〉
∀p1, p2,m, q, t, ty, va, tp, vl, o, p, c

send(p1, p2,m, t)∧ hasattrof(m, q)∧
includes(m, ty, va, t)∧ patientInfo(q, tp, vl, t)∧
organization(p2, o, t)∧ insuranceInfo(q, p, c, t)

⊃〈AC〉∃t′, b.medical-bill(q, b, t′)∧
〈BLL〉(〈time〉timein(t, t′, t+ 365)

∧〈INS〉insurance(q, p, c, o, t′)

∧〈DJ〉(〈VST〉(〈B〉b = visit-history∧
〈visit〉visits-in-bill(q, p2, vl, o, t

′)))
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∨(〈OBS〉(〈B〉b = observation∧
〈obsv〉observes-in-bill(q, p2, ty,

va, o, t′))))

6.3.2 Audit Logs

The internal log contains information about all the predicates to the left

of the implication in ϕpol as well as the predicate medical-bill. Predicates

visits-in-bill and observes-in-bill record detailed information about patients’

hospital visits, which are considered external documentations that belong to

the hospital. Both external and internal logs are represented as database

tables. Tables visits-in-bill and observes-in-bill are HIBE-encrypted according

to levels shown in Table 6.1.

For illustration, we assume that the following substitution σ is the only

one that satisfies the condition of the outermost universal quantification on

the example log (here, terms like P1 starting with uppercase letters are

constants):

σ = p1 7→P1 , p2 7→P2 ,m 7→M1 , q 7→Q1 , t 7→T1 , ty 7→TY1 ,

va 7→VA1 , tp 7→TP1 , vl 7→VL1 , o 7→O1 , p 7→PI , c 7→C1

We further assume that timein(T1 ,T2 ,T1 + 365 ) and

timein(T1 ,T3 ,T1 + 365 ) are true. Below are the (only) log entries

about predicates to the right of ⊃ in ϕpol.

medical-bill(Q1 , visit-history ,O1 ,T2 )

medical-bill(Q1 , observation,O1 ,T3 )

visits-in-bill(Q1 ,P2 ,VL1 ,O1 ,T2 )

observes-in-bill(Q1 ,P2 ,TY2 ,VA2 ,O2 ,T3 )

insurance(Q1 ,PI ,C1 ,O1 ,T2 )

6.3.3 Reduce on Encrypted Data

In the initial phase of audit, the auditor does not possess decryption keys

for external data. This poses no problem because reduce can handle log

incompleteness; reduce treats the log incomplete in predicates like visits-in-bill,

and simply returns such predicates in the residual output. The output of

running reduce on ϕpol and the example log is shown in the next page.
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ϕr1 =〈DISC〉σB
〈AC〉σ1 B 〈BLL〉
(〈time〉>∧ 〈INS〉insurance(q, p, c, o, t′)∧
〈DJ〉(〈VST〉(〈B〉>∧ 〈visit〉visits-in-bill(q, p2, vl, o, t

′))

∨〈OBS〉(〈B〉⊥∧
〈obsv〉observes-in-bill(q, p2, ty, va, o, t

′)))

∨σ2 B 〈BLL〉
(〈time〉>∧ 〈INS〉insurance(q, p, c, o, t′)∧
〈DJ〉(〈VST〉(〈B〉⊥∧ 〈visit〉visits-in-bill(q, p2, vl, o, t

′))

∨〈OBS〉(〈B〉>∧
〈obsv〉observes-in-bill(q, p2, ty, va, o, t

′)))

Here,
σ1=t ′ 7→T2 , b 7→visit-history

σ2=t ′ 7→T3 , b 7→observation

The existentially quantified variables t′ and b in ϕpol have two possible

substitutions, corresponding to the two entries in the medical-bill table. The

residual formula hence contains a disjunction over these two possibilities.

6.3.4 Simplification

Next, we call simplify on ϕr1 to condense as many explanations as possible.

This yields:

ϕs1 =〈DISC〉σB
〈AC〉σ1 B 〈BLL〉
(expl(>, time)∧ 〈INS〉insurance(q, p, c, o, t′)∧
〈DJ〉(〈VST〉(expl(>, B)∧

〈visit〉visits-in-bill(q, p2, vl, o, t
′))

∨expl(⊥, OBS ◦ B)))

∨σ2 B 〈BLL〉
(expl(⊥, time)∧ 〈INS〉insurance(q, p, c, o, t′)∧
〈DJ〉(expl(⊥, VST ◦ B)

∨〈OBS〉(expl(>, B)∧
〈obsv〉observes-in-bill(q, p2, ty, va, o, t

′))))
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6.3.5 Requesting Decryption Keys

To proceed further, we must decrypt the insurance table and either the

observes-in-bill table or the visits-in-bill table. Since the maximum sensitivity

level of entries in visits-in-bill is lower than that in observes-in-bill, the audit

agent asks the KGC for keys at level 2 (the maximum level of visits-in-bill

and insurance).1 The KGC generates keys based on its master key mk and

gives them to the audit agent. Both the KGC and the audit agent may log

why the keys were generated (by recording the residual formula ϕs1) to aid a

subsequent audit of this audit process. The audit agent then decrypts entries

in those two tables and provides the formula ϕs1 with the decrypted tables

(added to the original log) to reduce. The output of reduce is the following

formula ϕd1. Note that the clause guarded by σ2 remains the same because

even the extended log contains no information to reduce it.

ϕd1 =

〈DISC〉σB
〈AC〉σ1 B 〈BLL〉
(expl(>, time)∧ expl(>, INS)∧
〈DJ〉(〈VST〉(expl(>, B)∧expl(>, visit))∨expl(⊥, OBS ◦ B)))

∨σ2 B 〈BLL〉
(expl(⊥, time)∧ 〈INS〉insurance(q, p, c, o, t′)∧
〈DJ〉(expl(⊥, VST ◦ B)

∨〈OBS〉(expl(>, B)∧
〈obsv〉observes-in-bill(q, p2, ty, va, o, t

′))))

6.3.6 Simplification and Explanation

Finally, simplify is run on ϕd1 to obtain the following output:

ϕs2 = expl(>, DISC ◦ σ B AC ◦ σ1 B 〈BLL〉◦
(time⊕ INS⊕ (DJ ◦ VST ◦ (B⊕ visit)))

The result indicates that the log satisfies the policy. The reason is the

following: (1) σ is the only substitution that makes the conditions associated

1For simplicity, we assume here that the audit agent decrypts entire tables atomically.
In practice, it could decrypt only specific rows of interest.

29



with the action send true and (2) the conditions required for such a send (AC)

under σ are true. The explanation of (2) is that there exists a substitution σ1

that matches an entry in medical-bill and makes BLL true. More concretely,

the time of the bill, the insurance information, and hospital’s billing record

of the patient all satisfy the policy constraints. In particular, the hospital’s

record shows that the patient visited the hospital (VST).
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CHAPTER 7

IMPLEMENTATION AND EVALUATION

To validate our proposal, we implement the HIE (Figure 4.1) based on IHE

Profile XDS.b [9]. It supports the sharing of patient clinical documents based

on the HIE’s document registry which keeps a patient document index and

location where the documents are stored in. Based on these, the web-based

document viewer looks for patient documents based on patient information.

We implement a Java API to create ATNA-based XML logs [11] on top of

HIE. We report our evaluation of HIBE key generation, decryption and the

reduce algorithm based on a policy encoding the guidelines [36] of the ONC for

Health Information Technology and a synthetic audit log. All experiments

are performed on a machine with an Intel Core i7 2.3GHz processor and

1GB of memory, running Ubuntu 12.04. We use the Charm library [37] to

implement the HIBE module. In particular, we use a symmetric curve with

a 512-bit base field to initiate a group in the elliptic curve with bilinear

pairings. For illustration purposes, we assume a maximum depth of three

sensitivity levels in the hierarchy. To encrypt arbitrary messages with HIBE,

we use a hybrid encryption scheme: we extract a session key after hashing

[14] a random element from the message space of HIBE, encrypt messages

with the session key via AES (CBC mode) symmetric encryption and encrypt

the random element using HIBE [2].

7.1 Implementation

7.1.1 HIE Simulation

We chose to use NIST’s open source package, IheOS [38] adopting IHE Profile

XDS.b, described in Chapter 4. We used both Apache Tomcat 5.5.23 as a

web application server and Apache 2.2.23 as a web server for our patient
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document sharing server, built a web service for a patient document viewer,

and used Postgresql 8.4.17 to create the Document Registry. To adopt ATNA

as the audit mechanism in our HIE system, OpenSSL 1.0.1 14 was used for the

user and node authentication and RFC-3881-based XML logs were generated

by a Java API ATNA generator (Appendix A) for the audit trail.

7.1.2 HIBE Module

We used the Charms library [37] to implement our cryptographic module

HIBE-BBG05 (Appendix D) and prototype an HIBE scheme [2]. As a plat-

form to implement HIBE, we used Python2.7, Pyparsing 2.0.1, GMP 5.1.2

and PBC 5.14. To initiate a group in the elliptic curve with billinear pair-

ings, we used a symmetric curve with a 512-bit base field. We decided on a

maximum of three depths of sensitivity in the hierarchy for the evaluation

shown in Chapter 7.4. To encrypt arbitrary messages with the HIBE scheme,

we used key encapsulation. In other words, we extracted a session key after

hashing the group GT elements with a Waters hash technique, encrypted a

message with a session key via AES (CBC mode) symmetric encryption and

encrypted a session key using HIBE.

7.2 Policy

According to the ONC, providers requesting a patient’s IIHI by electronic

means for treatment must verify a treatment relationship with a patient by

attestation or artifacts such as patient registration, prescriptions, consults,

and referrals. The top-level encoding of the policy is shown below and con-

sists of a disjunction of six sub clauses, and at least one must be satisfied for

each access. The details of these clauses are presented in Appendix C and

ϕpol, shown in Chapter 6.3, is a simplified encoding of ϕBilling.

ϕONC = ∀p1, p2,m, q, t, ty, va, tp, vl, o, p, c
send(p1, p2,m, t)∧ hasattrof(m, q)∧
includes(m, ty, va, t)∧ patientInfo(q, tp, vl, t)∧
organization(p2, o, t)∧ insuranceInfo(q, p, c, t)

⊃ϕException ∨ ϕBilling ∨ ϕRegistration ∨ ϕPrescription

∨ϕReferral ∨ ϕConsult
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7.3 Audit Logs

We generate synthetic data representing both external audit logs and internal

ATNA logs (Appendix B). The generated ATNA log has a size of 5.7 MB,

which represents 9,644 accesses to HIE over 4 months (this realistic number is

based on Johnson et al.’s data [39]). The external audit data has a size of 12

MB, and includes roughly 9,644 entries about patient registration, billing and

referral. The external logs are encrypted using HIBE with three pre-defined

sensitivity levels.

7.3.1 External documentation Simulation

To simulate the information about patient registration, billing, and prescrip-

tion, which we relied upon for external documentation in this paper, we uti-

lized HL7 [10] messages. For patient registration, we simulated data based on

”Register a patient”, which is an HL7 ADT A04 meesage, since this message

is used in updating patient clinical data to change address or add next of kin.

This clinical data will then be sent upon request to different places such as

laboratories. For patient billing, we simulated data based on ”Order”, which

is an HL7 ORM 001 message, ”Add patient account”, which is an HL7 BAR

P01 message, and ”Unsolicited transmission of an observation”, which is an

HL7 ORU R01 message. The ORM message is used in laboratories when they

receive orders from referring providers via an HL7 interface, which indicates

that some of entries in the message are needed to complete a medical bill.

The BAR and the ORU messages are in fact used in imaging centers when

referring providers request patient billing information and final coding. For

prescriptions, we simulated the PMP, as described in Chapter 4, based on

the Illinois Compiled Statutes (ILCS) [40]. All entries of simulated external

documentation are stored in three tables, the Patient Registration, the PMP

and the Billing, in the Audit Logs repository, which is an SQLite database.

7.3.2 ATNA log

Even though the ATNA generator (Appendix A) creates ATNA log entries

for log-in and log-out in HIE, assigning a new patient ID to a new patient,

submitting a new patient document(s) and retrieving a patient document(s),
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Key
Gen.
(ms)

Session
Key
Dec.
(ms)

Msg
Dec.
(ms)

Reduce
(ms)

Single
access
(ms)

Day
(s)

Month
(m)

Level3 17.73 20.76 0.06 42.6 81.15 6.57 3.26
Level2 11.73 13.73 0.04 41.3 66.80 5.41 2.68

Table 7.1: Consumption time for HIBE and reduce

we only use the logs that are generated by retrieval of a patient document(s)

for audit analysis since such retrieval accompanies the same key entries as

in other transactions. All entries in this log are captured in tables whose

names are Predicates in SQLite. Especially sensitive information, such as a

diagnosis code, is already decoded in the audit logs prior to audit analysis as

specified in the ATNA Profile. Therefore, we do not include such a decoding

process in our audit system.

7.4 Evaluation Results

We evaluate the efficiency and scalability of both HIBE and the reduce al-

gorithm. We use the audit scenario shown in Chapter 6.3 and break it into

three phases. In the first phase, the auditor does not have any keys, and we

measure the time reduce takes to generate a residual policy; in the second

phase, we measure the time it takes the KGC to generate a decryption key

given an ID, and the time it takes to decrypt relevant log data using the key

(because our encryption is hybrid, the latter further splits into the time taken

to decrypt the symmetric key, and the time take to decrypt the data using

the symmetric key); in the third phase, we run reduce again and measure the

time reduce takes to check the residual policy on the decrypted data. We

run the audit scenario on two accesses, one requires a decryption key of level

2, and the other requires a decryption key of level 3. The size of messages

encrypted up to level 2, shown in Table 7.1, is 416B including the session key

and the size of messages encrypted up to level 3 is 580B including the session

key. Table 7.1 summarizes our results. All numbers are averages of 20 trials

(all have negligible standard deviations). The first column shows the time

taken to generate HIBE decryption keys, the second column indicates the
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time needed to decrypt a session key with the HIBE key, the third column

shows the time to decrypt a message using AES and the fourth column shows

the total time consumed by reduce, which is derived by adding up the time

for each iteration of reduce(before and after decryption). As can be seen,

the total time is split almost evenly between reduce and the cryptographic

operations for data at level 3 and is dominated by reduce for data at level 2.

Johnson et al [39] report approximately 81 accesses per day in a typical HIE.

Based on this number, we calculate the total time for auditing all accesses in

a day and in a month to be 6.57/5.41 seconds (level 3/level 2) and 3.26/2.68

minutes, respectively. Since audit is an offline process, we consider these

numbers practical.
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CHAPTER 8

DISCUSSION

8.1 Practical Issues in Deployment

Integrating our audit architecture into an actual distributed healthcare en-

vironment will be challenging since it will require the HCOs not only to use

the HIE system but to accept the audit infrastructure as sufficiently secure.

In addition, the details of the process for accepting diverse formats of exter-

nal documentation from HCOs and converting them into the ATNA based

audit record, as would be needed for use with our infrastructure, will need to

be worked out. In addition, even though HIBE supports privacy preserving

audit, we still need to monitor audit system during collection and analysis

of audit records if the audit system is compromised by malicious auditors,

which subsequently discloses sensitive information in the audit data. Fur-

thermore, our current work did not involve access control, however, we need

to utilize our explanations about the legitimacy of access to establish ac-

cess control for HIE in the future since audit analysis can only notify of the

violations after the fact. Establishing fine-grained access control for HIE is

cumbersome by exceptional cases such as emergency that might result in false

positives or false negatives in the application of access control, and which can

significantly affect the effective running of HIE. For example, Bob accesses

Alice’s clinical record through HIE in an emergency: his allowed access level

is low since he is not her PCP. In this case, HIE needs to give him a higher

level of access to provide him with sufficient health information for Alice’s

treatment. We need an access control model that can automatically process

these exceptions, which can be feasible with our audit infrastructure. De-

tails concerning converting file format of documentation, access control, and

follow-up monitoring of our infrastructure are left for future work.
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8.2 Limitation of Audit Algorithm

In the examples shown in Chapter 6.3, the encrypted tables are not used to

generate substitutions for quantified variables; i.e., they do not appear in the

guards of quantified formulas. It could be cases where the guards refer to ex-

ternal data. For instance, ty and va can be encrypted in includes(m, ty , va, t).

The current method for handling encrypted data does not work for such sce-

nario because reduce requires that no predicates in the guards be subjective.

We can augment reduce to allow encrypted data to appear in the guard po-

sition as follows. When searching for substitutions for quantified variables

based on a guard c, we mark the substitutions that depend on encrypted

data to indicate that such substitution exists, but the concrete values re-

quire decryption. In the simplification phase, we decide whether decryption

is needed. It could be the case that such decryption is not needed. For

instance, if VST branch is true, then OBS is irrelevant, so we do not need to

decrypt ty or va. In more complicated scenarios where there are multiple

encrypted predicates in the guard, and identifying the substitutions requires

examining the values of encrypted data, we need additional mechanisms to

integrate decryption key requests with reduce. We leave them as future work.
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CHAPTER 9

CASE STUDY

9.1 Auditor Privilege

According to ISO specifications [41], the EHR audit log and EHR requestors

and provider must all conform to the ISO data flow protocol as well as to the

access control policy, which consists of access control factors being collected

in the data flow. ISO has spelled out sensitivity levels for EHR records,

functional roles 5 of EHR recipients, and mapping instructions applicable

to various recipient functional roles and record sensitivity levels. We will

1Class of identity, pseudo identity, endpoint address, organization, etc.
2Provider Directory.
3Hospital, IDN, Provider Org, Provider, HIE, Connector, etc.
4for individuals, NIST has levels of proofing, for organizations, the individual repre-

senting the org is proofed, and then the org identity is established through records search.
Not sure how apps (services) are proofed, or if that is even relevant, although it maybe
should be.

5Functional role is a role at the hospital such as consultant pediatrician at a hospital
or head of child screening for the region. The principals (person, agent, etc) can hold one
or more functional roles

Identity Axis Policy Axis Contract Axis

Identity (name) stores a copy?(Y/N) Reciprocal obligations
Identity Details 1 PD2 policy Notification of breach

Identity Type3 Patient disambiguation Explicit AGMT
Proofing level4 MPI MGMT Explicit practices

Certified?(Y/N) Consent REQ Suspending REQ
There is chain(s)?(Y/N) Privacy policies Termination REQ

Accreditation Security policies Update REQ
Accrediting entity Audit review policy Inspection AGMT

User Authentication level Standards supported AGMT Version
User authorization type Profiles supported
Authorization content Permitted purposes

Contact person

Table 9.1: User Trust Attributes
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utilize these specifications with two strategies in mind. The first one is to

build future access control based on analysis of audit logs that conform to

these specifications. The pieces of information in the audit log explanations

generated by our audit log subsystem will be utilized to construct an access

policy model and we will request specific additional information that has

not already been gathered through the audit log from external third parties

based on ISO-specified standards. Therefore, we will establish a plausible

access policy for HIE by analyzing the audit log. Our second strategy is to

incorporate the access policy into the auditor viewer. If we need to allow

patients or medical providers as well as auditors to investigate the audit log,

we will comply with ISO specifications to limit all three of them to accessing

audit information only at the appropriate level of sensitivity.

9.2 Access Policy for HIE

HHS has provided a document entitled Trust Framework for HIE [42], which

suggests that when a provider requests an EHR, the request has to include

trust attribute profile, which explains the conditions for a trusted exchange.

This profile is established and verified through means such as self-attestation,

certification, or accreditation. If a requesters profile meets local policy re-

quirements, the requested records will be sent to the requester. HHS recom-

mends grouping attributes into three categories, namely identity, policy, and

contract to describe the initial trust framework, since EHR communications

may vary depending on local policy. These groupings are helpful to determine

whether to share information between unaffiliated entities. In addition, HHS

proposes that the automation of the evaluation of trust attributes (Table 9.1)

can make the process of assessing differences in trust elements more quick

and efficient. Accordingly, we will extend our work, a logic-based reasoning

with formal policy, to effectively automate a system to verify whether the

trust attributes of principals satisfy the policy or not.
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Figure 9.1: User Access control via Trust Attributes in Audits

9.3 User Authorization Using Trust Attributes

Figure 9.1 illustrates the overview of access control mechanism for HIEs. The

audit log is regularly accumulated through the audit subsystem and trust at-

tributes (Table 9.1) are extracted per a user such as medical provider, on a

daily basis. When a provider requests the medical record via the HIE (path

MRQ1), the HIE needs to get the user access permission to the target record

from the access control (path MRQ2). Based on requester information, the

access control retrieves user trust attributes from the audit subsystem (path

TAR1 and TAR2). If attributes don’t exist, the request will be manually

reviewed by the source provider. The access control encodes user trust at-

tributes into the first-order logic and requests applicable local policy from

the source provider (path LPR1 and LPR2). If the policy is successfully

retrieved (path LPR3 and LPR4), it is converted into the first-order logic as

well. Since the access control includes the logic-based algorithm similar to

our audit algorithm, it can successfully check if user trust attributes conform

to the local policy. If the HIE decides to admit user request based on the

result (true or false) from access control module, the target medical record

is sent to the requester from the source provider (path MRP3 and MRP4).

If not, the user request is denied (path MRP1).
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CHAPTER 10

CONCLUSION

We have proposed an audit infrastructure for broker-based HIE systems that

limits the information shared through HIE. The audit logs complying with

ATNA are stored in a centralized audit repository to make it easy to ef-

fectively audit HIE, with a bare minimum of them being decrypted only as

needed to justify each access using HIBE. Our extended logic-based audit

algorithm provides further evidence of the auditors behavior, and thus in-

creases the trustworthiness of the system. Initial performance evaluation of

a prototype implementation shows that our proposed infrastructure is prac-

tical and scalable. As future work, we plan to implement the extended audit

algorithm and investigate the possibility of combining audit and access con-

trol mechanisms.
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APPENDIX A

ATNA LOG GENERATOR

// WriteXml_ret.java

package xml.create;

import java.io.*;

import java.util.*;

import java.net.*;

import java.text.*;

import java.lang.*;

import org.w3c.dom.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;

import javax.xml.transform.dom.*;

import javax.xml.parsers.*;

import db.UserInfo;

public class WriteXml_ret

{

public void writeXml(int outcome,int filenum,String

alterid,String pid, String[] partid, String[] repid,

String[] hcid, String[] consult, String uid, String[]

sen, String gua,String com,String plan,String[]

author,String[] pclass,String[] type,String[]

value,String[] order) throws FileNotFoundException,

UnknownHostException

{

try

{

DocumentBuilderFactory docFactory =

DocumentBuilderFactory.newInstance();
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DocumentBuilder docBuilder =

docFactory.newDocumentBuilder();

/*ATNA Elements*/

//Time

Calendar rightnow =

Calendar.getInstance();

String timenow = "";

timenow =

Integer.toString(rightnow.get(Calendar.YEA...

...

..

//Client IP address(Local)

InetAddress ip=InetAddress.getLocalHost();

//File name

String fname = "retb_"+timenow;

//User name retrieval with user id

UserInfo u = new UserInfo();

String uid =

(String)session.getAttribute("uid");

String username = u.getName(uid);

//ATNA repository(Local)

File fileXml =

new File("/usr/local/tomcat1/webapps/

atna_repository/"+fname+".xml");

Document document = null;

Element rootElement = null;

Element eventElement = null;

Element eventidElement = null;

Element eventcodeElement = null;

Element activeElement = null;

...

..

Document doc = docBuilder.newDocument();

rootElement =

(Element)doc.createElement("AuditMessage");

rootElement.setAttribute("xmlns:xsi",

"http://www.w3.org/2001/XMLSchema-instance");

43



rootElement.setAttribute

("xsi:noNamespaceSchemaLocation",

"healthcare-security-audit.xsd");

doc.appendChild(rootElement);

/* Event Identification */

eventElement =

(Element)doc.createElement("EventIdentification");

eventElement.setAttribute("EventActionCode",

"R");

...

..

/* Active Participant: Document Repository */

activeElement =

(Element)doc.createElement("ActiveParticipant");

activeElement.setAttribute("UserID",

"http://localhost:9080/tf6/services/xdsrepositoryb");

activeElement.setAttribute("UserIsRequestor",

"false");

...

..

/* Active Participant: Client */

activeElement2 =

(Element)doc.createElement("ActiveParticipant");

activeElement2.setAttribute("UserID", uid);

activeElement2.setAttribute("UserName",

username);

...

..

/* Audit Source Identification */

auditElement = (Element)doc.createElement

("AuditSourceIdentification");

auditElement.setAttribute("AuditSourceID",

"http://localhost:9080/tf6/services/xdsrepositoryb");

..

/* Participant Object Identification: Patient

*/

partElement = (Element)doc.createElement

("ParticipantObjectIdentification");
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partElement.setAttribute("ParticipantObjectID",

pid);

...

..

/* Participant Object Identification: Patient

Medical Document Details */

for(int i=0;i<filenum;i++)

{

partElement2=(Element)doc.createElement

("ParticipantObjectIdentification");

partElement2.setAttribute

("ParticipantObjectID",

partid[i]);

partElement2.setAttribute

("ParticipantObjectTypeCode",

"2");

partElement2.setAttribute

("ParticipantObjectTypeCodeRole",

"3");

partElement2.setAttribute

("ParticipantObjectSensitivity",

sen[i]);

...

..

}

/* Write and export XML */

TransformerFactory transformerFactory =

TransformerFactory.newInstance();

Transformer transformer =

transformerFactory.newTransformer();

transformer.setOutputProperty(OutputKeys.ENCODING,

"UTF-8");

...

..
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APPENDIX B

ATNA LOG

Figure B.1: Retrieve Patient Documents

Figure B.2: Referring
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Figure B.3: Billing

Figure B.4: Prescription
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APPENDIX C

FORMAL PRIVACY POLICY
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APPENDIX D

HIBE MODULE

\\hibenc_bbg05.py

’’’

Created on Jun 26, 2013

@author: Se Eun Oh (seeunoh2@illinois.edu)

’’’

#from charm.toolbox.pairinggroup import

PairingGroup,ZR,G1,G2,GT,pair

from charm.toolbox.pairinggroup import

PairingGroup,ZR,G1,G2,GT,pair

from charm.toolbox.ecgroup import ECGroup

from charm.core.math.pairing import hashPair as sha1

from charm.toolbox.symcrypto import AuthenticatedCryptoAbstraction

from charm.toolbox.iterate import dotprod2

from charm.toolbox.hash_module import Waters

import sys

import time

debug = False

class HIBE_BBG05_KeyEnc:

"""

>>> from charm.toolbox.pairinggroup import PairingGroup, GT

>>> group = PairingGroup(’SS512’)

>>> hibe = HIBE_BBG05(group)

>>> (master_public_key, master_key) = hibe.setup()

>>> ID = "bob@mail.com"

>>> (public_key, secret_key) = hibe.extract(3,

master_public_key, master_key, ID)

50



>>> msg = group.random(GT)

>>> cipher_text = hibe.encrypt(master_public_key, public_key,

msg)

>>> decrypted_msg = hibe.decrypt(public_key, secret_key,

cipher_text)

>>> decrypted_msg == msg

"""

def __init__(self, groupObj):

global group, ibenc

group = groupObj

def setup(self, l=3, z=32):

""" k represents maximum depth of HIBE system,

z represents the bit size of each integer_j of identity.

"""

assert l > 0, "invalid number of levels (need more than 0)"

alpha = group.random(ZR)

beta = group.random(ZR)

"""paring group vs ecgroup"""

g = group.random(G2)

g1 = g ** alpha

g2 = group.random(G2)

g3 = group.random(G2)

h = {}

for i in range(l) :

h[i] = group.random(G2)

g2alpha = g2 ** alpha

mpk = { ’g’: g, ’g1’:g1, ’g2’:g2, ’g3’:g3, ’h’:h, ’z’:z,

’l’:l }

mk = { ’g2alpha’:g2alpha }

return (mpk, mk)

def keygen(self,level,mpk,mk,ID):

k = level

#assert k >= 1 and k <= mpk[’l’], "invalid level: 1 - %d" %

mpk[’l’]

print "z====",mpk[’z’]

I = Waters(group, k, mpk[’z’]).hash(ID)
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r = group.random(ZR)

hi = {}

for i in range(k) :

hi[i] = mpk[’h’][i] ** I[i]

mhi = 1

for t in range(k):

mhi *= hi[t]

hg3r = (mhi * mpk[’g3’]) ** r

hashID = mk[’g2alpha’] * hg3r

gr = mpk[’g’] ** r

hr = {}

for i in range(k+1,mpk[’l’]) :

hr[i] = mpk[’h’][i] ** r

return { ’ID’:ID, ’k’:k },{ ’d0’:hashID,’d1’:gr, ’dn’:hr}

"""

## Encrypt the message using key encapsulation

"""

def encrypt(self,mpk,pk,M):

if type(M) != str: raise "message not right type!"

key = group.random(GT)

s = group.random(ZR)

print "s==",s

I = Waters(group, pk[’k’], mpk[’z’]).hash(pk[’ID’])

"""

1. Key Encryption

"""

A_s = pair(mpk[’g1’],mpk[’g2’]) ** s

A = A_s * key

B = mpk[’g’] ** s

h_i = {}

for i in range(pk[’k’]):

h_i[i] = mpk[’h’][i] ** I[i]

mh_i = 1

for t in range(pk[’k’]):

mh_i *= h_i[t]
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C = (mh_i * mpk[’g3’]) ** s

"""

2. Message Encryption using key

"""

cipher = AuthenticatedCryptoAbstraction(sha1(key))

c2 = cipher.encrypt(M)

"""

3. Return : Ciphertext_Key = {A,B,C}, Ciphertext_Message =

c2

"""

return {’A’:A,’B’:B,’C’:C, ’c2’:c2} #A,B,C : Encrypted key,

c2 : Encrypted Message

def decrypt(self,pk,sk,ct):

"""

1. Key Decryption

"""

start_time = time.time()

num = ct[’A’] * pair(sk[’d1’],ct[’C’])

den = pair(ct[’B’],sk[’d0’])

key = num/den

encM_time = time.time();

"""

2. Message Decryption using key & Return decrypted message

"""

start_time2 = time.time()

cipher = AuthenticatedCryptoAbstraction(sha1(key))

encM_time2 = time.time();

return cipher.decrypt(ct[’c2’])
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