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Abstract—Many studies focused on detecting and measuring
the security and privacy risks associated with the integration of
advertising libraries in mobile apps. These studies consistently
demonstrate the abuses of existing ad libraries. However, to fully
assess the risks of an app that uses an advertising library, we
need to take into account not only the current behaviors but all of
the allowed behaviors that could result in the compromise of user
data confidentiality. Ad libraries on Android have potential for
greater data collection through at least four major channels: using
unprotected APIs to learn other apps’ information on the phone
(e.g., app names); using protected APIs via permissions inherited
from the host app to access sensitive information (e.g. Google and
Facebook account information, geo locations); gaining access to
files which the host app stores in its own protection domain; and
observing user inputs into the host app.

In this work, we systematically explore the potential reach
of advertising libraries through these channels. We design a
framework called Pluto that can be leveraged to analyze an
app and discover whether it exposes targeted user data—such as
contact information, interests, demographics, medical conditions
and so on—-to an opportunistic ad library. We present a
prototype implementation of Pluto, that embodies novel strategies
for using natural language processing to illustrate what targeted
data can potentially be learned from an ad network using files
and user inputs. Pluto also leverages machine learning and data
mining models to reveal what advertising networks can learn from
the list of installed apps. We validate Pluto with a collection of
apps for which we have determined ground truth about targeted
data they may reveal, together with a data set derived from a
survey we conducted that gives ground truth for targeted data
and corresponding lists of installed apps for about 300 users. We
use these to show that Pluto, and hence also opportunistic ad
networks, can achieve 75% recall and 80% precision for selected
targeted data coming from app files and inputs, and even better
results for certain targeted data based on the list of installed
apps. Pluto is the first tool that estimates the risk associated
with integrating advertising in apps based on the four available
channels and arbitrary sets of targeted data.

I. INTRODUCTION

Advertisers aim to generate conversions for their ad im-
pressions. Advertising networks assist them in matching ads to
users, to efficiently turn impressions into conversions. We call

the information that achieves this targeted data. Android smart
phones (which we call ‘mobiles’ from here on) contain rich
information about users that enable advertising networks to
gather targeted data. Moreover, there is considerable pressure on
advertising networks to improve the number and quality of tar-
geted data they are able to offer to advertisers. This raises many
privacy concerns. Mobiles often contain sensitive information
about user attributes which users might not comfortably share
with advertising networks but could make valuable targeted
data. This, in turn, led to a substantial line of research on
privacy and advertising on mobiles in two general areas: (1)
strategies for detection and prevention [53], [43], [17], [31],
[33], [18], [50], [52], [7], [47], [48], [35], and (2) architectures
and protocols that improve privacy protections [19], [36], [40],
[29]. The first of these approaches primarily provides insights
into the current practices of advertisers and advertising networks.
The second examines a future in which a changed advertising
platform provides better privacy. However, some of the studies
show that the development and use of targeted data on mobiles
is modest at present [47]. This is at least partially because
most applications (which we call ‘apps’ from here on) do
not pass along information about users to the advertising
network—through its ad library embedded in the app—unless
the advertising network requires them to do so [35]. This leave
open an important question: what if advertising networks took
full advantage of the information-sharing characteristics of the
current architecture?

In particular, when one wants to assess the privacy risk
associated with an asset, she needs to take into account not only
past and current hazardous behaviors but all allowed actions
that can result in potential privacy loss [27]. In the case of
opportunistic advertising libraries, a privacy loss is possible if
such libraries have the ability to access private user information
without the user’s consent. Current app privacy risk assessment
techniques [26], [25], try to detect when sensitive data leaks
from an app. To achieve that, they employ static or dynamic
analysis of apps and/or libraries. However, applying this sort
of assessment is constrained by the apparent practices of the
advertising libraries. For example, every time an ad library is
updated, or a new ad library appears, such analysis must be
performed again. To make things worse, some ad libraries load
code dynamically, [18] which allow them to indirectly update
their logic without dependency on the frequency of their host
app’s updates. In this way, any analysis dependent on current
library behaviors is unreliable as the analysis can not predict the
behavior of updated code or dynamically downloaded/loaded
code. Thus, to assess such risks, we need to have a systematic
way to model the potential data exposure to ad libraries
independent of current or apparent practices. A privacy risk
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assessment should consider what an adversary is allowed by
the system to do instead of only what she is currently doing.
Our work takes the first step in this direction by modelling
the data collection capabilities of ad libraries on an Android
platform.

We model opportunistic ad networks based on their
abilities to access targeted data on an Android platform
through at least four major attack channels: protected APIs by
inheriting the permissions granted to their host apps; reading
files generated at runtime by their host apps and stored in
the host apps’ protected storage; observing user input into
their host apps; and finally unprotected APIs, such as the
PackageManager.getInstalledApplications()
that allow the ad library to access platform-wide information.
We further categorize these attack channels into two classes,
namely the in-app and out-app exploitation class. The
in-app class contains attack channels that are dependent on
the ad library’s host app. The protected API’s, app local files
and user input are examples of such channels. The out-app
class contains attack channels that are independent of the host
app. The public API’s are an example of this. In particular,
Grace et. al. [18] identified that the list of installed applications
on a user’s device—which can be derived from a public
API on Android—raises privacy concerns. In this work we
systematically explore how this information can be exploited
by an adversary in practice. We demonstrate and evaluate how
well such APIs can result in an adversary learning a user’s
targeted data. Based on our data exposure modeling, we have
designed and developed a framework called Pluto. Pluto
aims to facilitate assessment of the privacy risk associated
with embedding an untrusted library into an app. We show that
Pluto is able to reveal the potential data exposure of a given
app to its ad libraries through the considered attack channels.
We believe that frameworks like Pluto will be extremely useful
to app developers who want to assess their app’s potential
data exposure, markets aiming to better inform their users
about the privacy risk associated with downloading a free app,
and users themselves. In addition, we hope that this will spur
similar academic attempts to capture the capabilities of ad
libraries and serve as a baseline for comparison.

Contributions: We outline the paper’s contributions below:

• New understanding: We perform manual and static analysis
on real world apps across all Google Play categories to better
understand what is currently available to ad libraries. We reveal
an increasing trend in ad networks to collect the list of installed
applications on Android. We show that numerous targeted
data exist in app local files, in the form of user attributes
or user interests that third-party libraries can readily access.
These findings highlight that ad networks could become more
aggressive in the future incentivized by the vast array of targeted
data being made available to them.

• New techniques: We design novel natural language processing
techniques to demonstrate that it is feasible for an opportunistic
ad library to infer user information from structured files on
Android. We present a new similarity metric called droidLESK
and provide preliminary evidence that it can facilitate context
disambiguation in Android. We further illustrate how Frequent
Pattern Mining (FPM) can be leveraged to assess private data
exposure of an app through the out-app channel.

• Targeted data inference from the list of installed applications:
We are the first to systematically explore what an adversary can
learn from the list of installed applications on a mobile device.
We demonstrate and evaluate how reliably such unprotected
APIs can be utilized by an adversary as side-channels to infer
a user’s attributes (e.g. gender, age, marital status).

• Design, implementation and evaluation of a mobile library
risk assessment framework: We design the first of its kind ad
library risk assessment framework. We implement a modular
extensible prototype based on this design, for discovering
targeted data exposure at scale in Android apps and evaluate
its performance. The prototype of Pluto demonstrates that the
techniques introduced in the paper achieve good results in
practice and provide a baseline for comparison with future
efforts. We plan to open source Pluto—after thoroughly testing
it—and all our experimental results online [2].

This paper is organized as follows: Section II provides
background information. Section III models the opportunistic
ad library we consider. Sections IV and V describe our studies
of the capabilities of ad networks through in-app and out-app
exploitation channels respectively. Section VI describes our
design and implementation of Pluto. In Section VII, we present
our evaluation of Pluto. In Sections VIII, we discuss the utility
and limitations of our approach. In Section IX, we discuss
related work and conclude the paper in Section X.

II. BACKGROUND

Mobile Advertising: Mobile advertising is a common way for
app developers to monetize their apps. Usually app developers
offer their apps for free and include one or more advertising
libraries which are assigned space to place ad content in the
apps’ user interface. Data brokers, entities that collect user
data and maintain user profiles, incorporate ad libraries in
mobile apps (or load code in iframes of online publishers’ web
sites). These libraries commonly collect targeted data consisting
of user attributes and interests to build more complete user
profiles. This allows the data brokers to sell information to
advertisers. For example, advertisers develop campaigns to
promote products at the behest of businesses. These advertisers
will collaborate with data brokers who know how to reach
specific groups of users. There are a number of types of data
brokers with a distinction sometimes made between ad networks
versus ad exchanges, but for this paper we will simply refer
to them all as ad networks. The advertisers can request that
their ads be displayed to a specific segment of the population.
Payment systems vary, but common ones pay for the number
of impressions shown to the desired segment or pay for the
number of users that click on the impressions. Either way, the
better the ad network is able to define the most promising
segment and reach the most parties in this segment, the more
money will be made by all of the parties in the ecosystem.

Android Protection Mechanisms: Each app on Android is
assigned a unique static UID when it is installed. This allows
the operating system to differentiate between apps during their
lifetime on the device, so it can run them in distinct Linux
processes when launched. In this way Android leverages the
traditional Linux process isolation to ensure that one app cannot
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access another app’s resources.1 However, when developers
include an ad library, or any type of library for that matter, it
is treated as part of the host app. The operating system will
assign one UID for the app as a whole, even though the library
and host app have different package names. Every time an
app is launched, the OS will assign a process identifier (PID)
to the app and associate that with the app’s UID. Again this
PID is shared between the host app and its libraries that run
within the same Linux process. As a result, the host app and
the library components will also share privileges and resources,
both in terms of Linux discretionary access control (DAC)
permissions and in terms of Android permissions granted.
The former allows the library to access all the local files the
host app is generating. The latter allows it to use the granted
permissions (e.g., ACCESS COARSE LOCATION) to access
other resources on the device (such as GPS), that can expose
user information (such as her location).

This multifaceted ecosystem, where there are strong incen-
tives for more data collection by all stakeholders, needs to be
better understood. Studying the current practices of ad libraries
is an important place to start. Indeed our community already
found that ad libraries collect some types of data for themselves
even without the cooperation (or with the implicit consent) of
the host app developer. Such behaviors have been observed in
the wild since 2012 [18] and as a routine practice today [35]
for certain types of information. Nonetheless, to fully assess
the privacy risk associated with embedding a library into an
app, we need to take into account not only past and current
behaviors, but also all allowed events that can lead to breaches
of users’ data confidentiality. This work aims to take the first
step into the direction of modeling ad libraries, not based on
previous behaviors but based on their allowed actions on the
Android platform. We show how this can be leveraged to design
a tool that can assess the targeted data exposure to ad libraries.

NLP Techniques: The NLP community has developed different
approaches to analyze unstructured data. For example, NLP is
used to parse user reviews online or user voice commands
to digital personal assistants. Work focused on extracting
grammatical information to understand what the user is trying
to convey. Part-of-speech Tagging (POS Tagging), is a typical
technique to achieve that. It is used to determine for each
word in a sentence whether it is a noun, adjective, verb,
adverb, proposition, and other part of speach. A common
problem in NLP arises when one needs to perform word sense
disambiguation. That is, to derive a given a word’s semantic
meaning. This can be challenging as a word might have
multiple meanings and complex relationships with other words.
To this end, Wordnet [32], an English semantic dictionary
has been proposed, where the community tried to capture
most of senses, of most of the English words. Wordnet also
provides relationships between words, such as whether two
words are synonyms, or connected with is-a relationship and
so on. In essence, Wordnet is a graph with words as nodes
and relationships as edges. To assist in better capturing the
relationships between words, the community has developed
multiple similarity metrics which are different ways to parse
the Wordnet graph. For example, the LCH [28] metric, uses the

1This is with the exception of apps signed with the same developer key. In
that case, the apps can indicate in their manifests that they should be assigned
the same UID.

shortest paths between two words to determine how similar the
words are. To accurately determine which of the multiple senses
of the word is the most appropriate, one needs to carefully
select the right similarity metric or design a new similarity
metric, and design her system in a way that incorporates domain
knowledge. These are challenges we had to overcome in our
work to enable extraction of targeted data from local files.
Furthermore, our target files do not contain real words that can
be used in an actual conversation but rather variable names.
We explain how we handle all these challenges in Section VI.

III. THREAT MODEL

A risk is the potential compromise of an asset as a result of
an exploit of a vulnerability by a threat. In our case, the assets
are user targeted data, the threat is an opportunistic ad library,
and a vulnerability is what allows the ad library to access
targeted data without the device user’s consent or the consent
of the library’s host app. Here, we examine the capabilities of
the ad libraries to collect such data on an Android platform.

Because libraries are compiled with their host apps, are in
extend authorized to run as the same Linux process as their
hosts on an Android OS. Thus the ad library code and the host
app’s code will share the same identifier as far as the system
is concerned (both the static UID and the dynamic PID). In
essence, this means that any given ad library runs with the same
privileges as its host app. Consequently, the libraries inherit
all the permissions granted by the user to the host app. There
is no way for the user to distinguish whether that permission
is used by her favorite app or the ad libraries embedded in
the app. This permission inheritance empowers the ad libraries
to make use of permission-protected APIs on the device. For
example, if an app granted the GET_ACCOUNTS permission,
its libraries can opportunistically use it to retrieve the user’s
registered accounts (e.g., the email used to login to Gmail, the
email used to login to Facebook, the email used for Instagram,
Twitter and so on).

Furthermore, during their lifetime on the device, apps create
local persistent files where they store information necessary
for their operations. These files are stored in app-specific
directories isolated from other applications. This allows the
apps to offer seamless personalized services to their users even
when they are not connected to the Internet. In addition this
practice enables the apps to avoid the latency of accessing their
clouds, provided they have one. Android offers a convenient
way through its SharedPreferences class to store and
retrieve application and user specific data to an XML file in
its UID-protected directory. In that directory, apps can also
create their own files typically using standardized formats such
as XML, JSON, or SQLite. In this way, they can utilize
widely available libraries and Android APIs to swiftly and
easily store and parse their data. The ad libraries, running
as the same Linux user as their host apps, inherit both the
Linux DAC privileges and the SE Android MAC capabilities
of their host apps. This allows them to access the app’s locally
stored files as their hosts would. Consequently, the ad libraries
could read the user data stored in those files. Consider, for
example, the app My Ovulation Calculator which provides
women a platform to track ovulation and plan pregnancy. This
app, listed under the MEDICAL category on Google Play,
has been installed 1,000,000–5,000,000 times. By parsing the
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app’s runtime generated local files, an ad library might learn
whether its user suffers from headaches, whether she is currently
pregnant, and, if so, the current trimester of her pregnancy. All
these are targeted data which advertisers can monetize [42],
making them a valuable addition to ad libraries.

Moreover, an aggressive ad library could utilize its vantage
position to peak on user input. In particular, such a library
could locate all the UI elements that correspond to targeted data
related to user input [34], [23] and monitor them to capture
the data as they become available. For example, by monitoring
the user’s input on Text Me! Free Texting & Call,
a communication app with 10,000,000–50,000,000 downloads,
an ad library would be able to capture the user’s gender,
age and zip code. Note that these data constitute the quasi
identifiers [44] proven to be enough to uniquely identify a large
percentage of registered voters in the US.

Nonetheless, an ad library can exploit both the inherited
privileges of its host app and the position on a user’s device.
Irrespective of the host app, the ad libraries, can make use
of public APIs to learn more about the user. Such APIs are
considered harmless by the Android Open Source Project
(AOSP) designers and are left unprotected. This means that the
apps can use those APIs without the need to request permissions
from either the system or the user. In this work, we found that by
merely acquiring the list of installed applications through such
APIs, one can learn targeted data such as a user’s marital
status, age, and gender among others.

To model these attack channels, we further categorize them
them into two classes, namely the in-app and out-app
exploitation class. The in-app class contains attack channels
that are dependent on the ad library’s host app. The protected
API’s, app local files and user input, are examples of such
channels. The out-app class contains attack channels that
are independent of the host app. The public API’s are an
example of this. Through the rest of this work, we assume
that an ad library can gain access to targeted data through
permission-protected APIs, runtime-generated app local files,
user input, and unprotected APIs.

IV. DATA EXPOSURE THROUGH IN-APP CHANNELS

Ad libraries can leverage their position within their host
apps to access exposed targeted data. Some targeted data are
dependent on what the host apps themselves collect from the
users. An ad library can access such data by parsing the files
its host app created at runtime to store such information locally,
that is in its own UID-protected storage. Furthermore, it can
inherit the permissions granted to its host app and leverage that
privilege to collect targeted data through permission-protected
APIs. Finally, it can peek on what the host app user inputs
to the app. In this section, we explore what an ad library can
learn through these in-app attack channels. We elaborate on our
methodology and provide insights from real world examples.
To gain insight on what an ad library can learn, we perform
manual inspection of some real-world free apps. This way
we can validate our assumptions about data exposure through
in-app attack channels and further create ground truth for test
data that we can use to do evaluations of our framework in
subsequent sections.

We first cherry-pick a few free apps we selected for purposes
of illustration. We downloaded the target apps from Google
Play and used Apktool to decompile them. We located the
packages corresponding to the Google AdMob advertising
network library and located an entry point that is called every
time an ad is about to be loaded. We injected our attack logic
there to demonstrate how the ad library can examine local files.
In particular, our logic dumps the database and xml files that
the app has created at runtime. We then compiled the app and
ran it on a physical device by manually providing it with some
input. Here are some examples of what such an aggressive
ad library could learn in this position (or what AdMob is, in
principle, able to learn now).

I’m Pregnant helps women track their pregnancy
progress and experience. It has 1,000,000–5,000,000 instal-
lations and is ranked with 4.4 stars 2 on Google Play. Our
code was able to read and extract the local files created by
the host app. After manually reviewing the retrieved files, we
found that the host app is storing the weight of the user, the
height, current pregnancy month and day, symptoms such as
headaches, backache and constipation. It also recorded events
such as dates of intercourse (to establish the date of conception)
and outcomes like miscarriage or date of birth.

Diabetes Journal helps users better manage their
diabetes. It has 100,000–500,000 installations and ranked with
4.5 stars on Google Play. Our code was able to extract the local
files generated by the app. Manually reviewing these files, we
found that it exposes the user’s birth date, gender, first-name
and last name, weight and height, blood glucose levels, and
workout activities.

TalkLife targets users that suffer from depression, self-
harm, or suicidal thoughts. It has 10,000–50,000 installations
on Google Play and ranked with 4.3 stars. In contrast with the
other two apps above, TalkLife stores the user information in
a user object which it serializes and then stores in a local file.
In this case, some knowledge of the host app allows our code
to deserialize the user object and get her email, date of birth,
and first name. Deserializing the user object also provided our
library the user password in plain text.

Thus, if an opportunistic advertising library is included in
apps like these, then a careful manual review of the apps will
reveal some pathways to targeted data. At this point it helps to
have a little more terminology. Let us say that a data point is
a category of targeted data point values. For example, gender
is a data point, whereas knowing that Bob is a male is a data
point value. What we would like to do, is examine a collection
of apps to see what data points they expose to ad libraries.

To explore these ideas and their refinement we develop
three datasets listed in the first three rows of Table I. For the
first, we make a list of the 100 most popular free apps in each
of the 27 categories on Google Play to get 2700 apps. After
removing duplicate apps, we were left with 2535 unique apps.
We call this the Full Dataset, FD. From these we randomly
selected 300 apps for manual review. From these apps we
removed the ones that crashed on our emulator or required the
use of Google Play Services. We will refer to this as the Level

2Applications on Google Play are being ranked by users. A 5-star application
is an application of the highest quality.
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TABLE I: Datasets

Name Number Description
Full Dataset (FD) 2535 Unique apps collected from the 27

Google Play categories.
Level One Dataset
(L1)

262 Apps randomly selected from FD.

Level Two Dataset
(L2)

35 Apps purposively selected from
L1.

App Bundle Dataset
(ABD)

243 App bundles collected through sur-
vey.

One Dataset (L1). On this dataset, we searched for data point
exposure by two means. First, we inspected the manifest to see
if the permissions themselves would suggest that certain types
of data points would be present. For example, we predicted
that the address attribute could be derived by the library if the
host app is granted the ACCESS_COARSE_LOCATION or the
ACCESS_FINE_LOCATION permission, the email attribute
from the GET_ACCOUNTS permissions, the phone attribute
from the READ_PHONE_STATE permission and the online
search from the READ_HISTORY_BOOKMARKS permission.
Second, we launched the app, looked to see what local files it
produced, and looked into these files to see if they expose any
particular data points.

The data points we consider must include user data that
the ad libraries are likely interested in harvesting. To this end,
we extract data points mostly based on a calculator provided
by the Financial Times (FT) [42]. This calculator provides
illustrative information sought by data brokers together with an
estimate of its financial value in the U.S. based on analysis of
industry pricing data at the time the calculator was created. For
example, according to the FT calculator, basic demographic
information like age and gender are worth about $.007. If
an opportunistic advertising network can learn that a user is
(probably) an accountant, then the cumulative information is
worth $.079 (according to the calculator); if they also know
that this accountant is engaged to be married, this increases
the value to $.179. Engaged individuals are valuable because
they face a major life change, are likely to both spend more
money and change their buying habits. An especially noteworthy
data point is a pregnancy. This is well illustrated by events
surrounding Target’s successful program to use the habits of
registered expecting shoppers to derive clues about unregistered
ones in order to target them with advertising about baby
care products [13]. The FT calculator provides us with a
realistic way of exploring the relative value of an information
gathering strategy. The precise figures are not important, and
have probably changed significantly since the introduction of
the calculator, but they give some ballpark idea of value and
the system provides a benchmark for what a more accurate
and detailed database of its kind might use.

We abstracted the questionnaire-like attributes from the
FT calculator into keywords and used these as a guide to
data points to find in the apps reviewed. For example, we
transformed the question “Are you a fitness and exercise buff”
into “workout”. We refer to the overall attack technique that
examines local files and uses protected APIs, as a level one
inspection (L1-I). We found 29 categories of data points in L1
by this means, including ‘gender’, ‘age’, ‘phone number’, ‘email
address’, ‘home address’, ‘vehicle’, ‘online searches’, interests
like ‘workout’ and others. Table II depicts some popular apps
and the data points they expose to ad libraries performing a
level one inspection.
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Fig. 1: Number of apps with data points inferred by (a) level
one inspection of L1, (b) level two inspection of L2.

However, an ad library could also utilize the fact that it
can eavesdrop on user inputs in its host app. This can be done
on Android by exploring the resource files of packages. Once
an interesting layout file is found, an offensive library can
inflate the layout from the library package and read from its UI
elements. With this strategy, the ad library can find targeted data
that are input by the user but not necessarily kept in local files.
Let us call the attack strategy that utilizes not only local files
and protected APIs, but also user input eavesdropping, a level
two inspection (L2-I). To better understand what data points
are exposed to an ad library performing a level two inspection,
we selected 35 of the apps in the L1 dataset and reviewed them
manually to find data points that level two inspection could
reveal. We call this the L2 dataset. The 35 apps in question
are ones that exposed one or more data points other than ones
derived from the manifest. We made this restriction to assure
that there was no straight-forward strategy for finding data
points in these apps so we could better test the automated
inference techniques we introduce later. Table II depicts some
popular apps and the data points they expose to ad libraries
performing a level two inspection. We observe that apps expose
not only demographic information but also more sensitive data
such as user health information. The complete list of apps and
the data points they expose is omitted due to space limitations.

Figure 1a displays the number of apks in the level one
inspection that were found to expose the basic data points we
listed earlier. Figure 1b portrays a similar graph for the level
two inspection. Here, we pruned all data points with frequency
less than three. We observe that data points that can be derived
by exploiting the host app’s permissions are more prevalent
than other ones. This is because the permissions are coarse-
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TABLE II: Data exposure from popular apps to ad libraries performing level-one (L1-I) and level-two (L2-I) inspection.
Attack
Strategy Category Application Name Num. of installations Exposed data points

L1-I MEDICAL Menstrual Calendar 1 ⇥ 106 � 5 ⇥ 106 pregnancy, trimester, headache
L1-I EDUCATION myHomework Student Planner 1 ⇥ 106 � 5 ⇥ 106 gender, age, address
L2-I HEALTH & FITNESS Run with Map My Run 5 ⇥ 106 � 10 ⇥ 106 phone, email, first name, last name, age, gender, address, workout
L2-I LIFESTYLE BeNaughty - Online Dating App & Call 5 ⇥ 106 � 10 ⇥ 106 phone, email, age, gender, address, marital status, parent

grained and app developers are likely to use them for a number
of reasons, whereas other data points would be present only if
the host app is explicitly collecting that information. Overall,
it is clear that targeted data is exposed by apps through in-app
attack channels to ad libraries. Next we examine exposure
through out-app channels.

V. DATA EXPOSURE THROUGH OUT-APP CHANNELS

Ad libraries can surreptitiously access targeted data not
only through in-app attack channels but also from host-app-
independent channels such as public APIs. Such APIs are
considered to be harmless and thus made available to all
applications on the platform without the need of special
permissions. In particular, Android provides a pair of publicly
available functions, which we will abbreviate as getIA and
getIP, that return app bundles, the list of installed apps on a
mobile.3 They can be used by the calling app to find utilities,
perform security checks, and other functions. They also have
high potential for use in advertising. An illustration of this is
the Twitter app graph program [46], which was announced
in late 2014. Twitter asserted its plans to profile users by
collecting their app bundles4 to “provide a more personal
Twitter experience for you.” Reacting to Twitter’s app graph
announcement, the Guardian newspaper postulated [12] that
Twitter “reported $320m of advertising revenues in the third
quarter of 2014 alone, with 85% of that coming from mobile
ads. The more it can refine how they are targeted, the more
money it will make.” This progression marks an important point
about the impact of advertising on privacy. Both the Financial
Times [42] and a book about the economics of the online
advertising industry called The Daily You [45] emphasize the
strong pressures on the advertising industry to deliver better
quality information about users in a market place that is both
increasingly competitive and increasingly capable. This is a key
theme of this paper: what may seem opportunistic now may
be accepted business practice and industry standard in a few
years, and what is viewed as malicious today may be viewed
as opportunistic or adventurous tomorrow. Twitter provides
warnings to the user that Twitter will collect app bundles and
offers the user a chance to opt out of this. Other parties are less
forth-coming about their use of this technique of user profiling.

A. Use of App Bundles

Getting app bundles is a great illustration of the trajectory
of advertising on mobiles. In 2012 the AdRisk tool [18] showed
that 3 of 50 representative ad libraries it studied would collect
the list of all apps installed on the device. The authors viewed
this as opportunistic at best at the time. But what about now?

3Their formal names are getInstalledApplications and
getInstalledPackages. The first returns the applications, the
second returns the packages and, from these, one can learn the application
names.

4We use the term app bundle rather than app graph because we do not
develop a graph from the app lists.

We did a study of the pervasiveness of the use of app bundles
by advertising networks in Google Play. The functions getIA
and getIP are built into the Android API and require no special
permissions. We decompiled the 2700 apps we have collected
from Google Play, into smali code 5 for analysis and parsed
these files to look for the invocations of getAP and getIP in
each app. This allowed us to narrow the set of apps for analysis
to only those that actually collect a list of apps on the mobile,
which we deem an app bundle. We then conducted a manual
analysis of the invocation of these functions by ad libraries.

Of the 2700 apps selected for review, 165 apps were
duplicates, narrowing our sample size down to 2535 distinct
apps. Of these, 27.5% (679/2535) contained an invocation of
either of the two functions. This total includes invocation of
these functions for functional (utility and security) as well
as advertising purposes. To better understand if an ad library
invokes the function, analysis required a thorough examination
of the location of the function call to see if it is called by an
advertising or marketing library. We found that many apps pass
information to advertisers and marketers. We conducted this
analysis manually to best capture a thorough list of invocations
within ad libraries. Ultimately 12.54% of the examined apps
(318/2535) clearly incorporate ad libraries that invoke one of
the functions that collects the app bundle of the user. We found
28 different ad libraries invoking either getIA or getIP. These
results do not necessarily include those apps that collect app
information themselves and pass it to data brokers, advertising
or marketing companies, or have their own in-house advertising
operation (like Twitter). Our results demonstrate that many types
of apps have ad libraries that collect app bundles, including
medical apps and those targeted at children. Interestingly, we
did not detect collection of app bundles by the three ad networks
identified by AdRisk. However, a number of other interesting
cases emerged.

Radio Disney, for example, uses Burstly, a mobile app
ad network whose library 6 calls getIP. Disney’s privacy policy
makes no direct reference to the collection of app bundles for
advertising purposes. Use of this technique in an app targeted
at children is troubling because it might collect app bundle
information from a child’s device without notifying either the
parent who assisted the download or an older child that this type
of information is collected and used for advertising purposes.
Disney does mention the collection of “Anonymous Information”
but the broad language defining this does not give any indication
that the Radio Disney app collects app bundles.7

Looney Tunes Dash! is a mobile app provided by
Zynga that it explicitly states that they collect ”Information

5The smali format is a human-readable representation of the application’s
bytecode.

6burstly/lib/apptracking/AppTrackingManager.smali
7Formally, they define anonymous information as “information that does not

directly or indirectly identify, and cannot reasonably be used to identify, an
individual guest.” App bundles are similar to movie play lists; it is debatable
whether they indeed satisfy this definition.
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about ... other third-party apps you have on your device.”8 In
fact, this is the privacy policy for all Zynga apps.

Several medical apps (12) collect app bundles. Most
surprisingly, Doctor On Demand: MD & Therapy, an
app which facilitates a video visit with board-certified physi-
cians and psychologists collects app bundles through the
implementation of google/ads/ conversion tracking. However,
their linked privacy policy makes no reference to passing any
user information to advertisers. Other apps in the medical
category with advertising libraries that collect app bundles
include ones that track ovulation and fertility, pregnancy, and
remind women to take their birth control pill.

B. Survey Study

Upon learning of the prevalence of the app bundle collection
by advertisers, we sought to better understand what type of
information could be learned by advertisers based the list of
apps on a user’s mobile device. To do this, we devised a study
that would allow us to collect our own set of app bundles to
train a classifier.

The study consisted of a survey and an Android mobile app
launched on the Google Play Store. The protocol for all the
parts of the study was approved by the Institutional Research
Board (IRB) for our institution. All participants gave their
informed consent. We required informed consent during both
parts of the study, and participants could leave the study at any
time. Participants were informed that the information collected
in the survey and the information collected by the mobile app
would be associated with one another.

Participants included individuals over the age of 18 willing
to participate in the survey and who owned an Android device.
Crowdsourcing platforms such as Amazon’s Mechanical Turk
are proven to be an effective way to collect high quality
data [9]. Our survey was distributed over Microworkers.com a
comparable crowdsourcing platform to Amazon’s Mechanical
Turk (MTurk). We chose Microworkers.com over Amazon
Mechanical Turk because Amazon Mechanical Turk did not
allow tasks that involve requiring a worker to download or
install any type of software.

We designed the mobile app, AppSurvey, to collect the
installed packages on a participant’s phone. The study directed
the participant to the Google Play Store to download the mobile
app. Upon launching AppSurvey, a pop-up screen provided
participants information about the study, information to be
collected, and reiterated that the participation in the study
was anonymous and voluntary. If the participant declined the
consent, no information would be collected. If the participant
consented, the app uploaded the app bundles from the partici-
pants phone and anonymously and securely transmit it to our
server. AppSurvey also generated a unique User ID for each
individual which participants were instructed to write down
and provide in the survey part of the study. Finally, AppSurvey
prompted participants to uninstall the mobile app.

We designed the survey based upon the FT calculator. The
survey consisted of 25 questions about basic demographic
information, health conditions, and Internet browsing and
spending habits. The survey contained two control questions

8https://company.zynga.com/privacy/policy
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included to identify survey participants not paying sufficient
attention while taking the survey. If either of these questions
were answered incorrectly, we excluded the survey response.
In addition, our workers were not compensated until after
the finished tasks were reviewed and approved by the survey
conductors. Before taking the survey, participants were required
to give informed consent to the information collected in
the survey. To link the app bundle information collected by
AppSurvey to the responses provided by participants in the
survey, participants were required to input the unique User ID
generated by AppSurvey. The collection of this data allows us
to establish a ground truth for users’ app bundles.

We successfully collected survey answers and app bundle
information from 243 participants. This resulted in 1985 distinct
package names collected.

VI. PLUTO: FRAMEWORK DESIGN AND IMPLEMENTATION

Pluto is a modular framework for estimating in-app and
out-app targeted data exposure for a given app. In-app Pluto
focuses on local files that the app generates, the app layout
and string resource files, and the app’s manifest file. Out-app
Pluto utilizes information about app bundles to predict which
apps will be installed together and employs techniques from
machine learning to make inferences about users based on the
apps they have on their mobile. We describe each of these in
a pair of subsections.

A. In-app Pluto

In-app Pluto progresses in two steps as illustrated in
Figure 2. First, the Dynamic Analysis Module (DAM) runs
the given app on a device emulator and extracts the files the
app creates. Then it decompiles the app and extracts its layout
files, resource files, manifest file and runtime generated files.
At the second step, the files produced by the DAM are fed
to a set of file miners. The file miners utilize a set of user
attributes and user interests, possibly associated with some
domain knowledge, as a matching goal. A miner will reach a
matching goal when it decides that a data point is present in
a file. When all the app’s files are explored, the Aggregator
(AGGR) removes duplicates from the set of matching goals
and the resulting set is presented to the analyst. Pluto’s in-
app component’s goal is to estimate offline, the exposure of
targeted data—or data points—to ad libraries at runtime. In-app
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Pluto can be configured to estimate data points for a level 1
aggressive library by looking only at the runtime generated
files and available permissions. To perform exposure discovery
for a level 2 of aggression, it mines targeted data also from the
resource and layout files. In essence Pluto is trying to simulate
what an ad library is allowed to do to estimate what is the
potential data exposure from a given app. To perform in-app
exposure discovery, Pluto employs dynamic analysis and natural
language processing techniques to discover exposure of in-app
data points. Here we report on our prototype implementation
focusing on manifest, SQLite, XML, and JSON files.

1) Dynamic Analysis: To discover the files that an app
is generating at runtime, Pluto runs the app on an emulator
for 10 seconds and then uses a monkey tool to simulate user
input. 9 This can generate pseudo-random streams of clicks,
touches, and system-level events. We chose to use a monkey
because some apps might require user stimulation before
generating some of their local files. To validate our assumption,
we performed two experiments. First, we configured Pluto’s
DAM module to run all 2535 apps in the FD dataset
for 10 seconds each. We repeat the experiment, this time
configuring DAM to issue 500 pseudo-random events to each
app after its 10 second interval is consumed. As we see on
Table III, Pluto explores approximately 5% more apps in the
second case. 10 More importantly, DAM Monkey generates
1196 more files than DAM which results in 100 apps with
‘interesting’ files more. Android’s Monkey was previously
found to achieve approximately 25.27% LOC coverage [4].
However, Pluto’s components can be easily replaced, and
advances in dynamic analysis can be leveraged in the future.
For example, PUMA [21] is a very promising dynamic analysis
tool introduced recently. If new levels of library aggression
are introduced in the future, PUMA could be used instead of
Android’s monkey to better simulate behaviors that can allow
libraries to access user attributes at runtime.

TABLE III: DAM’s coverage. * denotes interesting files
(SQLite, XML, JSON)

DA Strategy % successful
experiments #files # *files #of apps w/

*files
DAM 0.718 14556 9083 1911
DAM Monkey 0.763 15752 10171 2021

Once the execution completes, DAM extracts all the
‘runtime’ generated files. Subsequently, it decompiles the input
android app package (apk) and extracts the Android layout
files, Android String resources and the app’s manifest file.

2) File Miners empowered by Natural Language Processing:
Once the DAM module generates ‘runtime’ files, Pluto’s
enabled file miners commence their exploration. We have
implemented four types of file miners in our prototype:
MMiner; GMiner; DBMiner; XMLMiner. The MMiner is
designed to parse manifest files, the DBMiner for SQlite
database files, the XMLMiner for runtime generated XML
files and the GMiner is a generic miner well suited for resource
and layout files. The miners take as input, a set of data points, 11

9In our implementation we used the Android SDK-provided
UI/Application Exerciser Monkey [11].

10An unsuccessful experiment includes apps that failed to launch or crashed
during the experiment.

11We derived most of the data points from the FT calculator [42].

in the form of noun words and a mapping between permissions
and data points that can be derived given that permission.

Input processing: Pluto utilizes Wordnet’s English seman-
tic dictionary [32] to derive a set of synonyms for each data
point. However, a word with multiple meanings will result
in synonyms not relevant to Pluto’s matching goal. Consider
for example the word gender. In Wordnet, gender has two
different meanings: one referring to grammar rules and the one
referring to reproductive roles of organisms. In our case it is
clear that we are interested in the latter instead of the former.
In our prototype, the analyst must provide Pluto with the right
meaning. While it is trivial to make this selection, for other
data points it might not be as trivial. For example, age has
5 different meanings in Wordnet. Other data points which we
have not explored, might have even more complex relationships.
In our experience we found Visuwords.com to be a helpful tool
to visualize such relationships and immensely facilitated our
selections. We were inspired by the list of data points in the
FT calculator, which is indeed feasible to analyze manually.
However, Pluto does not require this from an analyst. If the
meaning is not provided, Pluto will take all synonym groups
into account with an apparent effect on precision.

NLP in Pluto: The NLP community developed different
approaches to parse sentences and phrases such as Parts
of Speech (POS) Tagging and Phrase and Clause
Parsing. The former can identify parts of a sentence or
phrase (i.e., which words correspond to nouns, verbs, adjectives
or prepositions), and the latter can identify phrases. However,
these cannot be directly applied in our case because we are
not dealing with well written and mostly grammatically correct
sentences. In contrast, Pluto parses structured data written in a
technically correct way (e.g., .sqlite, .xml files). Thus in our
case we can take advantage of the well-defined structure of these
files and extract only the meaningful words. For the database
files, potentially meaningful words will constitute the table
name and the columns names. Unfortunately, words we extract
might not be real words. A software engineer can choose any-
thing for the table name (or filename), from userProfile,
user_profile, uProfil, to up. We take advantage of
the fact that most software engineers do follow best practices
and name their variables using the first two conventions, the
camelCase (e.g. userProfile) and the snake_case structure
(e.g. user profile). The processed extracted words are checked
against Wordnet’s English semantic dictionary. If the word
exists in the dictionary, Pluto derives its synonyms and performs
a matching test against the data points and their synonyms. 12

If a match is determined, then a disambiguation layer decides
whether to accept or reject the match. Next, we elaborate on
the functions of the disambiguation layer.

Context Disambiguation Layer: Words that reach a match-
ing goal, could be irrelevant with the actual user attribute.
Consider for example the word exercise. If a Miner unearths
that word, it will be matched with the homonymous synonym
of the matching goal workout. However, if this word is
found in the Strings resource file that doesn’t necessarily mean
that the user is interested in fitness activities. It could be the
case that the app in question is an educational app that has
exercises for students. On the other hand, if this word is mined

12In our prototype we used the JWI [16] interface to Wordnet, to derive
sets of synonyms.
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from an app in the Health and Fitness Google Play
category, then it is more likely this is referring to a fitness
activity. Pluto employs a disambiguation layer that aims to
determine whether the match is valid. It attaches to every
user interest the input app’s Google Play category name. We
call that a disambiguation term. For user attributes, the
disambiguation term is currently assigned by the analyst 13. In
addition, Pluto assigns some domain knowledge to data
points. For attributes, it treats the file name or table name as the
domain knowledge, and for interests it uses the matching goal
itself. Our prototype’s context disambiguation layer calculates
the similarity between the disambiguation term and the
domain knowledge. If the similarity value is found to
surpass a specific threshold, then the match is accepted.

The NLP community already proposed numerous metrics
for comparing how similar or related two concepts are. Our
prototype can be configured to use the following existing simi-
larity metrics to disambiguate attribute matches: PATH [37];
LIN [30]; LCH [28]; LESK [6]. Unlike the first three
metrics which are focused on measuring an is-a similarity
between two words, LESK is a definition-based metric of
relatedness. Intuitively this would work better with user interests
where the disambiguation term is the app’s category name. The
other metrics are used to capture is-a relationships which
cannot hold in most of the user-interests cases. For example,
there is no strong is-a relationship connecting the user interest
vehicle with the category transportation. 14 LESK seems
well fit to address this as it depends on the descriptions of the
two words. Indeed, LESK scores the (vehicle, transportation)
pair with 132 with (vehicle, travel and local) coming second
with 103.

However, in this study we have found that LESK might not
always work that well when applied in this domain. Studying the
scoring of LESK with respect to one of our most popular user
interests in our L1 dataset we found it to be problematic. When
comparing the matching goal workout with the category
Health and Fitness, LESK assigns it one of the lowest
scores (33), with the maximum score assigned to the (workout,
books and references) pair (113).

Here we present our new improved similarity metric that
can address LESK’s shortcomings when applied to our problem.
We call our similarity metric droidLESK. The intuition
behind droidLESK is that the more frequently a word is
used in a category, the higher the weight of the (word,
category) pair should be. droidLESK is then a normalization
of freq(w, c)⇥ LESK(w, c). In other words, droidLESK is
the weighted LESK were the weights are assigned based on
term frequencies. To evaluate droidLESK, we create pairs of
the matching goal workout with every Google Play category
name and assign a score to each pair as derived from droidLESK
and other state of the art similarity metrics. To properly weight
LESK and derive droidLESK, we perform a term frequency
analysis of the workout word in all ‘runtime’ generated
files of the L1 dataset. We repeat the experiment for the
word vehicle. droidLESK’s scoring was compared with
the scores assigned to the pairs by the following similarity

13We used the word Person.
14We found that similarity metrics that find these relationships do not assign

the best score to the pair(vehicle, transportation) when compared with other
(vehicle, *) pairs.

metrics: WUP [51]; JCN [24]; LCH [28]; LIN [30]; RES [38];
PATH [37]; LESK [6] and HSO [22].

The results are very promising—even though preliminary—
as shown in table IV. 15 We observe that our technique correctly
assigns the highest score to the pair (workout, health and fitness)
than any other pair (workout,*). The same is true for the pair
(vehicle, transportation). droidLesk was evaluated on the two
most prevalent user interests in our dataset. Since our approach
might suffer from over-fitting, in future work we plan to try this
new metric with more words and take into account the number
of apps contributing to the term frequency. We further discuss
the effects of using droidLESK in Pluto’s in-app targeted data
discovery in the evaluation Section VII.

B. Out-app Pluto

Out-app Pluto aims to estimate what is the potential data
exposure to an ad library that uses the unprotected public gIA
and gIP APIs. That is, given the fact that the ad library can learn
the list of installed applications on a device, it aims to explore
what data points, if any, can be learned from that list. Intuitively,
if an ad library knows that a user installed a pregnancy app and
local public transportation app, it would be able to infer the
user’s gender and coarse location. However, the list of installed
applications derived from gIA and gIP is dependent on the
device the ad library’s host app is installed, which renders
estimation of the exposure challenging. To explore what an ad
library can learn through this out-app attack channel, we derive
a set of co-installation patterns that reveals which apps are
usually installed together. This way we can simulate what the
runtime call to gIA or gIP will result in given invocation from
an ad library incorporated into a particular host app. We then
feed the list of co-installed applications into a set of classifiers
we trained to discover the potential data exposure through the
out-app channel.

The Pluto out-app exposure discovery system runs machine
learning techniques on a corpus of app bundles to achieve
two goals. First, it provides a Co-Installation Pattern module
(CIP) which can be updated dynamically as new records of
installed apps are received. The CIP module runs state-of-the-
art frequent pattern mining (FPM) algorithms on such records
to discover associations between apps. For example, such an
analysis can yield an association in the form of a conditional
probability, stating that if app A is present on a device then app
B can be found on that device with x% confidence. When an
analyst sets Pluto to discover out-app targeted data regarding
an app offline, Pluto utilizes the CIP module to get a good
estimation of a vector of co-installed apps with the target app.
The resulting vector is passed to the classifiers which in turn
present the analyst with a set of learned attributes. Second, it
provides a suite of supervised machine learning techniques that
take a corpus of app bundles paired with a list of user targeted
data and creates classifiers that predict whether an app bundle
is indicative of a user attribute or interest.

1) Co-Installation Patterns: The CIP module uses frequent
pattern mining to find application co-installation patterns. This
can assist Pluto in predicting what will an ad library learn
at runtime if it invokes gIA or gIP. We call a co-installation
pattern, the likelihood to find a set of apps installed on a

15Due to space limitations, we omit uninformative comparisons.
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TABLE IV: Comparison between rankings of (interest, category name) pairs from LESK and droidLESK. TF denotes the data
point term frequency in local files created by apps in a category.

DATA POINT RANK LESK TF TF*LESK
VEHICLE 1 TRANSPORTATION FINANCE TRANSPORTATION
VEHICLE 2 BOOKS AND REFERENCES TRANSPORTATION FINANCE
VEHICLE 3 TRAVEL AND LOCAL LIFESTYLE LIFESTYLE
WORKOUT 1 BOOKS AND REFERENCES HEALTH AND FITNESS HEALTH AND FITNESS
WORKOUT 2 TRAVEL AND LOCAL APP WIDGET NEWS AND MAGAZINE
WORKOUT 3 MUSIC AND AUDIO NEWS AND MAGAZINE APP WIDGET

device in correlation with another app installed on that device.
In FPM, every transaction in a database is identified by an
id and an itemset. The itemset is the collection of one or
more items that appear together in the same transaction. For
example, this could be the items bought together by a customer
at a grocery store. Support indicates the frequency of an
itemset in the database. An FPM algorithm will consider an
itemset to be frequent if its support is no less than a minimum
support threshold. Itemsets that are not frequent are pruned.
Such an algorithm will mine association rules including
frequent itemsets in the form of conditional probabilities that
indicate the likelihood that an itemset can occur together with
another itemset in a transaction. The algorithm will select rules
that satisfy a measure (e.g., a minimum confidence level). An
association rule has the form N:N, where N is the number of
unique items in the database. An association rule is presented as
X ) Y where the itemset X is termed the precedent and
Y the consequent. Such analysis is common when stores
want to find relationships between products frequently bought
together.

Pluto’s CIP uses the same techniques to model the in-
stallations of apps on mobile devices, as itemsets bought
together at a grocery store. Our implementation of Pluto’s
CIP module uses the FPGrowth [20] algorithm, a state of the
art frequent pattern matching algorithm for finding association
rules. We have chosen FPGrowth because it is significantly
faster than its competitor Apriori [3]. CIP runs on a set of app
bundles collected periodically from a database containing user
profiles that include the device’s app bundles and derives a
set of association rules, indicating the likelihood that apps can
be found co-installed on a device. Our CIP association rule
will have the form 1:N because Pluto is interested in finding
relationships between a given app and a set of other apps.

CIP uses confidence and lift as the measures to
decide whether an association rule is strong enough to be
presented to the analyst. Confidence is defined as conf(X )
Y ) = supp(X[Y )

supp(X) , where supp(X) is the support of the itemset
in the database. A confidence of 100% for an association rule
means that for 100% of the times that X appears in a transaction,
Y appears as well in the same transaction. Thus an association
rule facebook ) skype, viber with 70% confidence will
mean that for 70% of the devices having Facebook installed,
Viber and Skype are also installed.

Another measure CIP supports is Lift. Lift is defined
as: lift(X ) Y ) = supp(X[Y )

supp(X)⇥supp(Y ) . Lift indicates how
independent the two itemsets are in the rule. A Lift of one will
indicate that the probability of occurrence of the precedent
and consequent are independent of each other. The higher
the Lift between the two itemsets, the stronger the dependency
between them and the strongest the rule is.

2) Learning Targeted Data from App Bundles: Pluto uses
supervised learning models to infer user attributes from the CIP-
estimated app bundles. Pluto aims to resolve two challenges in
training models based on app bundles: 1) skewed distribution
of values of attributes; 2) high dimensionality and highly sparse
nature of the app bundles.

Balancing distributions of training sets: Based on the
empirical data we collected, some attributes have a more skewed
distribution in their values. To orient the reader using a concrete
example, consider an example where 1 of 100 users has an
allergy. In predicting whether a user has an allergy in this
dataset, one classifier can achieve an accuracy of 0.99 by
trivially classifying each user as having an allergy. In view of
this, for the attribute “has an allergy” the value “yes” can be
assigned a higher weight, such as 99, while the value “no” has a
weight of 1. After assigning weights, the weighted accuracy for
predicting an attribute now becomes the weighted average of
accuracy for each user; the weight for a user is the ratio of the
user’s attribute value weight to the total attribute value weights
of all users. Therefore, in this example, the weighted accuracy
becomes 0.5, which is fair, even when trivially guessing that
each user has the same attribute value. In order to train an
effective model for Pluto, we balance the distribution of training
sets following the aforementioned idea. To balance we adjust
the weights of existing data entries to ensure that the total
weights of each attribute value are equal. In this way, the final
model would not trivially classify each user to be associated
with any same attribute value. Accordingly, we adopt measures
weighted precision and weighted recall in our evaluation where
the total weights of each attribute value are equal; this is to
penalize trivial classification to the same attribute value [10].

Dimension reduction of app-bundle data: Another chal-
lenge we face in this context is the high dimensionality and
highly sparse nature of the app bundles. There are over 1.4
million apps [41] on Google Play at this moment, and it is
both impractical and undesirable for the users to download and
install more than a small fraction of those on their devices.
A recent study from Yahoo [39] states that users install on
average 97 apps on a device. To make our problem more
tractable we used a technique borrowed from the Machine
Learning community which allows us to reduce the considered
dimensions. Our prototype employs three classifiers, namely
K-Nearest Neighbors (KNN), Random Forests, and SVM.

To apply these classifiers to our data, we map each user
u

i

in the set of users U to an app installation vectors a
ui =

{a1, . . . , ak}, where a

j

= 1 (j = 1, . . . , k) if u

i

installs a

j

on the mobile device, otherwise a

j

= 0. Note that the app
installation vector is k-dimensional and k can be a large value
(1985 in our study). Thus, classifiers may suffer from the “curse
of dimension” such that the computation could be dominated by
less relevant installed apps when the dimension of space goes
higher. To mitigate this problem, we use principal component
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Fig. 3: CDF of apps and number of data points (level-1)

analysis (PCA) by selecting a small number of the principal
components to perform dimension reduction before applying a
classifier.

VII. EVALUATION

In this section we evaluate Pluto’s components in estimating
data exposure. We first evaluate Pluto’s performance to discover
Level-1 and Level-2 in-app data points. Next we apply Pluto’s
CIP module and classifiers on real world data app bundles and
ground truth we have collected, and evaluate their performance.

A. Evaluation of Pluto’s in-app exposure discovery

In this section we present our empirical findings on applying
Pluto on real world apps.

Experimental setup: We provided Pluto with a set of data
points to look for, enhanced with the meaning—sense id of
the data point in Wordnet’s dictionary—and the class of the
data point (i.e., user attribute or user interest). We also provide
Pluto with a mapping between permissions and data points
and we configured it to use the LCH similarity metric at the
disambiguation layer for user attributes and our droidLESK
metric for user interests. We found that setting the LCH
threshold to 2.8 and the droidLESK threshold to 0.4 provides
the best performance. To tune the thresholds, we parameterized
them and ran Pluto multiple times on the L1 dataset. A similar
approach can be used to tune the thresholds on any available -
ideally larger - dataset 16, and data point set. In all experiments,
all Miners were enabled unless otherwise stated. The MMiner
mined in manifest files, the DBMiner in runtime-generated
database files, the XMLMiner in runtime-generated XML files
and the GMiner in String resource files and layout files. We
compared Pluto to the level-1 and level-2 ground truth we
manually constructed as described in Section IV.

In-app exposure estimation: We ran Pluto on the set of
262 apps (Pluto L1) and the full set of 2535 apps (Pluto FD).
Figure 3 plots the distribution of apps with respect to data
points found within those apps. We saw that the number of
data points found in apps remains consistent as we increased
the number of apps. We repeated the experiment for the level-1
dataset that consists of 35 apps. Figure 4. depicts Pluto’s data
point discovery. We compared Pluto’s data point prediction
with the respective level-1 and level-2 manual analysis IV.

Evidently, Pluto is optimistic in estimating in-app data
points. In other words, Pluto’s in-app discovery component
can flag apps as potentially exposing data points, even though
these are not actually there. A large number of Pluto’s false

16Note that it requires little effort to get Android app packages.
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Fig. 4: CDF of apps and number of data points (level-2)

positives stem from parsing the String constants file. Parsing
these files increases coverage by complementing our dynamic
analysis challenge in generating files that host apps created
after the user logged in. It also addresses the layer-2 aggressive
libraries can read from the user input. However, this results in
considering a lot of extra keywords that might match a data
point or its synonyms. Their location in the Strings.xml makes
it harder for Pluto to disambiguate the context for certain data
point classes. In this work, we make the first attempt towards
mitigating this pathology by proposing droidLESK.

Pluto is designed to find user attributes, user interests, and
data points stemming from the host app’s granted permissions.
We next present the performance of Pluto’s prototype imple-
mentation with respect to the above categories.

Finding user-attributes: Figure 5 depicts the performance
of Pluto in finding the data point gender when compared to
the level-1 and level-2 datasets and Figure 6 shows the same
for the user attribute age. Gender had absolute support of 13
in the level-1 dataset and 18 in the level-2 and age had 12
and 9 respectively. We observe that Pluto is doing better in
discovering data points available to the more aggressive libraries.
For example, the word age, was found in a lot of layout files and
Strings.xml files while the same was not present in the runtime
generated files. Comparing age with the level-1 ground truth,
results in a high number of false positives, since the analyst
has constructed the ground truth for a level-1 aggressive library.
When Pluto is compared with the ground truth for a level-2
aggressive library, its performance is significantly improved.

Finding interests: Next, we evaluated Pluto’s performance
in discovering user interests. Figure 7 illustrates the user interest
workout when Pluto is compared against the level-1 ground
truth and the level-2 ground truth. Workout had absolute support
of 5 in the level-1 dataset and 6 in the level-2. Again, Pluto
does much better in the latter case for the same reasons stated
before.

Preliminary results for droidLESK: In our experiments
we used droidLESK as the most appropriate similarity metric
on Pluto’s context disambiguation layer for user interests.
We compared that with an implementation of Pluto with no
disambiguation layer and an implementation that uses the LESK
metric. droidLESK achieved an astonishing 103.3% increase
in Pluto’s precision whereas LESK achieved an improvement of
11.37%. This is a good indication that droidLESK is a promising
way of introducing domain knowledge when comparing the
similarity between words in the Android app context. We plan
to further explore droidLESK’s potential in future work.

Finding data point exposure through permission inher-
itance: Pluto’s MMiner scrapes through application manifest
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ground truth.

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

PRECISION" RECALL"

L1"

L2"

Fig. 6: age prediction performance given the L1 and L2 ground
truth.

files to look for permissions that would allow a level-1 or
level-2 aggressive library to get access to user attributes or
interests. We compared Pluto’s performance in two different
configurations. In configuration 1 (L1 or L2), Pluto is set to look
for a data point using all of its Miners whilst in configuration
2 (L1:MMiner and L2:MMiner) Pluto is set to look for a data
point only using the MMiner, if the data point can be derived
from the host app permissions. We performed the experiment
on the larger level-1 dataset, providing as input the mapping
between the permissions ACCESS COARSE LOCATION and
ACCESS FINE LOCATION with the data point address.
Figure 8 depicts Pluto’s performance in predicting the presence
of address given the above two configurations for both the
L1 and L2 datasets and ground truths. As expected, Pluto’s
prediction is much more accurate when only the MMiner is
used. It is clear that in the cases where an data point can be
derived through a permission, the best way to predict that data
point exposure would be to merely look through the target
app’s manifest file.

The main reason for the false negatives we observed in all
previous experiments was because some data points that the
analyst has discovered were in runtime files generated after
the user has logged in the app, or after a specific input was
provided. Pluto’s DAM implementation cannot automatically
log in the app. We leave this challenge open for future work.

B. Evaluation of Pluto’s out-app exposure discovery

Next, we wanted to evaluate Pluto’s ability to construct
co-installation patterns and predict user attributes and interests
based on information that can be collected through the out-app
channel. We ran Pluto’s CIP module and classifiers on the ABD
dataset we collect from real users (see Section V).

Mining application co-installation patterns: Our imple-
mentation of Pluto’s CIP module uses FPGrowth [20], the state
of the art frequent pattern matching (FPM) algorithm for finding
association rules. We chose FPGrowth because it is significantly
faster than its competitor Apriori [3]. We applied Pluto’s CIP
module on the app bundles we collected through our survey.
We set FPGrowth to find co-installation patterns in the form
1:N and prune events with support less than 10%. Table V
lists the 5 strongest—in terms of confidence—association
rules that CIP found when run on the survey dataset.
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Fig. 7: workout prediction performance given the L1 and L2
ground truth.
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Fig. 8: address prediction performance in different configura-
tions, given the L1 and L2 ground truth.

We observe that Facebook is likely to be installed
together with the Facebook Messenger app. This is likely
because Facebook asks their users to install the Facebook
Messenger app when using the Facebook app. Our survey
dataset reflects this as well. The strong relationship between the
Facebook app and Facebook Messenger app revealed by FPM
illustrates its effectiveness for this application. Such rules are
critical for Pluto to estimate co-installation patterns between
the input application and other applications. Pluto leverages
such patterns to provide an estimation of what user attributes
can be potentially derived from the app bundles of users that
have the input app. Co-installation patterns can also be used to
reduce redundancy when combining the in-app data exposure of
multiple applications. For example, one might want to estimate
what are the in-app data points exposed by app A and app B.
However, if these applications are installed on the same device,
then the total amount of information the adversarial library will
get will be the union of both removing duplicates.

Performance of Pluto’s classifiers: Pluto’s classifiers can
be used to estimate user attributes derived from CIP app bundles
or real-time app bundles from user profiles. We evaluated
the performance of Pluto’s classifiers on real app bundles
we collected from our survey (see Section V). We used the
users’ answers to the questionnaire in the survey as the ground
truth to evaluate the classification results. To justify our use
of dimension reduction technique, we evaluated the classifier
on both dataset before dimension reduction and dataset after
dimension reduction. The results on representative attributes
are shown in Table VI and Table VII respectively.

Based on the results shown in both tables, Random Forest
performs best across all prediction tasks. The superiority of
Random Forest in our evaluation agrees with the existing knowl-
edge [15]. Specifically, because our dataset has a relatively
smaller number of instances, the pattern variance is more likely

TABLE V: The strongest co-installation patterns found by the
CIP module when run on the survey app bundles.

Precedent Consequence Conf Lift
com.facebook.katana com.facebook.orca 0.79 2.10
com.lenovo.anyshare.gps com.facebook.orca 0.75 2.01
com.viber.voip com.facebook.orca 0.74 1.98
com.skype.raider com.facebook.orca 0.71 1.88
com.skype.raider com.viber.voip 0.70 2.32
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TABLE VI: Performance of classifiers before dimension
reduction

Classifier Age Marital Status Sex
P(%) R(%) P(%) R(%) P(%) R(%)

Random Forest 64.1 66.3 89.8 83.6 91.5 89.6
SVM 65.5 63.6 89.0 82.1 87.4 83.1
KNN 62.7 60.0 86.3 77.7 83.4 74.8
P = Weighted Precision, R = Weighted Recall

TABLE VII: Performance of classifiers after dimension reduc-
tion

Classifier Age Marital Status Sex
P(%) R(%) P(%) R(%) P(%) R(%)

Random Forest 88.6 88.6 95.0 93.8 93.8 92.9
SVM 44.8 35.4 66.9 50.5 80.9 70.1
KNN 85.7 83.6 92.5 91.2 91.6 89.9
P = Weighted Precision, R = Weighted Recall

to be high. The ensemble technique (voting by many different
trees) employed by Random Forest could reduce such variance
in its prediction and thus achieve a better performance.

Comparison of Table VI and Table VII show dimension
reduction can effectively improve the performance of Random
Forest and KNN. However, the performance of SVM becomes
poorer after dimension reduction. One possible reason is that
SVM can handle high-dimension data such as our original
dataset. The model complexity of SVM is determined by the
number of support vectors instead of dimensions.

VIII. DISCUSSION

Utility of Pluto: In this work, we propose an approach that
can be leveraged to assess potential data exposure through
in-app and out-app channels to a third-party library. We
note that even though we use ad libraries in free apps as
a motivating example, our approach can be adapted to assess
data exposure by any app to any third-party library. We chose
ad libraries because they are quintessential examples of third-
party libraries with strong business incentives for aggressive
data harvesting. Motivated by rising privacy concerns related
to mobile advertising, users can exert pressure on markets
to integrate data exposure assessment into their system and
present the results in a usable way to users when downloading
an app. In light of this information, users would be able to make
more informed decisions when choosing an app. Furthermore,
government agencies, such as the Food and Drug Administration
(FDA), could benefit from this approach to facilitate their efforts
in regulating mobile medical device apps [1] and the Federal
Trade Commission (FTC) could leverage Pluto to discover apps
that potentially violate user privacy.

We describe a simple way for markets (and in extend other
interested parties) to utilize Pluto’s results and rank apps based
on their data exposure. Intuitively, the harder it is for an
adversary to get a data point of a user, the more valuable
that data point might be for the adversary. Also, the more
sensitive a data point is, the harder it will be to get it. Thus
sensitive data points should be more valuable for adversaries.
Consequently, a market could use a cost model, such as the
one offered by the FT calculator, to assign the proposed values
acting as weights to data points. In fact, Google, which acts as
a data broker itself, would probably have more accurate values
and a larger set of data points. They could then normalize the
set of exposed data points and present the data exposure score

for each app. For example, let D be the set of data points
in the cost model and X the set of data point weights in the
cost model, where |D| = |X| = n. We include the null data
point in D with a corresponding zero value in X . Also, let
↵ be the app under analysis. Then the new ranked value of
↵ would be z

↵

= x↵�min(X)
nP

i=1
xi�min(X)

where x

↵

is the sum of all

weights of the data points found to be exposed by app ↵. Here,
min(X) corresponds to an app having only the least expensive

data point in D.
nP

i=1
x

i

corresponds to an app exposing all

data points in D. z
↵

would result in a value from 0 to 1 for
each app ↵ under analysis. The higher the value the more
the data exposure. This can be presented in the applications
download site in application markets along with other existing
information for that app. For better presentation, markets could
use a number from 0 to 10, stars, or color spectrum with red
corresponding to the maximum data exposure.

To provide the reader with a better perspective on the result
of this approach, we applied Pluto and performed the proposed
ranking technique on the collected apps from the MEDICAL and
HEALTH & FITNESS Google Play categories respectively. In
the absence of co-installation patterns for all target apps, we do
not take into account the effect of having an app on the same
device with another data exposing app 17. We found that most
apps have a low risk score. In particular 97% of MEDICAL and
also 97% of HEALTH & FITNESS apps had scores below
5.0. Those apps either expose a very small amount of highly
sensitive targeted data, targeted data of low sensitivity, or both.
For example, we found net.epsilonzero.hearingtest, a hearing
testing app, exposed two attributes, the user’s phone number
and age, and scored 0.02. This ranking technique ensures that
only a few apps stand out in the rankings. These are apps
with a fairly large number of exposed data points including
highly sensitive ones. For example, the highest scored medical
app com.excelatlife.depression with a score of 8.14,
exposes 16 data points including “depression,” “headache,” and
“pregnancy,” which have some of the highest values in the
FT calculator. Table VIII depicts the two most risky apps per
category. Pluto in conjunction with our ranking approach can
help a user/analyst to focus on those high risk cases.

Our ranking results also depict the prevalence of targeted
data exposure. As we observe on Table VIII the highest ranked
apps were installed in the order of hundreds of thousands of
devices. Consequently, highly sensitive data of hundreds of
thousands of users are exposed to opportunistic third-party
libraries. In future work we plan to study practical approaches
to mitigate the data exposure by apps to third-party libraries.

App Bundles: The collection of app bundle information
by app developers, advertising companies, and marketing
companies is troubling. Currently, the ability of apps to
use gIP or gIA with no special permissions provides an
opportunity for abuse by both app developers and advertisers.
Our research demonstrates that this abuse is occurring. We
further demonstrate that such information can be reliably
leveraged to infer users’ attributes. Unfortunately, companies

17Note that to perform the out-app Pluto analysis one needs co-installation
patterns for all ranked apps. Markets can easily derive those using our FPM
approach. In that case, one should take into account the UNION of in-app and
out-app exposed attributes.
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TABLE VIII: Most risky apps based on their in-app data exposure. M = MEDICAL, HF = HEALTH & FITNESS

CATEGORY PACKAGE DESCRIPTION AVG #INSTALL SCORE [0 - 10]
M com.excelatlife.depression Depression management 100 ⇥ 103 � 500 ⇥ 103 8.14
M com.medicaljoyworks.prognosis Clinical case simulator for physicians 500 ⇥ 103 � 1 ⇥ 106 6.31
HF com.workoutroutines.greatbodylite Workout management 100 ⇥ 103 � 500 ⇥ 103 7.33
HF com.cigna.mobile.mycigna Personal health information management 100 ⇥ 103 � 500 ⇥ 103 5.62

fail to notify consumers that they are allowing the collection
of app bundles. With this, they have also failed to notify users
as to what entity collects the information, how it is used, or
steps to mitigate or prevent the collection of this data. The
failure of the Android API to require permissions for the gIP
or gIA removes from the users the possibility to have choice
and consent to this type of information gathering. To prevent
abuse of gIP or gIA, app providers should notify users, both in
the privacy policy and in the application, that app bundles are
collected. Additionally, applications should provide the user
the opportunity to deny the collection of this information for
advertising or marketing purposes. Potentially, the Android API
could require special permissions for gIP or gIA. However, the
all-or-nothing permissions scheme might not add any additional
value besides notice to the user and the warning may not be
necessary for an app that is using these two functions for utility
and functional purposes.

Limitations of our approach: Our estimation of data
exposure to libraries is constrained by the specific attack
channels we consider. Our prototype employs specific examples
for each channel and performs data exposure assessment based
on those. Nevertheless, the cases we consider are not the
only ones. For example, someone could include the CAMERA
permission or the RECORD_AUDIO in the protected APIs. The
camera could be used opportunistically to get pictures of the
user in order to infer her gender or location. The microphone
could be used to capture what the user is saying and, by
converting speech to text and employing POS tagging, infer
additional targeted data. More channels can also be discovered
such as new side channels or covert channels. These can be used
to extend Pluto for a more complete assessment. Our current
prototype and results can serve as a baseline for comparison.

IX. RELATED WORK

Several efforts try to characterize the current mobile ad
targeting process. MAdScope [35] and Ullah et al. [47] both
found that ad libraries have not yet exploited the full potential
of targeting. Our work is driven by such observations and tries
to assess the data exposure risk associated with embedding a
library in an app.

Many studies describe alternative mobile advertising archi-
tectures. AdDroid [36] enforces privilege separation by hard-
coding advertising functions as a system service into Android
platform. AdSplit [40] achieves privilege separation via making
ad libraries and their host apps run in separate processes.
Leontiadis et al. [29] proposes a client-side library compiled
with the host app to monitor the real-time communication
between the host app and the ad libraries to control the exposed
information. MobiAd [19] suggests local profiling instead of
keeping the user profiles at the data brokers to protect users’
privacy. Most of these alternative architectures envision a
separation of ad libraries from their host apps. This would
eliminate the in-app attack channels that we demonstrate and
constrain the data exposure to the ad libraries. However, none

of these solutions are deployed in practice as they all disrupt
the business model of multiple players in this ecosystem. We
take a different approach by modeling the capabilities of ad
libraries in order to proactively assess apps’ data exposure risk.

There are a number of studies that aim to—or can be used
to—detect and/or prevent current privacy-infringing behaviors
in mobile ads. Those works mainly fall into three general
categories: (1) static scanning [18], [17], [31], [5], [8], (2)
dynamic monitoring [43], [52], [48], [14], and (3) hybrid
techniques using both [33]. A combination of these techniques
could detect and prevent some of the attack strategies of ad
libraries we discussed in this work, if they are adopted in
practice. However, such countermeasures can still fail to protect
against all allowed behaviors. For example, TaintDroid [14]
and FlowDroid [5] cannot evaluate the sensitivity of the data
carried. Moreover, static code analysis will miss dynamically
loaded code, and code analysis in general cannot estimate the
potential reach of libraries. Further, by merely encrypting local
files we cannot prevent libraries within the same process from
using the key the host app uses to decrypt the files. In addition,
there is no mechanism to address data exposure through app
bundle information as we reveal in this work because (1) this
is not considered as a sensitive API from AOSP and (2) even
if marked as sensitive it is unclear how access to it by apps
and/or libraries should be mediated, as there are legitimate
uses of it. Our focus is not on detecting and tackling current
behaviors but assessing the data exposure given the allowed
behaviors. This is critical when trying to assess the privacy
risk of an asset.

SUPOR [23] and UIPicker [34] seek instances where apps
exfiltrate sensitive data. Like Pluto, they use NLP and machine
learning techniques to find data of interest in user interfaces.
Unlike Pluto, their focus is on data like account credentials and
financial records, whereas Pluto is aimed at general targeted
data with validation based on data of interest to advertisers. As
with most of the other work in this area, SUPOR and UIPicker
seek existing exfiltration instances rather than allowed instances,
although some of their techniques can facilitate finding allowed
instances.

X. CONCLUSION

In this work, we studied the feasibility and security
implications of fully exploring advertising libraries’ capabilities
in Android apps. We manually investigated the prevalence of
targeted data exposure and revealed a trend in ad networks to
become more aggressive towards reachable user information.
We designed, implemented, and evaluated Pluto, a modular
framework for privacy risk assessment of apps integrating ad
libraries. We show that Pluto can be used for automatic detection
of targeted data exposure in Android apps. We hope that our
work will inspire related attempts to systematically assess the
data exposure to ad libraries and that Pluto will serve as a
baseline in evaluating future frameworks.
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