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ABSTRACT
In health care institutions, medical specialty information
may be lacking or inaccurate, in part because there is no
official code to express such specialties. Diagnosis histories
offer information on which medical specialties may exist in
practice, regardless of whether they have official codes. We
refer to such specialties that are predicted with high cer-
tainty by diagnosis histories de facto diagnosis specialties.
The objective of our research is to discover de facto diagno-
sis specialties under a general discovery–evaluation frame-
work. Specifically, we employ a semi-supervised learning
model (based on heterogeneous information network analy-
sis) and an unsupervised learning method (based on topic
modeling) for discovery. We further employ four supervised
learning models for evaluation. We use one year of diag-
nosis histories from a major medical center, which consists
of two data sets. One is fine-grained and has diagnoses as-
signed to 41,603 patients that are accessed by 2,504 medical
service providers. The other is general and has diagnoses
assigned to 291,562 patients that are accessed by 3,269 med-
ical service providers. The semi-supervised learning model
discovers a specialty for Breast Cancer on the fine-grained
data set; while the unsupervised learning method confirms
this discovery and suggests another specialty for Obesity on
the larger general data set. The evaluation results reinforce
that these two specialties can be recognized accurately by
supervised learning models in comparison with 12 common
diagnosis specialties defined by the Health Care Provider
Taxonomy Code Set.

Categories and Subject Descriptors
J.3 [LIFE AND MEDICAL SCIENCES]: Medical infor-
mation system; H.2.8 [DATABASE MANAGEMENT]:
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1. INTRODUCTION
Medical specialties provide information about which medical
service providers (hereinafter referred to as“providers”) have
the skills needed to carry out key procedures or make critical
judgments. They are useful for training and staffing, as well
as providing confidence to patients that their providers have
the expertise required to address their problems.

Health care institutions have many ways to express and take
advantage of staff specialties, including organizing them into
departments or wards. However, such an organization has
its limitations. For instance, at a large and diverse medi-
cal center, some specialties may be lacking or inaccurately
described (e.g., they are not always entered for new hire
documents), employees can change roles, and encoded de-
partments do not always align with specialties. As a result,
there could be a gap between the diagnosis histories of cer-
tain providers and their specialties. There is thus an op-
portunity to design and apply data-driven techniques that
assist in the management of health care operations, such as
staffing (by providing accurate specialty information about
current staff), quality control (by verifying that providers
practice consistently with their declared specialties), and
building patient confidence (by ensuring that patients are
treated by specialists) [16].

Health care providers select from the Health Care Provider
Taxonomy Code Set (HPTCS) [14] when they apply for their
National Provider Identifiers (NPIs) [1]. NPIs are required
by the Health Insurance Portability and Accountability Act
(HIPAA) of 1996 and are used in health care-related transac-
tions. Health care providers usually choose their taxonomy
codes according to the certifications they hold. Ideally, this
mechanism would identify each health care provider with the
taxonomy codes that most accurately describe their special-
ties. However, this is not always the case for several reasons.



First, the National Plan & Provider Enumeration System
does not verify that the taxonomy code selections made by
providers in NPI applications are accurate [14]. Second, cer-
tain taxonomy codes do not correspond to any nationwide
certifications that are approved by a professional board. For
example, the specialty for Men and Masculinity is a well-
recognized area of interest, study, and activity in the field
of psychology; however, there is no certification or creden-
tial available to identify psychologists who might work in
this area [2]. Third, some national certifications are not re-
flected by the taxonomy code list. Since the taxonomy codes
do not correspond to certifications within the field, providers
may interpret these codes in inconsistent ways.

In view of the aforementioned limitations of purely relying
on NPI taxonomy codes, we propose to leverage real-world
diagnosis histories to infer and recognize actual specialties.
We refer to such inferred knowledge as de facto specialties.
De facto specialties are medical specialties that exist in prac-
tice regardless of the specialty codes (NPI taxonomy codes).
To illustrate, imagine that there is a method for recognizing
providers’ de facto specialties based on their actual activi-
ties related to diagnosis histories. This enables us to verify
the NPI taxonomy codes of the providers in a health care
institution. If certain providers’ declared specialties failed
to match their activity-based specialties, such as electronic
health record (EHR) access, an investigation and possible
re-designation of their codes might be warranted.

As the medical profession evolves, the HPTCS needs to be
updated to be more comprehensive [5, 10, 25]. Problems
and inefficiencies could arise if the specialty codes are not
sufficiently expressive to convey providers’ specialties. For
instance, if there is no official code to express such specialties
and no providers declared them, false alarms of suspicious
EHR access detection might be raised because such unlisted
de facto specialties could not be assigned to any providers.
Other concerns have been voiced by the American Psycho-
logical Association: “ ... several national certifications that
do exist are not reflected on the specialty code list. Since
the specialty codes do not correspond to certifications within
the field, psychologists will interpret these codes in different
ways. Use of the specialty codes by psychologists therefore
will not be uniform and will not provide meaningful infor-
mation about a psychologist’s practice.” [2]

The focus of our research is on de facto diagnosis spe-
cialties of providers that exist in practice and are highly
predictable by the diagnoses in the EHRs of the patients they
treat.. Our goal is to discover de facto diagnosis specialties
that do not have corresponding codes in the Health Care
Provider Taxonomy Code Set. In this study, we use a sub-
set of such codes for both discovery and evaluation. To
provide intuition into the problem, let us consider a perfect
scenario where every NPI code correctly reflects specialties
in a data set. If machine learning models are trained on this
data set and exhibit decent performance, we believe that
such models would reliably discover de facto diagnosis spe-
cialties in a new data set; the new data set may be provided
by another health care institution that needs more reliable
de facto diagnosis specialty discovery. However, in practice
this perfect scenario will not be realized. In this work, we
consider a more challenging scenario where we assume that

majority of the NPI codes correctly reflect specialties in our
collected data set.

This study makes three contributions. First, we propose
a novel de facto diagnosis specialty discovery problem. To
solve this problem, we introduce a discovery–evaluation frame-
work. Specifically, de facto diagnosis specialties are pro-
posed and their recognition accuracy is subsequently evalu-
ated in comparison with existing diagnosis specialties listed
in the HPTCS. Although we rely on expert opinions to in-
terpret our discovery results, we consider evaluation impor-
tant because expert opinions may not always be available in
practice.

Second, under the discovery–evaluation framework, we em-
ploy a semi-supervised learning model (based on heteroge-
neous information network analysis) on a fine-grained data
set and an unsupervised learning method (based on topic
modeling) on a larger general data set for discovery. We
further employ four supervised learning models for evalua-
tion. Details of the two data sets are described in Section 3.

Third, we perform an empirical investigation using one year
of diagnosis histories from a major medical center, which
consists of two data sets. One is fine-grained and has diag-
noses assigned to 41,603 patients that are accessed by 2,504
providers. The other is general and has diagnoses assigned
to 291,562 patients that are accessed by 3,269 providers.
The semi-supervised model discovers a de facto diagnosis
specialty for Breast Cancer on the fine-grained data set; the
unsupervised learning method confirms this discovery and
suggests a new de facto diagnosis specialty for Obesity on
the larger general data set. The evaluation results reinforce
that these two specialties can be recognized accurately by
supervised learning models in comparison with 12 common
de facto diagnosis specialties defined by HPTCS.

2. DE FACTO DIAGNOSIS SPECIALTY
In Section 1, we define de facto diagnosis specialties as med-
ical specialties that exist in practice and are highly pre-
dictable by the diagnoses inherent in EHRs. Here we il-
lustrate this concept in more detail.

Intuitively, it should be easier to characterize a urologist in
terms of medical diagnoses for conditions, for example, of
the kidney, ureter, and bladder, as opposed to an anesthe-
siologist, whose duties are more cross-cutting with respect
to diagnoses, concerning essentially all conditions related to
surgeries. To orient the reader using a concrete example,
let us test this hypothesis with a näıve classifier based on
diagnosis codes. To gain intuition into the general idea,
consider the following steps. First, we begin with a data set
that indicates which EHRs have been accessed by urologists
and anesthesiologists, and view each patient as a document
whose words are diagnoses in their EHRs. Next, we create a
weighting for how many diagnoses of each kind are accessed
by each provider, with some adjustment for how common the
diagnosis is. This technique is typified by term frequency–
inverse document frequency (TF-IDF, with details in Sec-
tion 4.4.5). We believe such a näıve classifier is the type
of model that an administrator might define and apply to
infer a specialty from a diagnosis history. The technique
proceeds by finding the most relevant diagnoses of each di-



Table 1: A summary of the attributes for NMH
audit logs for the fine-grained and general data sets.

Fine-Grained General
Accesses 35,869 4,829,376
Patients 41,603 291,562
Providers 2,504 3,269
Patient encounters 62,390 890,812
Taxonomy codes 161 165

Table 2: A summary of the attributes for patient
records in NMH audit logs for the fine-grained and
general data sets.

Fine-Grained General
Provider job titles 167 171
Locations 242 251
Services 101 104
Diagnoses 4,172 13,566
Procedures 740 2,165

agnosis specialty (taxonomy code) and the most frequently
accessed diagnoses of each provider. Finally, providers are
classified according to the specialties with which they share
the most commonly accessed diagnoses.

Using the general data set for the empirical study below (de-
tails in Section 3), we observe that urologists tend to access
diagnoses such as “retention of urine” and “urinary tract in-
fection”, whereas anesthesiologists tend to access diagnoses
such as “other aftercare” and “other screening”. When we
use the 20 conditions most accessed by either of the two
specialties as the features for the näıve classifier, the results
are decent for urology, yielding an F1 score of 70.35% in
predicting the urologists1. However, the results for anesthe-
siologists are poorer, yielding F1 score of 11.30%. If we use a
machine learning technique, such as SVM (described in Sec-
tion 4.4.4), we can achieve substantially better results: find-
ing anesthesiologists with an F1 score of 48.98%. However,
this performance is still weaker than the classifier learned
for urologists, which achieves an F1 score of 97.44%.

De facto specialties that are highly predictable by diagnosis
histories are de facto diagnosis specialties. Note that there is
no ground truth to determine the validity of a discovered de
facto diagnosis specialty. Ideally, a discovered de facto diag-
nosis specialty can be recognized by classifiers as accurately
as the existing listed diagnosis specialties. To illustrate how
this is possible, consider an analogy with respect to the clas-
sification of documents, an area that has inspired many of
the techniques we apply. The providers U can be likened to
readers of documents, where A represents an archive of doc-
uments in which the words in each document correspond to
diagnoses. A function T (u) indicates the collection of docu-
ments that a provider u has read. Providers with specialties
are groups of readers who (presumably) have a common de
facto diagnosis specialty and interest in the same group. To
solve the de facto diagnosis specialty discovery problem we
aim to develop a classifier that characterizes this common
interest in terms of the documents that they have read, if
possible. For instance, if there are a group of readers that
are ophthalmologists and they are inordinately interested in
documents on disorders of the eyes, then we can use this
proclivity to serve as a discriminatory feature.

3. DATA
Following the aforementioned analogy to the document clas-
sification, we use access log data from a hospital and combine
it with the diagnosis lists in patient discharge records. That

1A higher F1 score indicates a better performance (more
details are provided in Section 5.1).

is, for each encounter (visit to the hospital by a patient)
we have a set of diagnoses, and for each provider we have
a record of whether the provider accessed the chart of that
patient during the time of that encounter. If a provider u
accessed the patient during that encounter, we include the
diagnosis set for that encounter in T (u). We will refer to
users (as in chart users) rather than providers for our tech-
nical discussion.

We collect data for this study via the Cerner Powerchart
EHR system in use at Northwestern Memorial Hospital (NMH).
The data contain all user accesses (in the form of audit logs)
made over a one-year period, as well as insurance billing code
lists, in the form of International Classification of Diseases–
ninth revision (ICD-9), for patient encounters during this
period. All data were de-identified for this study in accor-
dance with the HIPAA Privacy Rule and carried out under
Institutional Review Board approval. Since specialties are
mainly focused on physicians, we filter out users with other
positions (e.g., nurses and dieticians) from the data set.

A small portion of the collected data has an explicit map-
ping between users and diagnoses of the EHRs they accessed.
However, majority of the data lacks such an explicit relation-
ship. This is because patients may have multiple diagnoses
and their EHRs may be accessed by different users without
documentation on which specific diagnoses were associated
with the actions of which user. We refer to the former por-
tion as the fine-grained data set. As fine-grained data may
not always be available, we expand to a more general data
set for our study that may be more representative of the
challenging scenarios encountered in practice. Hence, we use
the entire data after removing all such fine-grained mapping
information to form the other data set, which we call it the
general data set. The attributes of the data sets used in this
study are summarized in Table 1—2.

We use Clinical Classifications Software (CCS) to cluster
diagnosis and procedure codes into a manageable number of
clinically meaningful categories [11]. This is because ICD-
9 codes are not completely indicative of patients’ clinical
phenotypes [3] and the sheer number of codes (on the order
of 10,000) makes it challenging to characterize patterns of
diagnoses or procedures. The ICD-9 codes for diagnoses
are mapped down to 603 CCS codes and the ICD-9-CM
codes for procedures are mapped down to 346 CCS codes.
A key characteristic of the data set relevant to this study
is that it also contains NPI taxonomy codes for 60% of the
providers. About 150 classes of NPI taxonomy codes are
listed in the data sets, but most have fewer than 10 user
instances. Figure 1 shows the frequency distribution of 100
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Figure 1: The frequency distribution for the 100 most
frequent taxonomy codes in the general data set.

most frequent taxonomy codes in the data set.

To ensure there is a sufficient amount of data to train ma-
chine learning models, we filter out NPI taxonomy codes
with fewer than 20 user instances [18]. Based on the guid-
ance of several clinicians and hospital administrators, we
further identify 12 NPI taxonomy codes as diagnosis special-
ties: Obstetrics & Gynecology, Cardiovascular Disease, Neu-
rology, Ophthalmology, Gastroenterology, Dermatology, Or-
thopaedic Surgery, Neonatal-Perinatal Medicine, Infectious
Disease, Pulmonary Disease, Neurological Surgery, and Urol-
ogy. We refer to this group as the core NPI taxonomy codes.
As discussed in Section 1, we assume that a majority of these
codes correctly reflect specialties in the data.

4. METHODS
4.1 Discovery–Evaluation
We highlight that there is no ground truth for the de facto
diagnosis specialty discovery problem. Hence, we address
this challenge under a general discovery–evaluation frame-
work.

4.1.1 Discovery
We invoke machine learning to discover potential de facto
diagnosis specialties in the data set that lack corresponding
codes in the HPTCS. In this study, we first employ a semi-
supervised learning model (in the form of PathSelClus [29])
to leverage the mapping between users and their specifically
accessed diagnoses of EHRs in the fine-grained data set.
Then we consider a more challenging scenario where such
fine-grained mapping is not available. In this case, we em-
ploy an unsupervised learning model (in the form of Latent
Dirichlet Allocation [4]) for discovery in the larger general
data set. Since the fine-grained data set is a subset of the
general data set, except for the fine-grained mapping infor-
mation, the discovery results can be reinforced when they
exhibit common findings.

4.1.2 Evaluation
To interpret the discovery results, we rely on expert opin-
ions. However, we acknowledge that in practice such opin-
ions may not be available. Hence, we also make use of super-
vised learning models to evaluate the recognition accuracy
of the discovered specialty by comparing our approach with
the existing listed diagnosis specialties, such as the core NPI
taxonomy codes described in Section 3. Ideally, their recog-
nition accuracy should be similar. In this study, we evaluate
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Figure 2: A toy example for visualizing the data set
in the view of a heterogeneous information network.
There are multiple types of nodes, such as users,
patients and diagnoses; and multiple types of links
between different types of nodes.

such recognition accuracy using four classifiers, namely, de-
cision trees, random forests, PCA-KNN, and SVM.

4.2 PathSelClus for Discovery
In general, discovering de facto diagnosis specialties from
the diagnosis histories of providers may rely upon effective
clustering techniques that can divide a pool of providers
into groups that have high inter-group distances (distinc-
tiveness), but low intra-group distances (coherence). We
anticipate that, new diagnosis specialties may emerge from
these clusters. The structure of our data sets can be repre-
sented as a typical heterogeneous information network [28,
29, 31]. Therefore, we use PathSelClus [29], a state-of-the-
art semi-supervised learning model based on heterogeneous
information networks for user-guided clustering. For con-
text, we begin with a brief introduction to heterogeneous
information networks.

4.2.1 Heterogeneous Information Networks
A heterogeneous information network consists of multiple
types of objects and/or multiple types of links. A heteroge-
neous information network explicitly distinguishes between
object types and relationship types in the network, which
is quite different from traditional networks. For example, if
a relation exists from type A to type B, denoted as ARB,
then the inverse relation R−1 holds naturally for BR−1A.
R and its inverse R−1 are usually not equal, unless the two
types are the same and R is symmetric.

Figure 2 depicts our data in the form of a heterogeneous
information network and the corresponding schema. It con-
tains 3 types of objects, namely user (U), patient (P ) and
diagnosis (D). Links exist between users and patients by
the relation of “access” and “accessed by”; links exist be-
tween patient and diagnosis by the relation of “diagnosed
with” and “assigned to”.

Link-based clustering in heterogeneous information networks
groups objects based on their connections to other objects in
the networks. The possible relations derived from a hetero-
geneous information network between two types of objects in
a meta-level is called a meta-path [27]. In our case, the target
object type to cluster is U (users). There are two meta-paths:

U
access−−−−→ P

accessed by−−−−−−−→ U and U
access−−−−→ P

diagnosed with−−−−−−−−−−→
D

assigned to−−−−−−−→ P
accessed by−−−−−−−→ U .
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Figure 3: An analogy of the User–Specialty–Diagnosis
hierarchy in a de facto diagnosis specialty discovery
problem to the Document–Topic–Word hierarchy in
a topic modeling problem.

4.2.2 User-Guided Clustering
During clustering, a decision has to be made about the
weighted combination of different meta-paths to use. This
is where user guidance comes into play. We use the semi-
supervised learning model PathSelClus for user-guided clus-
tering. In PathSelClus, user guidance is provided in the form
of object seeds in each cluster. For example, to cluster users
based on the pattern of the diagnoses of EHRs they access,
one can provide several representative users as seeds for each
pattern. These seeds provide guidance for clustering the tar-
get objects in the heterogeneous information networks and
help select the most relevant meta-paths for the clustering
task.

PathSelClus is designed to handle unseeded initial clusters
because in practice, there may not be sufficient information
to seed all the clusters. This is the exact feature that makes
it possible to use PathSelClus to discover new diagnosis spe-
cialties. Now, let the number of listed diagnosis specialties
be N and the number of de facto diagnosis specialties we
want to discover be δ. We create N + δ empty clusters at
the initiation of PathSelClus and seed N of them with corre-
sponding specialists. The inputs of PathSelClus include all
the users regardless of whether they have a taxonomy code.

As an output, each user is assigned to the cluster with
the highest assignment likelihood. The δ unseeded clusters
should also be filled with users. We can analyze the seman-
tics of the unseeded clusters via the users they contain. We
treat a cluster as a taxonomy code and calculate the most
relevant diagnoses for each cluster. Then the medical expert
labels the clusters, which we use to interpret the discovery
results.

4.2.3 Fine-Grained Data Set for PathSelClus
We emphasize that PathSelClus is a network-based learning
model and relies on the mapping between users and their
specifically accessed diagnoses in the fine-grained data set.
In Section 5.2, we empirically compare and analyze Path-
SelClus in more detail on both the fine-grained data set and
the general data set.

4.3 Latent Dirichlet Allocation (LDA) for Dis-
covery

In practice, fine-grained data sets may not be available for
PathSelClus. Hence, we also employ an unsupervised learn-
ing method [4], which is based on topic modeling.

4.3.1 General Data Set for LDA
In Latent Dirichlet Allocation (LDA) [4], topics act as sum-
maries of the different themes pervasive in the corpus and
documents are characterized with respect to these topics.
The intuition behind our employment of LDA is diagnosis
topics with coherent themes in a hospital. By treating each
provider as a document in which the provider’s associated
diagnoses are the words and applying LDA to model all these
documents, we can obtain an allocation of diagnosis topics
for each provider. This analogy is illustrated in Figure 3.
We can further cluster the providers using their topic allo-
cations by the topic simplex2 that they are closest to.

LDA does not leverage network information and does not
require a fine-grained mapping between users and their ac-
cessed diagnoses. Instead, LDA models specialties with re-
spect to different diagnosis themes. In this study, all the
data sets to which LDA is applied refer to the larger general
data set.

4.3.2 Representation of Users
Diagnoses in our data set are provided with respect to pa-
tients, but not users. Therefore, we associate users with
diagnoses via the patients they access. We consider two ap-
proaches for accomplishing this task.

User-document approach: For any user ui, find the set
of patients Pi whose EHR is accessed by ui. Then, for each
patient pj ∈ Pi, let Dj be the set of diagnoses associated
with pj . We add diagnoses to Dj that occurred during the
encounter of ui and pj to a set of diagnoses that represent
ui. The diagnosis topics and their allocations for users are
discovered directly by applying LDA.

Patient-document approach: In this alternative approach,
we start by applying LDA on the patient dimension to ob-
tain a topic distribution in diagnoses for patients rather than
users. Let Tpj denote the topic distribution in diagnoses of
patient pj . Let Tui be the topic distribution of user ui and
let Pi be the set of patients whose EHRs are accessed by ui.
Then, the topic distribution for user ui is

Tui =
1

|Pi|
×
∑

pj∈Pi

Tpj .

Both approaches were tested on the general data set. Table 3
shows one sample topic summary for both approaches. It is
notable that the topic obtained from the user-document ap-
proach exhibits no clear theme, whereas the topic obtained
from the patient-document approach has a consistent theme
related to Urology. This is due to the fact that, in the user-
document approach, each document contains the union of
the diagnoses of all the accessed patients, whereas in the
patient-document approach only the diagnoses of a single
patient are in the document. The hodgepodge of many pa-
tients’ diagnoses is likely to contain diverse and inconsistent
themes, thus rendering the topics generated by the user-
document approach not easily interpretable. Since discover-
ing de facto diagnosis specialties requires experts to inter-
pret such topics, we use the patient-document approach.

2This can be visualized by plotting the providers by their
topic distributions.



Table 3: A comparison of two sample de facto diagnosis specialties obtained by two different LDA approaches
on the general data set. They are represented by 10 most probable diagnoses according to LDA. The user-
document approach obtains more semantically random diagnoses, whereas the patient-document approach
obtains a specialty with diagnoses consistent with a Urology theme.

(a) User-document approach

Other hypertensive complications
Hypotension

Cancer of ovary
Coma, stupor, and brain damage

Hyposmolality
Ascites

Hematuria
Acute myocardial infarction

Backache, unspecified
Other connective tissue disease

(b) Patient-document approach

Calculus of kidney
Elevated prostate specific antigen

Hematuria
Impotence of organic origin

Incomplete bladder emptying
Bladder neck obstruction

Urinary frequency
Hydronephrosis

Unspecified retention of urine
Other testicular hypofunction

4.3.3 Choice of Topic Number
An important parameter for LDA is the number of topics k.
There is no consensus on how to determine the best value
of k. The sign of a good topic number is that the resulting
topic summaries are semantically meaningful. The general
rule for picking k is the perplexity measure [4]. This is an
estimate of the expected number of equally likely words.
Minimizing perplexity corresponds to maximizing the cap-
tured topic variance. Based on the perplexity measure, k is
set to 30 in this study.

4.3.4 Clustering Users
After applying LDA, each user is assigned to an allocation in
the specialty topic simplex. A higher frequency in a specialty
indicates that the user is more likely to access patients with
diagnoses popular in that specialty. Therefore, if we cluster
users by de facto diagnosis specialties, it is reasonable to
cluster users by the closest specialties. This is because this
specialty has the highest proportion in the specialty topic
simplex:

Cui = argmax
t∈T

P (ui, t),

where Cui denotes the specialty cluster assignment for the
user ui and T denotes the set of specialty topics, and P (ui, t)
denotes the proportion of the topic t for the user ui.

4.4 Classifiers for Evaluation
In PathSelClus, a de facto diagnosis specialty is represented
by the most accessed diagnoses by all users in the same clus-
ter that have such a specialty. In LDA, a de facto diagnosis
specialty is represented by the most probable diagnoses as
an output of the model. To interpret the discovered de facto
diagnosis specialties, we rely on physicians (authors) with
medical expertise. The experts reviewed the diagnosis sum-
maries of the specialty and labeled each with one or a few
medical themes that are pervasive in the specialty. After la-
beling, we compare the labeled specialties with the HPTCS
to see if there are specialties that have pervasive themes
but are not listed in the code set. If such specialties ex-
ist, they are considered to be potential newly discovered de
facto diagnosis specialties. Since there is no ground truth for
the discovery results, we use supervised learning models to
evaluate the recognition accuracy of the discovered de facto

diagnosis specialty. We briefly describe the four classifiers
used in this study.

4.4.1 Decision Trees
A decision tree (J48) is constructed in a top-down recursive
divide-and-conquer manner. To start, all the training exam-
ples are at the root. Examples are partitioned recursively
based on selected attributes. Test attributes are selected on
the basis of a heuristic or statistical measure. A decision
tree is a popular nonlinear classifier because it is convertible
to classification rules that can be reviewed and interpreted
by experts.

4.4.2 Random Forests
To aggregate decision trees, we can use random forests. To
do so, for b ∈ {1, . . . , B}, we draw samples from the train-
ing data and grow a big tree Tb with some restrictions: at
each split, randomly select m features from the p features
and pick the best split among them. The recommended
value (used in this study) for m is

√
p. Then the forests

are represented as a collection of trees {Tb}Bb=1. To clas-
sify a testing instance, we conduct majority voting among
T1(x), ..., TB(x).

4.4.3 KNN-PCA
K-Nearest Neighbors (KNN) is an instance-based learning
method. It stores training examples and delays the process-
ing until a new instance must be classified. All instances cor-
respond to points in the n-dimensional space. The nearest
neighbors are defined in terms of Euclidean distance. KNN
returns the most common label among the K training exam-
ples nearest to the new testing instance. KNN is sensitive
to the “curse of dimension” such that the distance between
neighbors could be dominated by irrelevant attributes when
the dimension of space goes higher. To mitigate this prob-
lem, we use principal component analysis (PCA) by select-
ing a small number of the principal components to perform
dimension reduction.

4.4.4 SVM
A support vector machine (SVM) is a classification method
for both linear and nonlinear data. It uses a nonlinear map-
ping to transform the original training data set into a higher



Table 4: Three inconsistent de facto diagnosis specialties are obtained by PathSelClus when the number of
unseeded clusters δ is set to 3 on the general data set. They are represented by the top 10 most accessed
diagnoses by all the users that are in each cluster respectively. None shows a consistent theme with respect
to a specialty.

Other bacterial infections
Other non-traumatic joint disorders

Convulsions
Other upper respiratory disease
Phlebitis and thrombophlebitis

Malaise and fatigue
Other skin disorders

Fever of unknown origin
Cardiomyopathy

Substance-related disorders

Chronic kidney disease
Essential hypertension

Other cardiac dysrhythmias
Abdominal pain

Phlebitis and thrombophlebitis
Other fluid and electrolyte disorders

Anemia; unspecified
Pleurisy; pleural effusion

Acute renal failure
Hyperpotassemia

Abdominal pain
Other and unspecified lower respiratory disease

Nonspecific chest pain
Urinary tract infection; site not specified
Diabetes mellitus without complication

Essential hypertension
Other nervous system symptoms and disorders

Pneumonia; organism unspecified
Phlebitis and thrombophlebitis

Other and unspecified circulatory disease

dimension. We used a Gaussian kernel in this study. The
SVM searches for the optimal linear separating hyperplain
in this new space by using support vectors that lie closest
to the decision boundary. In particular, SVM is effective on
a high-dimensional data set because the complexity of the
trained classifier is characterized by the number of support
vectors rather than the dimension of the data set.

4.4.5 Classification
To apply these classifiers to our data, we map each user ui

in the set of users U to a TF-IDF weighted diagnosis vectors
v′i = {tfidfd1 , ..., tfidfdk} according to:

tfidfdj = log

(
vi(dj)

ai
+ 1

)
× log

(
|U |+ 1

rdj

)
,

where dj is the diagnosis with the globally unique index
j, and each user ui has a vector vi = {c1, ..., ck} where cj
denotes the number of times that the user has accessed pa-
tients with dj . Let ai be the total count of all diagnoses in
vi, and let rdj be the number of users that have accessed
patients with dj . This vector, along with each user ui’s pri-
mary taxonomy code, serves as the input to these classifiers,
with a length of 603. For KNN-PCA, we perform dimension
reduction via PCA to the vectors before applying KNN. We
do not use procedure codes because they are less expressive
than diagnosis codes [20].

5. EXPERIMENT
5.1 Setup and Evaluation Measures
We use Weka [17] for decision trees (J48), random forests,
and SVM with the default parameter values. In PCA-KNN,
the number of nearest neighbors K is set to 9 with 50 prin-
cipal components, based on a cross-validation tuning pro-
cess [9].

In the evaluation stage, we use precision, recall, and F1 score
to assess performance. For a specialty s, the true positive
count TP (s) is the number of users with the specialty s
that are correctly classified. The false positive count FP (s)
is the number of users with a specialty other than s that are
classified as s. The false negative FN(s) count is the number
of users with the specialty s that are wrongly classified. The

precision P for a specialty s is computed as TP (s)
TP (s)+FP (s)

and the recall R is TP (s)
TP (s)+FN(s)

. The precision of a classifier

is the weighted average of precision for each specialty; the

Table 5: The de facto diagnosis specialty Breast Can-
cer is discovered by PathSelClus. It is represented
by the top 10 most accessed diagnoses by all the
users that are associated with the Breast Cancer
specialty.

Lump or mass in breast
Diffuse cystic mastopathy

Galactorrhea not associated with childbirth
Benign neoplasm of breast
Unspecified breast disorder

Abnormal mammogram, unspecified
Malignant neoplasm of upper-inner quadrant of female breast

Benign neoplasm of lymph nodes
Personal history of malignant neoplasm of breast

Other sign and symptom in breast

weight for a specialty s is the ratio of the number of users
with s to the total number of users. The recall of a classifier
is defined similarly. The F1 score is the harmonic mean of
the precision (P ) and recall (R): F1 = 2PR

P+R
. We use 5 × 2

cross-validation for evaluation with classifiers. In each of the
5 rounds, observations are split into two equal-sized sets A
and B. Then a classifier is trained on A and tested on B
and vice versa. After 5 rounds, the average of the 10 results
is reported.

5.2 Results for PathSelClus
In Section 4.2.3, we mentioned PathSelClus relies on the
mapping between users and their specifically accessed diag-
noses of EHRs in the fine-grained data set. Table 4 shows
inconsistent de facto diagnosis specialties by PathSelClus
when the number of unseeded clusters δ is set to 3. None
exhibits a consistent theme with respect to a specialty and
it remains the same when δ is set to other values.

One reason why PathSelClus leads to inconsistent themes
is that the general data set does not contain the aforemen-
tioned fine-grained mapping information. As a consequence,
all of the diagnoses that belong to patients can be mapped
to users that access such patients. We observe that a patient
can have multiple encounters, such as delivering a baby and
returning several months later due to a infectious disease.
Therefore, in the general data set, clustering users based
on all the diagnoses of their accessed patients may not be
accurate (as shown in Table 4).



Table 6: Average accuracy of multi-class classification on the fine-grained data set under 5× 2 cross-validation
(in percent). Users with the de facto Breast Cancer specialty discovered by PathSelClus are in one class;
users with core NPI taxonomy codes are in 12 distinct core classes. The boldfaced result with the superscript
† denotes that, the F1 score of the discovered de facto Breast Cancer specialty is significantly higher than
that of mean of 12 core classes (paired t-test with p < 0.05).

Specialty
Decision Trees Random Forests PCA-KNN SVM

P R F1 P R F1 P R F1 P R F1

Breast Cancer 86.67 57.14 68.87† 89.13 64.16 74.61† 77.00 79.09 78.03† 92.50 93.11 92.80†

Mean of 12 Core Classes 67.37 58.07 62.38 72.08 67.36 69.64 72.30 74.02 73.15 89.30 86.72 87.99
Urology 70.59 60.00 64.86 68.42 65.00 66.67 81.82 90.00 85.71 100.00 95.00 97.44
Neurology 71.05 57.45 63.53 71.05 57.45 63.53 65.57 85.11 74.07 81.48 93.62 87.13
Pulmonary Disease 100.00 54.17 70.27 93.33 58.33 71.79 71.43 83.33 76.92 95.83 95.83 95.83
Orthopaedic Surgery 93.33 48.28 63.64 93.33 48.28 63.64 69.70 79.31 74.19 100.00 89.66 94.55
Neonatal-Perinatal Medicine 87.50 25.00 38.89 89.43 89.29 85.36 92.59 89.29 90.91 96.15 89.29 92.59
Gastroenterology 67.86 50.00 57.58 69.23 47.37 56.25 69.23 94.74 80.00 95.00 100.00 97.44
Obstetrics & Gynecology 42.23 97.25 58.89 49.03 94.50 64.56 87.18 93.58 90.27 98.99 89.91 94.23
Neurological Surgery 100.00 35.00 51.85 100.00 35.00 51.85 33.33 5.00 8.70 100.00 35.00 51.85
Ophthalmology 73.91 40.48 52.31 90.04 71.43 79.66 80.56 69.05 74.36 54.67 97.62 70.09
Cardiovascular Disease 63.93 61.90 62.90 62.12 65.08 63.57 71.95 93.65 81.38 96.83 96.83 96.83
Infectious Disease 79.17 73.08 76.00 79.17 73.08 76.00 63.64 53.85 58.33 89.29 96.15 92.59
Dermatology 78.95 39.47 52.63 78.95 39.47 52.63 71.43 52.63 60.61 100.00 68.42 81.25
P: Precision; R: Recall; F1: F1 Score

On the fine-grained data set, PathSelClus discovers a spe-
cialty for Breast Cancer that does not have a corresponding
code in HPTCS, as shown in Table 5 (δ = 3). Setting δ
between 1 to 4 generates this discovery although a larger
value of δ makes the discovery less clear. In the fine-grained
data set, 35 users are found to be associated with the Breast
Cancer specialty.

Table 6 summarizes the average accuracy of multi-class clas-
sification on the fine-grained data set under 5 × 2 cross-
validation. Users with the de facto Breast Cancer specialty
discovered by PathSelClus are in one class; users with core
NPI taxonomy codes as discussed in Section 3 are in the 12
distinct core classes. The F1 score of the discovered de facto
Breast Cancer specialty is significantly higher than that of
mean of 12 core classes under all the four classifiers (paired
t-test with p < 0.05).

5.3 Results for LDA
With a larger general data set, LDA confirms the discovery
of Breast Cancer by PathSelClus and suggests another de
facto diagnosis specialty for Obesity as shown in Table 7.
The Breast Cancer and Obesity specialties are found to be
associated with 68 and 20 users, respectively.

Tables 8 and 9 summarize the average accuracy of multi-
class classification on the general data set under 5× 2 cross-
validation for the two discovered specialties. The F1 score of
the discovered de facto Breast Cancer specialty by LDA is
also significantly higher than that of mean of 12 core classes
under all the four classifiers, confirming the finding from
PathSelClus (paired t-test with p < 0.05). The result for
Obesity is similar except that PCA-KNN is not statistically
significantly better than the other classifiers.

6. RELATED WORK
The discovery of de facto diagnosis specialties is critical to
managing health care institutions and allocating resources
to clinicians. This work shows that such discovery is pos-
sible and that existing vocabularies may be insufficient or
incomplete. To date, there has been little investigation into

automated learning for the de facto diagnosis specialty dis-
covery; however, we wish to note that the approaches in-
troduced in this work are related to those that have been
developed for health care role prediction and access control
management. Here, we take a moment to review relevant
work in such areas.

A driver behind inferring medical specialties is the anal-
ysis of audit logs for security and privacy purposes [6, 8,
24]. This is feasible because EHRs and their audit logs en-
code valuable interactions between users and patients [26].
Users have roles in the health care institutions. If these
roles are not respected by the online activities of the users,
there may be an evidence of a security or privacy violation.
An early study on this theme examined the idea of exam-
ining accesses to patient records to determine the position
of an employee [33]. This work used a Näıve Bayes classi-
fier and had generally poor performance on many positions,
often because such positions could not easily be character-
ized in terms of the chosen attributes. Moreover, Experience
Based Access Management envisioned such studies as part
of a general effort to understand roles by exploiting infor-
mation about institutional activities through the study of
audit logs [15]. Another study in this direction sought to
infer new roles from ways in which employees acted in their
positions by iteratively revising existing positions based on
experiences [32].

The problem of determining which departments are respon-
sible for treating a given diagnosis was addressed by stud-
ies on Explanation-Based Auditing System (EBAS) [13, 12].
They are similar to our problem of identifying an employee’s
specialty. In these studies the auditing system utilizes the
access patterns of departments to determine diagnosis re-
sponsibility information in two ways: by analyzing (i) how
frequent a department accesses patients with the diagno-
sis, and (ii) how focused the department is at treating the
given diagnosis. For instance, EBAS could use this approach
to determine that the Oncology Department is responsible
for chemotherapy patients, while the Central Staffing Nurs-
ing Department is not. The random topic access model
(RTAM) [16] went beyond approaches based on conditional



Table 7: De facto diagnosis specialties Breast Cancer and Obesity are discovered by LDA. They are represented
by 10 most probable diagnoses respectively as an output of LDA.

(a) Breast Cancer

Personal history of malignant neoplasm of breast
Lump or mass in breast

Abnormal mammogram, unspecified
Other specified aftercare following surgery

Other sign and symptom in breast
Carcinoma in situ of breast

Family history of malignant neoplasm of breast
Other specified disorder of breast

Benign neoplasm of breast
Acquired absence of breast and nipple

(b) Obesity

Obesity, unspecified
Morbid obesity

Obstructive sleep apnea
Unspecified sleep apnea

Hypersomnia with sleep apnea, unspecified
Paralysis agitans

Hip joint replacement by other means
Edema

Other dyspnea and respiratory abnormality
Body Mass Index 4

Table 8: Average accuracy of multi-class classification on the general data set under 5× 2 cross-validation (in
percent). Users with the de facto Breast Cancer specialty discovered by LDA are in one class; users with
core NPI taxonomy codes are in the 12 distinct core classes. The boldfaced result with the superscript †
denotes that, the F1 score of the discovered de facto Breast Cancer specialty is significantly higher than that
of mean of 12 core classes (paired t-test with p < 0.05).

Specialty
Decision Trees Random Forests PCA-KNN SVM

P R F1 P R F1 P R F1 P R F1

Breast Cancer 95.12 57.35 71.56† 91.11 60.29 72.57† 82.58 80.88 81.69† 96.92 92.65 94.74†

Mean of 12 Core Classes 66.42 53.21 59.08 71.28 63.18 66.99 75.45 76.21 75.83 90.84 88.93 89.88
Urology 75.00 45.00 56.25 75.00 45.00 56.25 78.26 90.00 83.72 100.00 95.00 97.44
Neurology 65.52 40.43 50.00 64.52 42.55 51.28 72.73 85.11 78.43 80.36 95.74 87.38
Pulmonary Disease 87.50 58.33 70.00 87.50 58.33 70.00 70.37 79.17 74.51 95.65 91.67 93.62
Orthopaedic Surgery 76.92 34.48 47.62 89.43 79.31 84.07 68.57 82.76 75.00 100.00 93.10 96.43
Neonatal-Perinatal Medicine 100.00 14.29 25.00 100.00 82.29 90.28 92.59 89.29 90.91 96.15 89.29 92.59
Gastroenterology 65.38 44.74 53.12 65.38 44.74 53.12 75.00 94.74 83.72 97.44 100.00 98.70
Obstetrics & Gynecology 55.80 70.64 62.35 57.03 66.97 61.60 90.83 90.83 90.83 99.02 92.66 95.73
Neurological Surgery 100.00 35.00 51.85 88.89 40.00 55.17 50.00 10.00 16.67 100.00 20.00 33.33
Ophthalmology 23.12 95.24 37.21 69.36 95.24 80.27 86.11 73.81 79.49 100.00 88.10 93.67
Cardiovascular Disease 64.29 57.14 60.50 64.15 53.97 58.62 76.62 93.65 84.29 96.77 95.24 96.00
Infectious Disease 76.19 61.54 68.09 73.91 65.38 69.39 52.00 50.00 50.98 96.00 92.31 94.12
Dermatology 75.00 31.58 44.44 82.11 68.42 74.64 79.17 50.00 61.29 55.22 97.37 70.48
P: Precision; R: Recall; F1: F1 Score

Table 9: Average accuracy of multi-class classification on the general data set under 5× 2 cross-validation (in
percent). Users with the de facto Obesity specialty discovered by LDA are in one class; users with core NPI
taxonomy codes are in 12 distinct core classes. The boldfaced result with the superscript † denotes that,
the F1 score of the discovered de facto Obesity specialty is significantly higher than that of mean of 12 core
classes (paired t-test with p < 0.05).

Specialty
Decision Trees Random Forests PCA-KNN SVM

P R F1 P R F1 P R F1 P R F1

Obesity 100.00 40.41 57.56† 83.22 56.98 67.64† 75.01 82.12 78.40 92.85 94.01 93.43†

Mean of 12 Core Classes 63.18 45.62 52.98 75.62 53.51 62.68 77.12 80.36 78.70 90.23 89.19 89.70
Urology 100.00 50.00 66.67 100.00 55.00 70.97 86.36 95.00 90.48 100.00 95.00 97.44
Neurology 85.71 38.30 52.94 70.71 57.45 63.39 63.49 85.11 72.73 82.14 97.87 89.32
Pulmonary Disease 100.00 45.83 62.86 100.00 45.83 62.86 71.43 83.33 76.92 100.00 87.50 93.33
Orthopaedic Surgery 100.00 3.45 6.67 82.15 37.93 51.90 62.16 79.31 69.70 96.43 93.10 94.74
Neonatal-Perinatal Medicine 100.00 39.29 56.41 100.00 39.29 56.41 89.29 89.29 89.29 100.00 89.29 94.34
Gastroenterology 82.35 36.84 50.91 82.35 36.84 50.91 76.09 92.11 83.33 94.87 97.37 96.10
Obstetrics & Gynecology 30.59 99.08 46.75 38.12 93.58 54.17 94.50 94.50 94.50 100.00 94.50 97.17
Neurological Surgery 100.00 40.00 57.14 100.00 50.00 66.67 33.33 5.00 8.70 100.00 40.00 57.14
Ophthalmology 100.00 4.76 9.09 100.00 4.76 9.09 88.24 71.43 78.95 86.96 95.24 90.91
Cardiovascular Disease 76.92 63.49 69.57 76.92 63.49 69.57 75.64 93.65 83.69 95.31 96.83 96.06
Infectious Disease 78.95 57.69 66.67 78.95 57.69 66.67 66.67 53.85 59.57 88.89 92.31 90.57
Dermatology 100.00 2.63 5.13 87.21 39.47 54.34 66.67 52.63 58.82 67.27 97.37 79.57
P: Precision; R: Recall; F1: F1 Score

probabilities to work with topic models that characterize
the common activities of employees in certain positions in
the hospital. The evaluation of our work can be seen as
merging ideas from EBAS and RTAM to explore when a de
facto diagnosis specialty can be described with a classifier.

An advantage of our work comparing with the other recent
work on inappropriate EHR access detection [21, 22, 23] is
that our work outputs de facto diagnosis specialty informa-
tion even for those that lack codes from the HPTCS. It has
been known that the de facto diagnosis specialty informa-



tion is useful in convincing patients into trusting a provider
for using their EHRs [7, 30, 19].

7. CONCLUSIONS
Medical specialties are important but may be lacking or
inaccurate in part because there is no official code to ex-
press them. We first proposed a novel and challenging de
facto diagnosis specialty discovery problem under a general
discovery–evaluation framework. Under this framework, we
then employed a semi-supervised learning model on a fine-
grained data set and an unsupervised learning model on a
larger general data set for discovery; we further employed
four supervised learning models for evaluation. Finally, we
experimented on one year of diagnosis histories from a major
medical center. The semi-supervised learning model discov-
ered a de facto diagnosis specialty for Breast Cancer on the
fine-grained data set; the unsupervised learning model con-
firmed this discovery and suggested a new de facto diagnosis
specialty for Obesity on the larger general data set. The
evaluation results reinforced that these two specialties can
be recognized accurately by classifiers in comparison with
12 common diagnosis specialties defined by the Health Care
Provider Taxonomy Code Set.
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