(© 2016 Muhammad Naveed

SECURE AND PRACTICAL COMPUTATION ON ENCRYPTED DATA

BY

MUHAMMAD NAVEED

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Professor Nikita Borisov

Professor Carl Gunter, Chair

Professor Manoj Prabhakaran, Chair
Professor Elaine Shi, Cornell University
Professor XiaoFeng Wang, Indiana University

Abstract

Because of the importance of computing on data with privacy protections, the
cryptographic community has developed both theoretical and practical solutions
to compute on encrypted data. On the one hand, theoretical schemes, such as
fully homomorphic encryption and functional encryption, are secure but extremely
inefficient. On the other hand, practical schemes, such as property-preserving
encryption, gain efficiency by accepting significant reductions in security. In
this thesis, we first study the security of popular property-preserving encryption
schemes that are being used by companies such as Microsoft and Google. We
show that such schemes are unacceptably insecure for key target applications such
as electronic medical records. Second, we propose new models to compute on
encrypted data and develop efficient constructions and systems. We propose a
new cryptographic primitive called Blind Storage and show how it can be used
to realize symmetric searchable encryption, which is much more secure than
property-preserving encryption. Finally, we propose a new cryptographic model
called Controlled Functional Encryption and develop two efficient schemes in this

model.

i

To Abu, Ami, Igra, and Zoha.

11

Acknowledgments

I am extremely grateful to my advisors Professor Carl Gunter and Professor Manoj
Prabhakaran. I have been very fortunate to have two advisors working in different
areas, which made my PhD experience amazingly unique and exciting. They were
very supportive of my collaborations with external researchers, allowed me to visit
different universities and industry labs, and continued to work with me remotely
when I was away.

I would like to express my deepest gratitude to Professor XiaoFeng Wang
from the Indiana University. I collaborated extensively with him throughout
my PhD work, and we published many papers together. He taught me how to
conduct systems security research and the art of publishing in the top-tier security
conferences.

I would like to offer my special thanks to Professor Elaine Shi from the Cornell
University. She invited me to spend the last year of my PhD working with her at the
Cornell University. She has been very supportive throughout my stay at Cornell.

I am very grateful to Prof. Jean-Pierre Hubaux from the Ecole polytechnique
fédérale de Lausanne (EPFL). I spent one semester working with him and his
group at EPFL. I would also like to thank Prof. Erman Ayday, whom I collaborated
extensively during my EPFL visit. Prof. Hubaux, his group, and EPFL staff made
my stay in Lausanne very productive and enjoyable.

A special thanks go to Prof. Seny Kamara from the Brown University. I interned
with him when he was at Microsoft Research Redmond. My work with him proved
to be very impactful. He also gave helpful suggestions and encouragement on my
other work.

I am extremely grateful to all my lab mates at the Illinois Security Lab: Vincent
Bindschaedler, Ji Young Chun, Soteris Demetriou, Eric Duffy, Siddharth Gupta,
Dongjing He, Avesta Hojjati, Fariba Khan, Gaurav Lahoti, Michael LeMay, Yunhui
Long, Xun Lu, Whitney Merrill, Tony Michalos, Se Eun Oh, Ravinder Shankesi,
Igor Svecs, Giiliz Seray Tuncay, Qi Wang, Ting Wu, Wei Yang, and Aston Zhang.

v

They made my stay at Illinois very enjoyable.

I was extremely lucky to work with several outstanding researchers during my
PhD. I would like to thank all of my collaborators: Fardin Abdi, Shashank Agrawal,
Erman Ayday, Vincent C. Bindschaedler, Gabriela Ciocarlie, Ellen W. Clayton,
Soteris Demetriou, David Evans, Jacques Fellay, Chris Fletcher, Ashish Gehani,
Paul Grubbs, Carl Gunter, Dongjing He, Yan Huang, Jean-Pierre Hubaux, Seny
Kamara, Yeonjoon Lee, Tongxin Li, Bradley A. Malin, Whitney Merrill, Klara
Nahrstedt, Xiaorui Pan, Manoj Prabhakaran, Mariana Raykova, Ling Ren, Kevin
Sekniqi, Elaine Shi, Igor Svecs, XiaoFeng Wang, Charles V. Wright, Luyi Xing,
Nan Zhang, and Xiaoyong Zhou.

I would like to thank all the staff at CS @Illinois, especially Indria Clay, Mary
Beth Kelley, Colin Robertson, and Andrea Whitesell, for their help.

A special thanks go to Google, Sohaib Abbasi and his wife Sara Abbasi. My
research was partially supported by the Sohaib and Sara Abbasi fellowship and the
Google fellowship. I am also grateful to the Office of the National Coordinator
for Health IT in the Department of Health and Human Services and the National
Science Foundation; my research was partially supported by the grants from these
agencies.

I am extremely grateful to my parents for supporting me through all these years.
I could not thank them enough for everything they have done for me. I am also
very grateful to my sisters, Aaisha and Faiza, and my brother, Hassan, for their
love and support.

I would like to thank my lovely wife, Igra, from the bottom of my heart; it simply
would not be possible without her love and support. A very special thanks go to
my little angel, Zoha.

Chapters 3, 4, 5 of this thesis are directly taken from my papers [1, 2, 3].

Table of Contents

Chapter I Introduction 1
Chapter2 Background 8
Chapter 3 A Critical Analysis of Property-Preserving Encryption 17
3.1 ThreatModel, 22
3.2 Attacking DTEColumns 24
3.3 Attacking OPE Columns 27
3.4 SimulatingaMedical EDB 30
3.5 Experimental Setup Lo 34
3.6 Experimental Results 36
Chapter 4 A Practical Model for Searching on Encrypted Data 41
4.1 OVerview e e 43
42 BlindStorage e 46
4.3 Searchable Symmetric Encryption 63
4.4 Implementation Details 70
4.5 Searchable Encryption Evaluation 71
4.6 Efficacy of Oblivious RAM in Searchable Encryption 79
Chapter 5 A Practical Model for Computing on Encrypted Data 97
5.1 Overview L 99
5.2 Controlled Functional Encryption 105
5.3 Constructions e e e 108
5.4 Alternate General Construction 115
5.5 Implementation and Evaluation 116
5.6 Applications 122
Chapter 6 Conclusion 125
References L 129

Vi

Chapter 1

Introduction

Cryptography has been used to secure communication for millennia. Historically,
it was an art to construct secure encryption schemes; however, this approach failed
miserably, sooner or later all such encryption schemes were broken. Only in the
last few decades scientific foundations for cryptography have been developed and
thankfully now we know how to develop cryptography with mathematical proofs
of security. While difficulties remain, we know how to secure our data at rest and
in flight both in theory and practice. However, securing data at rest and in flight
does not necessarily protect it from ill-intentioned people.

The encrypted data need to be used at some point and the straightforward
approach of decrypting the data for computation is susceptible to threats such
as data breaches, insider threats, and cyber espionage. A promising approach to
prevent such threats is to enable computation on encrypted data such that only the

results from the computation are revealed to the authorized user.

Computation on Encrypted Data

Enabling computation on encrypted data is the holy grail of modern cryptography.
The sole purpose of encrypting the data is to make it unintelligible, and therefore,
computation on encrypted data seems counter-intuitive. Nonetheless, we know
how to compute on encrypted. In fact, we know many different ways to compute
on encrypted data, and it has been an active area of research for several decades.
Some of the cryptographic primitives that allow computation on encrypted data are

described below:

e Property-Preserving Encryption preserves some property of the plaintext
in the ciphertext that allows limited computation on the encrypted data.

For example, an equality-preserving encryption scheme [4], also known as

deterministic encryption, preserves the equality in the ciphertexts and allows
lookup queries. An order-preserving encryption scheme [5, 6] preserves
the order in the ciphertexts and allows order and range queries. Property-
preserving encryption schemes are very popular in industry, because they
do not require changes in the applications and database software, supports
a large class of queries, are efficient, and provide some level of security.
In Chapter 3, we show that property-preserving encryption is unacceptably

insecure and in some cases not much better than not encrypting at all.

Symmetric Searchable Encryption schemes allow efficient searching on
encrypted data. The state-of-the-art schemes are efficient and expressive
supporting Boolean [7] and range queries [8]. However, the efficiency
comes at the cost of some leakage. Islam, et al., [9] have shown that such
leakage can reveal search queries if the adversary knows plaintext for all the
encrypted data, a subset of the queries, and the access pattern. Since in most
of the interesting applications it is unrealistic to assume that the adversary
would know all the plaintext, the attack is not realistic in such scenarios.
However, searchable symmetric encryption leaks significant information and
it is best to develop techniques with minimum leakage. In Chapter 4, we
develop a novel symmetric searchable encryption scheme which is the first
scheme that is compatible with commercial cloud services. We also show
that preventing information leakage in symmetric searchable is non-trivial

and would require developing novel solutions.

Homomorphic Encryption allows a party to compute an encrypted result
on encrypted data such that the result can only be decrypted by the client
holding the secret key. Gentry developed the first fully homomorphic en-
cryption schemes which is capable of computing any arbitrary function on
the encrypted [10]. There has been significant development in this area
and efficiency has been improved by many orders of magnitude; however,
fully homomorphic encryption is still 5 orders of magnitude slower than the

plaintext computation.

Functional Encryption allows a party to compute a plaintext result on
encrypted data [11]. Note the distinction from fully homomorphic encryption,

which allows a party to compute encrypted result that can only be decrypted

by the party holding the key. Functional Encryption is an active area of
research and there are many interesting results, however, it is still very
far from being practical. In Chapter 5, we propose a new model, called
Controlled Functional Encryption, which allows for the development of very

efficient schemes.

e Secure Computation enables two or more parties to compute any function
of their inputs without revealing anything but the output of the computation
and whatever can be learned from output itself. There has been a lot of work
on secure computation in the last three decades starting from the ground-
breaking work on Yao [12]. At this point in time, two-party computation is
mature and could be used in applications with relatively small data. While
there are many interesting theoretical multi-party computation protocols,

there is still a lot of work needed to make it practical.

The cryptographic community has approached the problem of computation on
encrypted data from both theoretical and practical perspectives. On the one hand,
we have schemes, such as homomorphic encryption, that are secure but extremely
inefficient. On the other, practical schemes such as, property-preserving encryption,
are practical and widely deployed but leak significant information.

In this thesis, we first study the security of deployed encryption schemes, namely
deterministic encryption and order-preserving encryption that allow computation on
encrypted data. We believe that such cryptanalysis is crucial for the understanding
of the systems people use and developing secure schemes and systems. Second, we
develop the first symmetric searchable encryption scheme that is compatible with
cloud storage services such as Dropbox. We also discuss that using techniques
such as Oblivious-RAM makes searchable encryption very inefficient. Third, we
develop a novel cryptographic model called, Controlled Functional Encryption,
that allows construction of very efficient schemes to allow an authorized party to

directly compute on encrypted data.

A Critical Analysis of Property-Preserving Encryption

Over the past several decades cryptographers have developed many techniques
to compute on encrypted data, however, they are still far from being practically

efficient. These schemes aim for high levels of security at the cost of efficiency.

3

Therefore, to design efficient schemes to compute on encrypted data an approach
that is less secure but more efficient has been explored over the past several years.
This approach does not lead to perfectly secure schemes and deliberately leaks in-
formation to gain efficiency. The most popular cryptographic primitives developed
in this fashion are equality-preserving encryption, also known as deterministic
encryption, and order-preserving encryption. The equality-preserving encryption
and order-preserving encryption are instances of a more general class of encryp-
tion schemes called property-preserving encryption. The equality-preserving and
order-preserving encryption are very useful to query SQL databases. The equality-
preserving encryption enables look-up queries on encrypted data, e.g., looking up
people with their first names such as “John”. Any such encryption scheme would
always encrypt the same message to the same ciphertext and as a result look up
queries can be easily performed without decrypting the data. Order-preserving
encryption enables sorting (e.g., sorting a list of people by first names) and range-
queries (e.g., querying people between age 10 and 40).

Traditionally, encryption schemes are considered secure only if they do not
preserve any information in the ciphertext except the size of the message. However,
to design efficient schemes to enable lookup and order queries, property-preserving
encryption schemes inherently leak information. While it is well-understood
that such schemes leak information, it is not clear what such leakage mean for
real applications such as electronic medical records. We address this question in
Chapter 3.

The question now arises, why should we study the security of property- pre-
serving encryption. First, such schemes are very popular in industry and are used
by companies such as Microsoft, Google, SAP, Skyhigh Networks, Ciphercloud,
and many others. In fact, Microsoft SQL Server 2016 will be shipping with such
a system called “Always Encrypted”, which is advertised as one of the flagship
benefits!. The reason behind the property-preserving encryption’s popularity is
that the systems that use it promise (i) security, (i) no change to applications
or database servers, (iii) minimal performance overhead, and (iv) support for a
large class of SQL queries. Second, there is a push towards using such encryption
schemes for sensitive data such as electronic medical records and financial data. It
is crucial to understand the implications of using such encryption schemes in such

applications before deploying them to protect real people’s data.

For example, see here or here (video demo: starts at 18:32).

http://www.microsoft.com/en-us/server-cloud/products/sql-server-2016/
https://channel9.msdn.com/Events/Ignite/2015/FND1551

Sfor such applications.

We analyzed encrypted database systems using property-preserving encryption
using electronic medical records (EMR) as a concrete application. Electronic
medical records is a real application where security and privacy are critical, is
representative of many other applications, and is a prime market for such systems.
We used well known and novel techniques to design inference attacks against
these systems using real data from 200 U.S. hospitals. An inference attack uses
ciphertexts along with auxiliary information to recover plaintexts. Our attacks
use real auxiliary data publicly available over the Internet. In short, our attack
framework is the least any attacker can do and uses the weakest threat model
such systems are designed for. Our attacks demonstrate that an alarming amount
of information is revealed from these systems: one attack recovered more than
80% of patient records for all 200 hospitals. This shows that property-preserving
encryption and systems using it are not secure enough for applications, such as
electronic medical records.

Our attacks are just the tip of the iceberg because we are assuming a very weak
adversary: one that only have access to the encrypted data. However, in reality
adversary can be much more powerful and could use active attacks and have access
to the query patterns. Moreover, we assume ideal leakage for equality-preserving
and order-preserving encryption, but practical schemes leak significantly more

information which can be used to learn even more information.

A Practical Model for Searching on Encrypted Data

As mentioned above and explained in detail in Chapter 3, property-preserving
encryption is far from being secure for real applications even against the weakest
and most common threat where the adversary only have access to the encrypted
data. A different cryptographic primitive called Symmetric Searchable Encryption,
which is increasingly getting attention from the industry, is completely secure
against this common threat. While Symmetric Searchable Encryption does have
leakage, this leakage is due to queries and unless adversary has query information,
it cannot learn useful information. Nonetheless, the leakage is significant and can
lead to successful attacks. Symmetric Searchable Encryption is also useful for
outsourcing data to cloud. Cloud storage is an economical, reliable, and universally

accessible alternative to local storage. However, the lack of confidentiality from

the cloud provider prevents its widespread adoption. Standard encryption provides
confidentiality but renders data unsearchable. There has been a lot of work on
Symmetric Searchable Encryption (SSE) that enables efficient search on encrypted
data. The existing schemes are incompatible with cloud storage APIs. All prior
schemes required both cloud storage and compute services, which increases cost,
attack surface, and response time. More importantly, due to high latency and mon-
etary cost of outbound data transfer, it limits customers to cloud providers offering
both storage and compute services, such as Amazon, and excludes storage-only
services, such as Dropbox. We developed the first SSE system that is compatible
with cloud storage APIs [2]. We designed a novel secure storage primitive, called
Blind Storage, and used it as a black box to construct an SSE scheme. Blind
Storage is designed to protect information against the cloud service providers and
adversaries that steals the data. The system is very efficient, based on standard
cryptographic primitives (SHA256 and AES), secure in the standard model, and
simple to implement. Despite all the computation is done by the client, and both
client and server do computation in other schemes, Our SSE scheme is one of
the most efficient SSE schemes for single keyword queries; it has less than 10%
overhead over plaintext search. It supports additions and deletions of documents.
The system can also be used to protect local storage infrastructure to avoid data
breaches. We built Blind Storage system and SSE on top of it in C++ and the code

is open source.

A Practical Model for Computing on Encrypted Data

Many practical applications require more than just searching on the encrypted data.
We may want to determine the susceptibility of an individual to a particular disease
using his genomic data, find out similarity between genomes of two individuals, or
compute any arbitrary function of the encrypted data. We developed a new model
called Controlled Functional Encryption, that allows the construction of practically
efficient schemes to allow computation on the encrypted data. We built a system
that enables patients to securely outsource their genomic data to hospitals so that
medical professionals can only compute personalized medicine tests allowed by
the patients and hackers who break in learn nothing. A personalized medicine
test determines the disease risk of an individual by computing the inner-product

of genome variants and disease marker vectors. Along with a physician and

https://github.com/eSMC/se

genomicist, we formulated requirements for a practical solution. After studying
existing approaches, we realized that new tools are required for the solution. We
describe our new cryptographic model called Controlled Functional Encryption
(CFE) in Chapter 5, which is a relaxation of Functional Encryption (FE). Both
CFE and FE are cryptographic models for computing on encrypted data. In FE, the
party computing the function uses the same key to compute a function on multiple
ciphertexts; in CFE, a fresh key is required for each new ciphertext. For many
real applications, this change in model is acceptable and enables development of
efficient schemes based on standard cryptographic assumptions, several magnitudes
faster than state-of-the-art FE schemes. We developed a scheme that computes the
inner-product of two vectors by cleverly using public key encryption and additive
secret-sharing. We also developed a scheme for arbitrary functions based on a
careful combination of public key encryption and Yao’s garbled circuits. Using
our Java implementation (open source), a laptop computes personalized medicine
tests on full scale human genome data in less than a second. CFE is not limited to

genomic applications and can be used in many other applications.

https://github.com/eSMC/CFE

Chapter 2

Background

In this chapter, we provide some background information necessary to understand

the material in the rest of the chapters.

Relational databases. A relational database is a collection of tables where each
row corresponds to an entity (e.g., a customer or an employee) and each column
corresponds to an attribute (e.g., age, height, salary). For any given attribute, we
refer to the set of all possible values that it can take as its space. The attribute
space of a column is the space of that column’s attribute. If a column supports
equality or range queries, then we refer to it as an equality or range column.
The structured query language (SQL) is a special-purpose language for querying

relational databases.

Datasets. A datasetd = (dy,...,d,) is a sequence of elements from a universe
D. We assume, without loss of generality, that every space D is totally ordered. We
view the histogram of a dataset d as a |D|-dimensional vector over Nx(with, at
position 7, the number of times the ith element of D appears in d. We denote by
Hist(d) the operation that computes the histogram of a dataset d. The cumulative
distribution function (CDF) of a dataset d is a |D|-dimensional vector over N>
with, at position 7, the number of times the first through ¢th elements of ID that
appear in d. We denote by CDF(d) the operation that computes the CDF of a
dataset d. The CDF of d is the vector f such that for all i € [n], f; = 23:1 h;,
where h = (hq, ..., h,) is the histogram of d.

We denote by Unique(d) the dataset that results from removing all duplicates in
d (i.e., from keeping only the first occurrence of every element in d). The rank of
an element d € D in a dataset d is the position of its first occurrence ind if d € d
and 0 if d ¢ d. We denote the rank of d in d by Rankq(d).

We will often need to sort datasets. The result of sorting d by value is the
sequence d’ = (d;,,...,d;,) such thatd;, < --- < d;,. We denote this operation

in

d’ < vSort(d). When dealing with the histogram h of a dataset d over D, we

identify the coordinates of h with the elements of .

Encryption. A symmetric encryption scheme SKE = (Gen, Enc, Dec) is a tuple
of three algorithms that work as follows. Gen takes as security parameter as input
and returns a secret key K; Enc takes as input a key K and a message m and
returns a ciphertext c; and Dec takes as input a key /K and a ciphertext ¢ and
returns a message m. The standard notion of security for encryption is security
against chosen-plaintext attacks (CPA). We refer the reader to [13] for a detailed
description of this notion. Here, we only mention that it is well-known that for
symmetric-key encryption, CPA-security can only be achieved if Enc is either

stateful or randomized.

IND-CCAZ2 Secure Encryption. IND-CCA2 encryption provides security against
adaptive chosen-ciphertext attacks. It has the following useful non-malleability
property: given an encryption of a message m, it is infeasible for a computationally
bounded adversary to create an encryption of a message related to m. The security
requirement is formally captured via an indistinguishability based security game
which we briefly describe here. An adversary outputs two messages m, and
my and is given a ciphertext ¢ — an encryption of either my or m;. Even with
access to a decryption oracle which can be used to decrypt any ciphertext except ¢
itself, adversary should not be able to tell which message c corresponds to. Very
efficient IND-CCAZ2 encryption schemes are known in the random oracle model,
for instance RSA-OAEP [14]. A detailed discussion of the relationship among

different notions of security for public-key encryption can be found in [15].

Deterministic encryption. A symmetric DTE scheme DTE = (Gen, Enc, Dec)
is a symmetric encryption scheme for which Enc is not randomized; that is, each

message m is mapped by Enc to a single ciphertext under a key K.

Order-preserving encryption. A symmetric OPE scheme OPE = (Gen, Enc, Dec)
is a symmetric encryption scheme with the following property: if m; > m, then
Encik(my) > Encg(ms); if mqy = mgy then Encix(my) = Encg(ms); and if

my < mgy then Encg(my) < Encg(ms).

Additively homomorphic encryption. A symmetric additively homomorphic
encryption (AHE) scheme AHE = (Gen, Enc, Dec) is a symmetric encryption
scheme with the added property that: Decy (Encg (m1) ® Ency (ms)) = my + mo,
where ® is an operation over the ciphertext space of AHE and not necessarily

addition.

Join encryption. The CryptDB system supports two kinds of Join operations:
equi-joins and range-joins. Equi-joins are supported using a scheme EJOIN =
(Gen, Enc, Dec) which is a combination of DTE and hashing. Range-joins are
supported using an encryption scheme RJOIN = (Gen, Enc, Dec) based on OPE.
We note that after a join query (of either kind), two joined columns are left

encrypted under the same key.

Searchable encryption. The systems also make use of searchable encryption
scheme SRCH = (Gen, Enc, Token, Dec) for keyword search operations. In
CryptDB, this is instantiated with a variant of the scheme of the scheme of Song,
Wagner and Perrig [16].

Onion encryption. Popa et al.use the term onion to refer to the composition
of encryption schemes. For example, given two encryption schemes SKE' =
(Gen',Enc', Dec') and SKE® = (Gen?, Enc®, Dec?) the SKE' o SKE? encryption
of a message m is defined as

ct = Encj, (Ency, (m)).

Encrypted Database Systems Using Property-Preserving Encryption We re-
call the high-level architecture of the CryptDB system. The system is composed of
three entities: an application App, a proxy Prx, and a server Srv. The application
and proxy are trusted while the server is untrusted. To create an encrypted database
EDB from a database DB, the proxy generates a master secret key msk and uses it
to encrypt each table as follows. First, an anonymized schema is created where the
attributes for each column are replaced with random labels. The mapping between
the attributes and their labels is stored at the proxy. Then, each cell is encrypted

using four different onions. More specifically, the following four onions are used

e Equality onion: encrypts a string s as

ct= Enc%ﬁE (EncRiF (EncE(JJO'N (s)));

e Order onion: encrypts a string s as

ct = EncfF (EncF (Encpo™ (s))) ;

10

e Search onion: encrypts a keyword w as
ct = Enc3fM (w);

e Add onion: encrypts an integer 7 as

ct = Ency = (i);

To support queries on encrypted data, the encrypted cells in the EDB are decrypted
down to a certain layer. This process is referred to as peeling in [17] and every cell
in a given column is peeled to the same level. The proxy keeps track of the layer at
which each column is peeled.

To query an encrypted database the application issues a SQL query that is
rewritten by the proxy before being sent to the server. In the new query, each
column name is replaced with its random label and each constant is replaced with
a ciphertext determined as a function of the semantics of the query. More precisely,
for each type of operation the proxy does the following:

e equality: v is replaced with ct = DTE.Enck (v);

e range: v is replaced with ct = OPE.Encg (v);

e search: v is replaced with tk = SRCH.Token g (v);
e addition: v is replaced with ct = AHE.Encg (v);

e join: v is replaced with ct = EJOIN.Enck (v);

After re-writing the query, the proxy checks the onion levels of the relevant
columns to determine if they need to be peeled further. If so, it sends the appropriate
decryption keys to the server so that it peels the columns down to the appropriate
layer. Note that Cipherbase does not use onions and encrypts columns directly
with the PPE scheme needed to support the query.

Column labeling. We note that the CryptDB system allows users to label attributes
so that they are only encrypted using either CCA2- or CPA-secure encryption
schemes, i.e., they are never “peeled” down to OPE or DTE. In such a case,
however, the system cannot support order or equality operations on these attributes

unless the columns are downloaded to the client so that they can be executed locally.

11

Since, we are interested in the leakage that occurs when running EMR applications
on top of an outsourced EDB system, it follows that the attributes we analyze (see

Section 3.4) cannot be labeled.

Oblivious transfer. Oblivious transfer (OT) is one of the most widely studied
fundamental primitives in cryptography. It is a two party protocol between a sender,
who has two strings xo and x1, and a chooser with choice bit b. While sender does
not learn anything about the bit b (chooser’s security) in the protocol, chooser only
learns the value of x; (sender’s security).

In the common random string (CRS) model, Piekert et al. [18] give an efficient,
one-round (first message from chooser to sender, next one from sender to chooser),
UC-secure protocol for OT under the well-studied DDH assumption (as well as a
variety of other hardness assumptions). We use this protocol, denoted by I, in

our general construction in Section 5.3.2.

Garbled Circuits. The main component of our general construction is garbled
circuits (GC), introduced by Yao in [12]. See [19] for a recent treatment of this
tool. Several implementations of GC already exist [20, 21], and lately, much work

has been going into making it more secure and efficient [22, 23, 24, 25, 26, 27].

Related Work

The CryptDB system [17] was the first to support a large fraction of SQL on
encrypted data. Other PPE-based systems include Cipherbase [28]. Akin and
Sunar [29] describe attacks that enable a malicious database administrator to
recover plaintexts from CryptDB through a combination of passive monitoring and
active tampering with the EDB.

Frequency analysis was first described by the Arab philosopher and mathe-
matician al-Kindi in the ninth century [30]. Techniques for recovering plaintext
encrypted with substitution ciphers using language statistics are well-known (see
for example pp.245-250 of [31]). Brekne, Arnes and @slebg[32] describe fre-
quency attacks for recovering IP addresses anonymized under a prefix-preserving
encryption scheme [33].

Islam et al. [9] described the first inference attack against an encrypted search
solution. This attack, referred to as the IKK attack, exploits the access pattern

leakage of SSE constructions together with auxiliary information about the fre-

12

quencies of keyword pairs and knowledge of a subset of client queries (in plaintext)
to recover information about the remaining queries. In comparison, the attacks we
consider here: (1) recover the database, as opposed to queries; and (2) require
no knowledge of any queries (neither in plaintext nor encrypted). Furthermore, a
recent study by Cash, Grubbs, Perry and Ristenpart [34] shows that the accuracy
of the IKK attack is so low that it is not usable in practice (unless the adversary
already knows most of the underlying data). In contrast, the attacks considered in
this thesis are highly-accurate and very efficient. The fact that our attacks are more
powerful than the IKK attack is natural since PPE schemes leak considerably more
than SSE schemes.

Sanamrad, Braun, Kossman and Venkatesan [35] also consider the security of
OPE schemes in the context of encrypted databases. They propose a set of security
definitions and discuss previously-known attacks (e.g., frequency analysis and
sorting). Unlike standard security definitions, however, the security notions pro-
posed in [35] are attack-specific (e.g., they define security only against frequency
analysis) and guarantee only one-wayness; as opposed to standard cryptographic
notions which guarantee that partial information is protected. Finally, [35] also
proposes deterministic and probabilistic OPE variants. The deterministic variant is
still vulnerable to our attacks (albeit requiring larger encrypted columns).

There is an extensive literature on OPE variants including probabilistic OPE,
modular OPE, etc. [36, 37, 38, 39, 40, 41]. As far as we know, none of these
constructions are used in any EDB system.

The problem of searching on encrypted data has received increasing attention
from the security and cryptography community, with the growing importance of
cloud storage and cloud computation. One of the major hurdles in outsourcing data
storage and management for businesses has been security and privacy concerns [42,
43, 44]. Theoretical cryptography literature offers an extremely powerful and
highly secure solution in the form of Oblivious Random Access Memory (ORAM)
[45, 46], which addresses almost all of the security concerns related to storing
data in an untrusted server. However, this solution remains very inefficient for
several important applications, despite significant recent improvements [47, 48, 49].
The notion of Symmetric Searchable Encryption (SSE) — investigated in a long
line of works including [50, 51, 52, 53, 54, 55, 56, 57, 58, 59], among others —
attempts to strike a different balance between efficiency and security, by letting
the server learn just the pattern of data access (and ideally, nothing more), in

return for a simpler and faster construction; further, one often settles for security

13

against passively corrupt (honest-but-curious) servers. The scheme of [59] also
provides a notion of forward privacy, which prevents leaking whether a newly
added document contains the keywords the user has already searched for.

The approach in [53] formed the basis for many subsequent works. The basic
idea is to use an index that maps each search keyword to the list of documents that
contains it. This list is kept as an encrypted linked list, with each node containing
the key to decrypt next node. The nodes of all the linked lists are kept together,
randomly sorted. Until the head of a linked list is decrypted, it is virtually invisible
to the server; in particular, the number of linked lists and their lengths remain
hidden from the server. This construction provided non-adaptive security (which
assumes that all the search queries are generated at once); efficiently achieving
adaptive security has been the subject of much research starting with [53].

An important aspect of SSE is whether it is dynamic or not: i.e., whether the
client can update the document collection after starting to search on it. Dynamic
SSE schemes were presented in [51, 54, 57, 58, 60, 59].

Finally, we mention a few variants of the SSE problem that are not considered
in this thesis. One could require security against actively corrupt servers, rather
than just honest-but-curious servers. Another variant requires more expressive
searches, involving multiple keywords (e.g., [61, 7, 60]). One could also require
that many clients can perform searches on a document collection created by a
single data-owner [62]. While we do not consider these problems in this thesis, the
main new tool we build — namely, a Blind Storage system — is a general-purpose
tool and is likely to be useful for expressive search queries. Indeed, it could be
used to implement components like the “T-sets” of [7] more efficiently.

The Chapter 5 on Controlled Functional Encryption draws inspiration from the
notion of functional encryption. Functional encryption is a significantly more
challenging problem in comparison with controlled functional encryption, as it
does not allow the authority to issue a separate key for each ciphertext being
decrypted. However, the solutions for functional encryption are currently highly
inefficient [63, 64]. Gorbunov et al. proposed a functional encryption scheme
for a bounded number of functions [63] and with ciphertext size depending on
the size of the circuit [63]. Goldwasser et al. recently proposed a functional
encryption scheme for a bounded number of functions and with succint ciphertexts,
1.e., ciphertext size depends upon the depth of the circuit [64]. Solutions using
tamper-proof hardware tokens are also inefficient [65].

Sahai et al. proposed single-query functional encryption scheme that supports

14

any polynomial-time computation on the ciphertext only once [66]. Their construc-
tion is based on Yao’s garbled circuits [12]. In the encryption phase, a garbled
circuit is generated with input of the encryption party embedded in the circuit.
Each input wire label of this garbled circuit is encrypted using a different public
key. The garbled circuit and encryption of the wire labels are sent to the decryption
party. Decryption party asks the authority for the decryption keys of the wire
labels corresponding to the function to be computed and it decrypts the wire labels
using these keys After obtaining the wire labels the decryption party can eval-
uate the garbled circuit to compute the function. As they need to encrypt each
wire label with a different public key, packing is not possible and ciphertext size
blows up significantly. Typically, 80 bit wire labels are used in Yao’s garbled
circuit implementation and encrypting each wire label with public key will blow
up the ciphertext size by % x the plaintext size. Moreover, the limitation of
computing only single function makes the scheme not useful for many practical
applications. In fact, the scheme was presented as a public key encryption scheme,
where encryptor can encrypt ciphertext without worrying about the credentials
of the receiver. The receiver can only decrypt if it has appropriate credentials.
The limit of computing single function comes from the reusability issue of Yao’s
garbled circuit. Feasibility of reusable garbled circuit has been shown but it is very
inefficient to be of any practical use [64].

Gorbunov et al. proposed a scheme based on Sahai et al. scheme that supports
computation of g-functions over the ciphertext, where q depends on different
parameters and increasing q affects the overall efficiency of the scheme [67]. They
addresses the reusability issue of garbled circuit in Sahai et al. construction but
this makes the scheme very inefficient. Even with overwhelming overhead the
scheme supports limited number of functions to be computed. While theoretically,
interesting the scheme is very far from being practical and would take hundreds of
years even for very small values of q (e.g., 100).

Chung et al. proposed a functional encryption scheme based on stateless hard-
ware tokens that are identical for all users [65]. However, they rely on computa-
tionally intensive operations (fully homomorphic encryption schemes) as well as a
powerful tamper proof token carrying out significant computation (signature, non-
interactive zero knowledge proofs (NIZK) and succinct non-interactive arguments
(SNARGS) verification). Moreover, it has been shown that secrets can be easily
stolen from tamper-proof hardware [68], so that a single token can be attacked

to compromise the entire system. Overall, it is not clear if token based approach

15

would be practical in various applications.

16

Chapter 3

A Critical Analysis of Property-Preserving
Encryption

As an increasing amount of private data is being collected and stored by corpo-
rations and governments, database security has become a critical area in both
research and industry. High-profile data breaches like the Anthem breach in which
a database of 80 million healthcare records was compromised or the Commu-
nity Health Systems breach in which 4.5 million HIPAA protected (non-medical)
records were stolen have fueled interest in database encryption techniques.

While encryption could offer some protections—particularly when the database
is exfiltrated from disk—it also has serious limitations. In particular, since an
encrypted database cannot be queried, it has to be decrypted in memory which
means the secret key and the database are vulnerable to adversaries with memory
access. In cloud settings, where a customer outsources the storage and management

of its database, encryption breaks any service offered by the provider.

Encrypted search. Motivated by these limitations of traditional encryption, the
area of encrypted search has emerged as one of the most active and potentially
impactful areas of cryptography research. Encrypted search is concerned with the
design and analysis of cryptographic techniques for searching on encrypted data;
including both structured and unstructured data. There are various approaches
to search on encrypted data including searchable symmetric encryption (SSE)
[16, 69], fully-homomorphic encryption (FHE) [10], oblivious RAMs (ORAM)
[70], functional encryption [11], and property-preserving encryption (PPE) [4,
6]. All these approaches achieve different trade-offs between security, query

expressiveness, and efficiency.

Leakage and inference attacks. The most secure encrypted search solutions
are based on FHE and ORAM but are currently too inefficient to be of practical
interest. Therefore, all known practical solutions leak some information. This
leakage comes in two forms: setup leakage, which is revealed by the encrypted
database (EDB) itself; and query leakage which is revealed from the EDB and the

17

query protocol.

To better understand the impact of this leakage, an important research direction
in encrypted search, initiated by Islam, Kuzu and Kantarcioglu [9], is the design
of inference attacks which try to recover information about the data or queries
by combining leakage with publicly-available information (e.g., census data or
language statistics). The most well-known example of an inference attack is
frequency analysis which is used to break classical ciphers. Another example is
the query-recovery attack of Islam e al. against searchable symmetric encryption
(SSE) schemes [9].

PPE-based EDBs. In the context of structured data and, in particular, of relational
databases, the state-of-the-art encrypted search solutions are based on PPE schemes
like deterministic and order-preserving encryption. Roughly speaking, a PPE
scheme is an encryption scheme that leaks a certain property of the plaintext. For
example, an order-preserving encryption (OPE) scheme encrypts a set of messages
in such a way that their ciphertexts reveal the order of the messages (i.e., the order
property). A deterministic encryption (DTE) scheme encrypts a set of messages
in such a way that their ciphertexts reveal whether they are equal or not (i.e., the
equality property).

The CryptDB system [17] first showed how to use PPE to construct an encrypted
database system that supports a subset of SQL. CryptDB can be used without PPE
but then comparison and equality operations on columns cannot be outsourced and
must to be executed at the client/proxy. In particular, this means the client/proxy
has to incur the computation and communication overhead of downloading the
entire column, of decrypting it and of querying it locally. In this work, when
referring to CryptDB, we implicitly mean the variant where the operations in
question are outsourced to the database server and not executed at the client. The
Cipherbase system [28], which uses both DTE and OPE, supports all of SQL. At a
very high-level, in Cipherbase, each DB operation can be either done in a secure
co-processor or over encrypted data using an approach similar to CryptDB. In
this work, when referring to Cipherbase, we implicitly mean the variant where
the operations in question are not executed in the secure co-processor. Other
PPE-based EDB systems include the encrypted BigQuery demo [71] and Always
Encrypted [72], both of which uses DTE but not OPE.

PPE-based EDBs have several advantages and have received a lot of interest from

Industry. In particular, they are competitive with real-world relational database

18

systems and they require a minimal number of changes to the standard/legacy
database infrastructure. The key to their efficiency and “legacy-friendliness” is the
use of PPE which, roughly speaking, allows them to operate on encrypted data in
the same way as they would operate on plaintext data. This enables fast operations
on encrypted data and the use of standard database algorithms and optimizations.

The use of PPE has important consequences on the security of encrypted database
systems. Specifically, since PPE schemes leak a non-trivial amount of informa-
tion, it is well-known that PPE-based designs like CryptDB and its variants are
vulnerable to inference attacks. The extent to which these systems are vulnerable,
however, has never been investigated.

In this work, we study concrete inference attacks against EDBs based on the
CryptDB design. At a very high-level, these systems encrypt each DB column with
layers of different encryption schemes. When queried, the system decrypts the
layers until it reaches a layer that supports the necessary operation. In particular,
this means that columns that support either range or equality queries are left
encrypted with OPE or DTE, respectively. With this in mind, we consider inference
attacks that take as input an OPE- or DTE-encrypted column and an auxiliary and
public dataset and return a mapping from ciphertexts to plaintexts.

We stress that EDB systems are not designed to provide privacy but the much
stronger requirement of confidentiality. As such, for an attack to be successful
against an EDB it is not required to de-identify the records of the DB as would be
the case, say, against a differentially-private DB [73]. In the setting of EDBs, an
attack is successful if it recovers even partial information about a single cell of the

DB. As we will see later, our attacks recover a lot more.

Concrete attacks. We study the effectiveness of four different attacks. Two are

well-known and two are new:

e frequency analysis: 1s a well-known attack that decrypts DTE-encrypted
columns given an auxiliary dataset that is “well-correlated” with the plaintext
column. The extent of the correlation needed, however, is not significant
and many publicly-available datasets can be used to attack various kinds of

encrypted columns with this attack.

e (,-optimization: is a new family of attacks we introduce that decrypts DTE-
encrypted columns. The family is parameterized by the ¢,-norms and is

based on combinatorial optimization techniques.

19

e sorting attack: is an attack that decrypts OPE-encrypted columns. This
folklore attack is very simple but, as we show, very powerful in practice. It is
applicable to columns that are “dense” in the sense that every element of the
message space appears in the encrypted column. While this may seem like
a relatively strong assumption, we show that it holds for many real-world

datasets.

e cumulative attack: is a new attack we introduce that decrypts OPE-encrypted
columns. This attack is applicable even to low-density columns and also

makes use of combinatorial optimization techniques.

Evaluating inference attacks. As discussed above, most inference attacks need
an auxiliary source of information and their success depends on how well-correlated
the auxiliary data is with the plaintext column. The choice of auxiliary data is
therefore an important consideration when evaluating an inference attack. A
strongly correlated auxiliary dataset may yield better results but access to such a
dataset may not be available to the adversary. On the other hand, misjudging which
datasets are available to the adversary can lead to overestimating the security of
the system. An additional difficulty is that the “quality” of an auxiliary dataset is
application-dependent. For example, census data may be well-correlated with a
demographic database but poorly correlated with a medical database.

So the question of how to empirically evaluate inference attacks is non-trivial. In
this work, we use the following methodology: (1) we choose a real-world scenario
where the use of EDBs is well-motivated; (2) we consider encrypted columns from
real-world data for the scenario under consideration; and (3) we apply the attack

on the encrypted column using any relevant publicly-available auxiliary dataset.

Empirical results. For our empirical analysis, we chose databases for electronic
medical records (EMRs) as our motivating scenario. Such medical DBs store
a large amount of private and sensitive information about both patients and the
hospitals that treat them. As such they are a primary candidate for the real-world
use of EDBs and appear frequently as motivation in prior work.

To evaluate our attacks, we consider DTE- and OPE-encrypted columns for
several attributes using real patient data from the U.S. hospitals provided by the
National Inpatient Sample (NIS) database of the Healthcare Cost and Utilization
Project (HCUP). !

"We stress that we strictly adhered to the HCUP data use agreement. In particular, our study is

20

Following are the highlights of our results:

e (y-optimization (vs. DTE-encrypted columns): the attack recovered the
mortality risk and patient death attributes for 100% of the patients for at least
99% of the 200 largest hospitals. It recovered the disease severity for 100%

of the patients for at least 51% of those same hospitals.

e frequency analysis (vs. DTE-encrypted columns): the attack had the same

results as />-optimization.

e sorting attack (vs. OPE-encrypted columns): the attack recovered the admis-
sion month and mortality risk of 100% of patients for at least 90% of the 200
largest hospitals.

o cumulative attack (vs. OPE-encrypted columns): the attack recovered disease
severity, mortality risk, age, length of stay, admission month, and admission
type of at least 80% of the patients for at least 95% of the largest 200
hospitals. For 200 small hospitals, the attack recovered admission month,
disease severity, and mortality risk for 100% of the patients for at least 99.5%
of the hospitals.

Discussion. Our experiments show that the attacks considered in this work can
recover a large fraction of data from a large number of PPE-based medical EDBs.
In light of these results it is clear that these systems should not be used in the
context of EMRs. One may ask, however, how the attacks would perform against
non-medical EDBs, e.g., against human resource DBs or accounting DBs. We
leave this as important future work but conjecture that the attacks would be at least
as successful considering that much of the data stored in such DBs is also stored in
medical DBs (e.g., demographic information).

We also note that even though the attacks can already recover a considerable
amount of information from the EDBs, the results presented in this work should be
viewed as a lower bound on what can be extracted from PPE-based EDBs. The first
reason is that the attacks only make use of leakage from the EDB and do not exploit
the considerable amount of leakage that occurs from the queries to the EDB. The
second reason is that our attacks do not even target the weakest encryption schemes

used in these systems (e.g., the schemes used to support equi- and range-joins).

not concerned with the problem of de-anonymization. The data was not de-anonymized nor any
attempt was made to do so.

21

3.1 Threat Model

An EDB system should protect a database against a variety of threats. In this
Section, we describe some of these threats and propose an adversarial model that
captures them. In defining such a model, we make two things explicit: (1) the goal
of the attack; and (2) the information the adversary holds when carrying out the
attack.

3.1.1 Adversarial Goals

There are at least two kinds of attacks on EDBs which we refer to as individual

attacks and aggregate attacks.

Individual attacks. In an individual attack, the adversary is concerned with
recovering information about a row in the database. For example, if the EDB is
a medical database where each row corresponds to a patient, then the goal of the
attack would be to recover information about a specific patient, e.g., its age or

name.

Aggregate attacks. In an aggregate attack, the adversary wants to recover sta-
tistical information about the entire database. Again, in the context of a medical
database, this could be information such as the total number of patients with a
particular disease or the number of patients above a certain age. We note that, de-
pending on the context, aggregate attacks can be extremely harmful. For example,
hospitals do not disclose the number of cancer patients they treat so as not to signal

anything about the quality of their cancer treatments.

3.1.2 Adversarial Information

PPE-based EDBs like [17, 28] are designed to protect against a semi-honest adver-
sary that corrupts the server. Intuitively, this means that the adversary has access to
everything the server sees but cannot influence it—in particular, it cannot make
it deviate from the prescribed protocol. Since the adversary has complete access
to what the server sees, it holds the encrypted database and can see the queries

generated by the proxy.

Ciphertext-only. In this work, we focus on a considerably weaker adversary

which has access to the encrypted database but not to the queries. We stress that

22

this is a much weaker adversary than what is typically considered in the literature
and captures all the threats that database customers are typically concerned with.
This includes internal threats like malicious database administrators and employees,

and external threats like hackers, nation states, and organized crime.

Steady state EDBs. We assume the adversary has access to the encrypted database
in steady state, which means that the onions of each cell are peeled down to the
lowest layer needed to support the queries generated by the application. Intuitively,
one can think of the steady-state EDB as the state of the EDB after the application

has been running for a while.

Auxiliary information. In addition to the encrypted database, we assume our
adversary has access to auxiliary information about the system and/or the data.
Access to auxiliary information is standard in any practical adversarial model since
the adversary can always consult public information sources to carry out the attack.

In particular, we consider the following sources of auxiliary information:

e application details: the application running on top of the encrypted database,
possibly obtained from accessing the application (e.g., if it is a web service)

or from documentation;

e public statistics: publicly available statistics, for example, census data or

hospital statistics;

e prior versions: prior versions of the database, possibly obtained through a

prior data breach.

We stress that our experiments will make use of a different subset of auxiliary

sources and that none of the attacks need access to all of these sources.

3.1.3 Attack Accuracy

When an adversary executes an inference attack, it receives as output an assignment
from the encrypted cells to the elements of the message space. Though our
experiments in Section 3.6 show that there are many attributes for which the attacks
are perfectly accurate, this is not always the case and for low-accuracy attributes it
could be difficult for the attacker to distinguish correct assignments from incorrect
ones. We note, however, that the attacks can still be damaging even for these

attributes for the following reasons. First, the adversary can still learn statistics

23

about the attribute which in some cases, like patient died during hospitalization
or major diagnostic category, can be very sensitive for hospitals because it reveals
information about the quality of their care. Second, the results can still be used for

phishing-style attacks where the adversary only needs a small number of successes.

3.2 Attacking DTE Columns

We describe two attacks against DTE-encrypted columns. The first is the well-
known frequency analysis and the second is a family of attacks we refer to as
¢,-optimization attacks. The family is parameterized by the ¢, norms.

Here, C; and M, are the ciphertext and message spaces of the deterministic
encryption scheme. We assume |Cy| = |M| but if this is not the case we simply

pad M. For encryption schemes |Cg| is always at least |My|.

3.2.1 Frequency Analysis

Frequency analysis is the most basic and well-known inference attack. It was
developed in the 9th century and is used to break classical ciphers. As is well-
known, frequency analysis can break deterministic encryption and, in particular,
deterministically-encrypted columns. Given a DTE-encrypted column c over Cy,
and an auxiliary dataset z over M, the attack works by assigning the ¢th most
frequent element of c to ith most element of z. For ease of exposition, we assume
that ¢ and z have histograms that can be strictly ordered; that is, for all 7 # 7,
Y; # 1; and m; # m;, where @ = Hist(c) and w = Hist(z). More precisely, the
attack is defined as:

e Frequency-An(c,z):

1. compute 1) < vSort(Hist(c));
2. compute 7 < vSort(Hist(z));

3. output o : C;; — M, such that

m[Ranky(c)] ifc € c;
L ifcéc.

alc) =

24

If the histograms are not strictly ordered (i.e., there are ¢ # j such that ¢, = 9, or
m; = ;) one can still run the attack by breaking ties in the sorting steps arbitrarily.
In the worst-case, each tie will be broken erroneously and induce an error in the
assignment so this will cause the attack to err on a + b ciphertexts, where a and

b are the number of ties in Hist(c) and Hist(z), respectively. The attack runs in

3.2.2 £,-Optimization

We now describe a family of attacks against DTE-encrypted columns we refer
to as {,-optimization. The family is parameterized by the ¢, norms. The basic
idea is find an assignment from ciphertexts to plaintexts that minimizes a given
cost function, chosen here to be the ¢, distance between the histograms of the
datasets. This has the effect of minimizing the fotal mismatch in frequencies across
all plaintext/ciphertext pairs. The attack works as follows.

Given a DTE-encrypted column c over Cj, and auxiliary information z over M,
the adversary first computes the histograms 1) and 7 of c and z, respectively. It
then finds the permutation matrix X that minimizes the ¢, distance between the
ciphertext histogram 1) and the permuted auxiliary histogram X - 7. Intuitively,
the attack finds the mapping of plaintexts to ciphertexts that achieves the closest
overall match of their sample frequencies. Note that this is very different than
frequency analysis which ignores the amplitude of the frequencies and only takes

into account their rank. More precisely, the attack is defined as follows:
e (,-Optimization(c, z):

1. compute 1) < Hist(c);
2. compute 7 « Hist(z);

3. output arg minxep, || — X - 7|,

where P, is the set of n X n permutation matrices. Note that in the /;-optimization
attack, Step 3 can be formulated as a linear sum assignment problem (LSAP) [74].
The LSAP can be solved efficiently using the well-known Hungarian algorithm

[75, 76] or any linear programming (LP) solver. In our experiments we use the

25

former which runs in time O(n?). The precise LSAP formulation is:

n n
minimize E E C ij X ij

i=1 j=1

subject to ZXU =1, 1<75<|Cy
=1

> Xy=1, 1<i<|Cy
7=1
ij€{071}7]'SZL]S |(C/€|

where the cost matrix C' = Cj; gives the cost of matching plaintext j to ciphertext
i.

For p = 1, the costs are simply the absolute differences in frequency, so we
set C;; = |¢; — m;]. For 2 < p < oo, however, Step 3 of the ¢,-optimization
attack cannot be formulated directly as a LSAP because the £, norm is not a simple
linear sum. Nevertheless, we show that it can still be efficiently solved using fast
LSAP solvers. To see why, let f; : R™ — R be the function x — ¢/x and let
f2 : NZy — N3 be the function v — " , v7. Then we note that the ¢, norm of

a vector can be written as
v, = fi(fa(v)).

Since f; is monotone increasing, the vector that minimizes f; o f5 is the vector that
minimizes f. It follows then that for any vector v, the vector w with the minimum

¢, distance from v is the solution to
n
arg mi —wsP
gmin Y |v; — w;|P.
1=

As long as p < oo, this optimization problem can be formulated as a LSAP with
cost matrix C' such that C;; = |v; — w;|P. The attack takes O(|Cy|?) time.

Remark on /,-optimization vs. frequency analysis. In our experiments, we
found that frequency analysis and /,,-optimization for p = 2, 3 performed equally
well. In fact, for a fixed encrypted column and auxiliary dataset, they decrypted
same exact ciphertexts. On the other hand, frequency analysis did consistently
better than ¢;-optimization. This raises interesting theoretical and practical ques-

tions. From a theoretical perspective it would be interesting to understand the exact

26

relationship between frequency analysis and ¢,-optimization. Our experiments tell
us that /;-optimization is different from frequency analysis (since they generated
different results) but they did not distinguish between frequency analysis and /-
and /3-optimization. As such, it would be interesting to either separate the attacks
or prove that they are equivalent for some p > 2.

From a practical perspective, the main question is what is the motivation for
ever using ¢,-optimization over frequency analysis? The main reason is that /,-
optimization not only decrypts an encrypted column but, while doing so, also
produces cost information about the different solutions it finds. Like the cumu-
lative attack we describe in Section 3.3.2, this is due to its use of combinatorial
optimization. As it turns out, this extra information can be leveraged to attack
“hidden” columns (i.e., for which we do not know the attribute); something we
cannot always do with frequency analysis. We discuss this in more detail in Section
3.5.

3.3 Attacking OPE Columns

In addition to the frequency information leaked by DTE, order-preserving encryp-
tion also reveals the relative ordering of the ciphertexts. Here we describe two
attacks on OPE-encrypted columns that exploit this additional leakage to recover
even more of the plaintext data. Note that the attacks only make use of order
information so they work even against columns encrypted with ORE [77] and
interactive order-preserving protocols [78, 79]. In particular, since all OPE instan-
tiations necessarily leak more than just the order [6], stronger attacks are likely
possible against OPE-encrypted columns.

Here, Cj, and M, are the ciphertext and message spaces of the OPE scheme. We
assume, without loss of generality, that |Cy| = |M|. If this is not the case we pad
M, with additional symbols until it holds.

3.3.1 Sorting Attack for Dense Columns

The first attack on OPE-encrypted columns is trivial and applicable to all columns
that satisfy a condition we call density. We call an OPE-encrypted column ¢-dense,
if it contains the encryptions of at least a d fraction of its message space. If § = 1,

we simply say that the column is dense.

27

The attack is described in detail below and works as follows. Note that it does
not require any auxiliary information. Given an OPE-encrypted dense column c
over C,, the adversary simply sorts ¢ and M, and outputs a function that maps each
ciphertext ¢ € c to the element of the message space with the same rank. More

precisely, the attack is defined as:
e Sorting-Atk(c):

1. compute 3 < vSort(Unique(c));
2. compute 7 < vSort(My,);

3. output o : C;; — M, such that:

m[Ranky(c)] ifc € ¢;
L ifc¢&c.

alc) =

The attack runs in O(|Cy| - log |Cy|) time.

3.3.2 Cumulative Attack for Low-Density Columns

The main limitation of the sorting attack is that it is only applicable to dense
columns. To address this, we describe a second attack for low-density OPE-
encrypted columns we refer to as the cumulative attack. The attack requires access
to auxiliary information and can recover a large fraction of column cells (see
Section 3.6.2 for details).

Intuition. Given a DTE-encrypted column, the adversary learns the sample
frequency of each ciphertext in the column. These sample frequencies make up
the histogram for the encrypted column, and we showed in the previous section
how the adversary can use them to match the DTE ciphertexts to their plaintexts by
finding (¢, m) pairs where ¢ and m have similar frequencies.

Given an OPE-encrypted column, the adversary learns not only the frequencies
but also the relative ordering of the encrypted values. Combining ordering with
frequencies, the adversary can tell for each ciphertext ¢ what fraction of the
encrypted values are less than c¢. More formally, this is known as the empirical
cumulative distribution function (ECDF, or simply CDF) of the data set.

In the cumulative attack, we leverage the CDF to improve our ability to match

plaintexts to ciphertexts. Intuitively, if a given OPE ciphertext is greater than 90%

28

of the ciphertexts in the encrypted column c, then we should match it to a plaintext
that also is greater than about 90% of the auxiliary data z. Although our early
experiments showed that CDFs alone enable very powerful attacks on OPE, we
can achieve even better results using both the CDFs and the frequencies together.
Here we use an LSAP solver to find the mapping of plaintexts to ciphertexts that
minimizes the total sum of the mismatch in frequencies plus the mismatch in CDFs

across all plaintext/ciphertext pairs.

Overview of attack. The attack is detailed below and works as follows. Given
an OPE-encrypted column c over C; and an auxiliary dataset z over M, the
adversary computes the histograms 1) and 7 and the CDFs ¢ and p of ¢ and z,
respectively. It then finds the permutation that simultaneously matches both the
sample frequencies and the CDFs as closely as possible. More precisely, the attack

is defined as:
e Cumulative-Atk(c, z):

1. compute 1) Hist(c) and ¢ < CDF(C);
2. compute T Hist(z) and p + CDF(Z);

3. output
M |

argr)?é% > (|ti = Xi - | + i — Xi -)

where IP is the set of all |Cy| x |Cy| permutation matrices. Note that, as in Section
3.2.2 above, Step 3 of this attack can be formulated as an LSAP which can be
efficiently solved using the Hungarian algorithm. The precise LSAP formulation

is:

n n
minimize E E C ij X ij

i=1 j=1
subject to ZXU =1, 1<75<|Cy

=1

Y Xy=1, 1<i<|Cy

7=1

X; €{0,1}, 1<ij<|Cyl

where the cost matrix C' gives the cost for mapping plaintext m; to ciphertext

¢; as the sum of the mismatch in frequencies plus the mismatch in cumulative

29

frequencies:
Cij = i — 77]"2 + | — Mj|2-

The attack runs in O(|Cy|?) time.

3.4 Simulating a Medical EDB

To evaluate the attacks, we considered the scenario of an EMR application and its
associated database. We chose this setting for several reasons.

First, medical DBs hold highly personal and sensitive information and are often
covered by privacy regulations such as the Health Portability and Accountability
Act (HIPAA). EMRs are vulnerable to insider and outsider threats and are increas-
ingly targeted by professional attackers including state sponsored adversaries and
organized crime. This trend is illustrated by the recent attacks on Anthem—one
of the largest U.S. health insurance providers—which compromised the health
records of 80 million individuals. In fact, the Ponemon Institute’s recent study on
Privacy and Security of Healthcare Data [80] reports that criminal attacks are now
the number one cause of healthcare data breaches with a 125% growth in attacks
reported in the last 5 years. As such, the motivation to encrypt medical DBs is
very strong. In fact, medical DBs often appear as the standard motivation in the
encrypted database research literature (see, e.g., [17]).

Another reason we chose this scenario is that a subset of the data stored in EMRs
(e.g., demographic data) is also held in other types of sensitive DBs including
human resources DBs, accounting DBs, and student DBs. Information stored
in these DBs may also be covered by privacy regulations such as the Family
Educational Rights and Privacy Act (FERPA). Our results against medical DBs
can therefore tell us something about these other kinds of DBs.

3.4.1 Target Data

Throughout, we refer to the data we use to populate the EDB as the farget data. In
our experiments we use data from the National Inpatient Sample (NIS) database
of the Healthcare Cost and Utilization Project (HCUP) [81]. HCUP makes avail-
able the largest collection of longitudinal hospital care data in the U.S. The NIS

database—which includes data on inpatients (i.e., patients that stay at a hospital for

30

at least one night) from all the hospital in the U.S.—is available starting from 1988.
The database is made available to researchers under controlled access: an online
training is required and a data use limitation agreement must be signed before the
data can be purchased and used. The NIS database includes attributes such as age,
drugs, procedures, diagnosis, length of stay, etc. For our purposes, we only use
a subset of the attributes (mostly due to space limitations) which we describe in
Figure 3.2.

Max Min Mean SD
Large Hospitals | 121,664 | 12,975 | 24,486 | 12,015
Small Hospitals | 1,309 404 756 253

Table 3.1: Size of hospitals in number of patients

In our experiments we use the data from a subset of 1050 hospitals in the
2009 HCUP NIS database as our target data. We note that any other year would
have given similar results. For all but one of our experiments we use the 200
largest hospitals but for the evaluation of the cumulative attack against low-density
columns we use data from 200 small hospitals. The 200 small hospitals are the
ones ranked (in decreasing order) 701 through 900 in terms of patient-size. Smaller
hospitals had too few patients to attack (less than 400 and some even less than 10).
The number of patients in the 200 largest and the 200 small hospitals is shown in
Table 3.1.

140000 T T T 140

120000 1200

100000 1000

80000 800

60000 600

Number of Patients
Number of Patients

40000 400

20000

200

0 0
0 50 100 150 200 0 50 100 150 200

Hospitals Hospitals

(a) Number of patients in large hospitals ~ (b) Number of patients in small hospitals

Figure 3.1: Size of hospitals in number of patients

Target attributes. We chose a subset of columns/attributes from the 2009 HCUP
NIS dataset to attack. These attributes are listed in Figure 3.2. We believe these

or similar attributes would be present in most real-world EMR systems. We

31

Sex. Sex can be either male or female. The most prominent feature of the sex attribute
is that most hospitals have more female patients than male patients. This is possibly
due to pregnancy, births, and the fact that women live longer. Sex is universally used
in all databases that store information about people.

Race. Race can have the following values: white, black, Hispanic, Asian or Pacific
Islander, Native American, and other. Race is stored in most databases dealing with
people for a variety of reasons.

Age. Age can range from 0 to 124. Age 0 is for babies less than an year old.
Some databases may store birth year instead of age, e.g., as part of full date of birth.
Frequency counts for age and birth year are exactly the same.

Admission Month. Admission month has values that range from January to Decem-
ber.

Patient died during hospitalization. This attribute indicates whether a patient died
during hospitalization.

Primary Payer. Primary payer has six values: Medicare, Medicaid, private or health
maintenance organization, self-pay, no charge, and other.

Length of Stay. Length of stay ranges from O to 364 and represents the number
of days a patient spends in a hospital. It is a very sensitive attribute and reveals
information about other attributes such as the nature of the patient’s disease.

Mortality Risk. Mortality Risk has four values showing the likelihood of dying:
minor, moderate, major, and extreme. It indicates the risk of a patient dying in the
hospital.

Disease Severity. Disease Severity has four values showing loss of function: minor
(indicates cases with no comorbidity or complications), moderate, major, and extreme.
It indicates the severity of the patient’s disease.

Major Diagnostic Category. Major Diagnostic Category has 25 values and gives the
principal diagnosis such as “Diseases and Disorders of Kidney”, “Burns”, “Human
Immunodeficiency Virus Infection (HIV)”, etc.

Admission Type. Admission type has six values: emergency, urgent, elective, new-
born, trauma center, and other.

Admission Source. Admission source has five values: emergency room, another
hospital, another facility including long-term care, court/law enforcement, and rou-
tine/birth/other. It indicates from where the patient was admitted to the hospital.

Figure 3.2: Attributes/columns used in our evaluation.

32

confirmed that six of them, including sex, race, age, admission month, patient
died, and primary payer, are used by OpenEMR [82], which is an open source
fully-functional EMR application. We stress that the form in which these attributes
are stored can vary (e.g., age can be stored as an integer or computed from a date
of birth) but some variant of these attributes exist in OpenEMR.

To decide whether an attribute should be DTE or OPE-encrypted we did the
following. For the attributes stored by OpenEMR (in some form), we simply
checked the kinds of operations OpenEMR supported on it. If it supported either
range queries or sorting operations, we considered it an OPE attribute. If OpenEMR
supported equality queries on the attribute we considered it a DTE attribute. For
the remaining attributes, we made assumptions which we believe to be reasonable.
More specifically, we assumed an EMR system would support range queries on the
length of stay attribute; sorting queries on the mortality risk, disease severity, and
admission type attributes (e.g., for triage); and equality queries on major diagnostic

category and admission source.

3.4.2 Auxiliary Data

All but one of our attacks (sorting) require an auxiliary dataset to decrypt a PPE-

encrypted column. We used the following two auxiliary datasets:

Texas PUDF data. The first auxiliary dataset we use is the Texas Inpatient Public
Use Data File (PUDF), which is provided by the Texas Department of State Health
Services. This dataset—unlike the HCUP NIS data—is publicly available online
so there is no reason to believe an adversary would not use it to her advantage.
Specifically, we use the 2008 Texas PUDF data. The Texas PUDF data until year
2008 can be downloaded from [83]. Usage of the data requires an acceptance of
a data use agreement but we believe it is reasonable to assume that an adversary

would not comply with such an agreement.

2004 HCUP NIS. Unfortunately, the Texas PUDF data has a limited number of
attributes which prevents us from studying the accuracy of our attacks on several
attributes of interest. We therefore also run experiments using the 2004 HCUP
NIS database as auxiliary data (recall that our target data is the 2009 HCUP NIS
data). Note that each year of the HCUP NIS data comes from a random sample of
hospitals from a large number of U.S. hospitals and the entire data of each sampled
hospital is included. This means that the 2004 HCUP NIS data is not only different

33

in time from the 2009 HCUP NIS data but it is also comes from a different set of
hospitals. There is a small number of common hospitals between 2004 and 2009
HCUP NIS databases (less than 4%), but that does not have a noticeable impact on

our experimental results.

Remark on additional datasets. Another example of a publicly-available auxil-
iary dataset is the Statewide Planning and Research Cooperative System (SPARCS)
Inpatient data from the state of New York [84]. We do not report results using
SPARCS as auxiliary data due to space limitations, but it gives similar results to
those using the Texas PUDF data.

3.5 Experimental Setup

All experiments were conducted on a high-end Mac laptop with Intel Core i7
processor and 16GB memory running OS X Yosemite (v10.10.2). We used Python
version 2.7.6 and Matlab version 8.4.0 (R2014b). For our experiments we devel-

oped three tools: Parser, Column Finder, and Revealer which we now describe.

Parser. Parser is written in Python and parses the target and auxiliary data to create
appropriate histograms. In the case of the target data, it creates one histogram per
attribute/hospital pair. More precisely, for each pair it creates a histogram that
reports the number of times some value v of the attribute appears in the hospital’s
data. In the case of the auxiliary data, it creates a single histogram for each attribute

(i.e., over all hospitals).

Column Finder. Column Finder is also written in Python. Since CryptDB-like
EDB systems encrypt column names, an adversary first needs to learn which
encrypted columns correspond to the attribute of interest. We do this using the
following approach. First, we determine if the attribute of interest is present in the
EDB by checking the database schema of the application. Then we run Column

Finder which works as follows:

1. it determines the number of distinct values for the column of interest in the
auxiliary data. We’ll refer to this column as the auxiliary column. As an
example, Column Finder would use the auxiliary data to learn that age has 125

possible values or that sex has 2 possible values.

2. it then determines the number of distinct values stored in each DTE- and OPE-

34

encrypted column of the EDB. This is trivial due to the properties of these
encryption schemes. It then searches through these encrypted columns to find
the ones that have approximately the same number of distinct values as the
auxiliary column. We have to search for approximate matches since some values
of an attribute may not be present in the target data. Since we know from the
database schema of the application that the EDB contains an encrypted column

for the attribute of interest, this step will find at least one column:

(a) If it finds only one column, then that is the encrypted column for the

attribute of interest.

(b) If it finds more than one column with a close-enough number of distinct
values such that it cannot determine which column belongs to the attribute

of interest, then it outputs all of them.

Auxiliary Attribute Target Attributes Accuracy
Primary Payer Admission Type, Primary Payer, Race 116
Race Admission Type, Primary Payer, Race 152
Admission Type Admission Type, Primary Payer, Race 128
Sex Sex, Patient Died 200
Patient Died Sex, Patient Died 200

Table 3.2: Column recovery: the accuracy column reports the number of hospitals for
which the correct attribute (i.e., from the auxiliary attribute column) had the lowest
£o-optimization cost among all target attributes.

Data Revealer. Revealer is written in Matlab and implements frequency analysis,
{y-optimization, and the cumulative attack. The last two attacks use the Hungarian
algorithm for the optimization step. We did not implement the sorting attack
against dense columns since correctness and perfect accuracy is trivially true (we
do run experiments to report the prevalence of dense columns in our target dataset
and results are shown in Figure 3.5). Revealer takes as input the histogram of an
auxiliary column from the output of Parser and the histograms for a set of target
encrypted columns from the output of Column Finder. So, depending on the output
of Column Finder, Revealer can receive either a single target histogram or multiple

target histograms and in each case it works as follows:

e if it receives a single target histogram, Revealer simply runs the attack with

its two inputs.

35

e ifitreceives multiple target histograms, Revealer runs one of the optimization-
based attacks on the auxiliary histogram with each of the target histograms.

It then outputs the result with the minimum cost.

Note that only the ¢,-optimization and cumulative attacks can be executed when
there are multiple target histograms since frequency analysis does not have an
inherent notion of cost that can be used. In our experiments, we found that when
the target and auxiliary attributes are the same, the cost is significantly less than

when they are different. This is reported in Table 3.2.

Time measurements. All the attacks take less than a fraction of a second per
hospital. Table 3.3 reports the running times (averaged over 200 hospitals) for each
attack over a different set of attributes; each with a different number of values.
Notice that attacking the length of stay column requires considerably more time
than the rest. This is due to the fact that it has a large number of values (365)
which especially affects the running time of /5-optimization and cumulative attacks
which rely on optimization. Currently, our attacks are implemented in Matlab
which is very slow compared to other languages like C so we believe that a C

implementation would decrease the running time significantly.

Attributes (# of values) Frequency Analysis | {>-optimization | Cumulative
Sex (2) 0.11ms 0.11ms 0.31ms
Mortality Risk (4) 0.12ms 0.12ms 0.49ms
Admission Source (5) 0.12ms 0.13ms 0.60ms
Major Diagnostic Category (25) 0.19ms 0.20ms 3.5ms
Age (125) 0.63ms 3.03ms 311.6ms
Length of stay (365) 1.73ms 68.7ms 35,910ms

Table 3.3: Time (in milliseconds) of attacks per hospital.

3.6 Experimental Results

For each hospital and each column in the EDB, we compute the accuracy of our
attack as the number of encrypted cells for which the recovered plaintext matches
the ground truth, divided by the total number of column cells.

We present the results of these experiments in Figures 3.4, 3.3 and 3.6. Each plot
shows the empirical CCDF (Complementary Cumulative Distribution Function) of

our record-level accuracy across all the hospitals in our target data. For example,

36

a point at location (x, y) indicates that we correctly recovered at least = fraction
of the records for y fraction of the hospitals in the target data. The results show
that our attacks recover a substantial fraction of the encrypted DBs and perform

significantly better than random guessing.

° °

°

Fraction of hospitals (CCDF)

o.

0.0 02 0.4 0.6 0.8 1.0
Cumulative fraction of records recovered
— Sex — Mortality Risk — Major Diagnostic Category
— Disease Severity Race

Figure 3.3: Results of /5-optimization on DTE-encrypted columns on 200 largest
hospitals with 2009 HCUP NIS as target data and Texas PUDF as auxiliary data

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Cumulative fraction of records recovered Cumulative fraction of records recovered
— Sex — Mortality Risk — Major Diagnostic Category — Age — Primary Payer — Admission Type
— Disease Severity — Race Patient died during hospitalization — Length of Stay — Admission Month Admission Source
(a) First set of attributes (b) Second set of attributes

Figure 3.4: Results of />-optimization on DTE-encrypted columns on 200 largest
hospitals with 2009 HCUP NIS as target data and 2004 HCUP NIS as auxiliary data

1. 1
9 5] —_
08 T 038
=) =)
S S
g g
= 0.6] = 0.6]
g g
8 8
2 2
2 04 2 0.4
2 2
0.2 0.2
0.9 S 0.9 e 5
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Density Density
— Disease Severity — Age — Admission Month — Disease Severity — Age — Admission Month
— Mortality Risk — Length of Stay Admission Type — Mortality Risk — Length of Stay Admission Type

(a) Density for large hospitals (b) Density for small hospitals

Figure 3.5: Density — Ratio of the number of values of an attribute present in a column to
the total number of values of the attribute

37

Fraction of hospitals (CCDF)
Fraction of hospitals (CCDF)

(a) Results for the 200 largest (b) Results for the 200 small
hospitals with 2009 HCUP NIS hospitals with 2009 HCUP NIS
as target data and 2004 HCUP as target data and 2004 HCUP
NIS as auxiliary data. NIS as auxiliary data.

Figure 3.6: Results of Cumulative attack on OPE-encrypted columns

3.6.1 Attacks on DTE-Encrypted Columns

Figure 3.4 shows the results of our /y-optimization attack against DTE-encrypted
columns using the 2004 HCUP NIS dataset as auxiliary. Figure 3.3 shows results
of the same attack using Texas PUDF dataset as auxiliary.

Using the 2004 HCUP NIS as auxiliary data (Figure 3.4), ¢5-optimization re-
covers cells for a significant number of patients, even for attributes with a large
number of distinct values such as Age and Length of Stay. It recovered Mortality
Risk and whether the patient died for 100% of the patients for 99% and 100% of
the hospitals respectively. It also recovered the Disease Severity for 100% of the
patients for 51% of the hospitals. The attack recovered Race for at least 60% of the
patients for at least 69.5% of the hospitals; Major Diagnostic Category for at least
40% of the patients for 27.5% of the hospitals; Primary Payer for at least 90% of
the patients for 37.5% of the hospitals; Admission Source for at least 90% of the
patients for 38% of the hospitals; Admission Type for at least 60% of the patients
for 65% of the hospitals.

Perhaps surprisingly, ¢»-optimization also recovered a relatively small but signifi-
cant fraction of cells for the Age attribute. Recovering DTE-encrypted Ages is very
difficult because Age takes on a large range of values, and multiple values have
very similar frequencies. Nonetheless, it recovered Age for at least 10% of patients
for 84.5% of the hospitals. The attack also works surprisingly well for Length of
Stay despite its large range of 365 possible values: specifically, it recovers this
attribute for at least 83% of the patients for 50% of the hospitals. The reason for

this unexpected accuracy is that most patients stay in the hospital for only a few

38

days. Therefore, by decrypting the plaintexts for a few very common lengths of
stay (e.g., 1,2,3,...), we recover a large fraction of the database.

Using the Texas PUDF data as auxiliary (Figure 3.3), the attack performs simi-
larly well. There is a small decrease in accuracy for Race and Major Diagnostic
Category. We believe this is due to regional differences in demographics across the
U.S.

3.6.2 Attacks on OPE-Encrypted Columns

The sorting attack succeeds only if a column has density 1, meaning that all possible
values of an attribute are present in both the target and the auxiliary data. If this
condition holds, the sorting attack can recover all the OPE-encrypted cells in a
column; otherwise it fails. Figure 3.5 shows the density for six selected attributes
for the large and small 200 hospitals, respectively, of the 2009 HCUP NIS dataset.
For large hospitals, the density is 1 for 100% of the hospitals for Disease Severity
and Mortality Risk and 90% of the hospitals for Admission Month. For small
hospitals, the density is 1 for 95% of the hospitals for Disease Severity, Mortality
Risk, and Admission Month. It follows that the sorting attack would recover 100%
of the cells for these columns for these hospitals.

To evaluate the cumulative attack, we executed it over both large and small
hospitals since the latter tend to have lower density on many attributes. Figure 3.6
shows the results. For large hospitals (Figure 3.6a) the attack performed extremely
well, even for low-density attributes. It recovered at least 80% of the patient records
for 95% of the hospitals for all the attributes shown in Figure 3.6a. The attack
recovered Admission Month, Disease Severity, and Mortality Risk for 100% of
the patients for 100% of the hospitals; Length of Stay for at least 99.77% of the
patients for 100% of the hospitals; Age for at least 99% of the patients for 82.5%
of the hospitals ; and Admission Type for 100% of the patients for 78.5% of the
hospitals.

For small hospitals (Figure 3.6b), despite the attributes’ low densities, the attack
still performed surprisingly well. It recovered Disease Severity and Mortality Risk
for 100% of the patients for 100% of the hospitals; Admission Month for 100%
of the patients for 99.5% of the hospitals; Length of Stay for at least 95% of the
patients for 98% of the hospitals; Age for at least 95% of the patients for 78%
of the hospitals; and Admission Type for 100% of the patients for 69.5% of the

39

hospitals.

40

Chapter 4

A Practical Model for Searching on Encrypted
Data

In the last chapter, we showed that property-preserving encryption is completely
insecure, even against the weakest adversary which has access to just the encrypted
data. In this chapter, we develop a new primitive called Blind Storage and use it
to develop a symmetric searchable encryption scheme, which is provably secure
against the adversary with access to just the encrypted data. Symmetric searchable
encryption still leaks significant information and this leakage can be exploited in
some settings, however, symmetric searchable encryption is much more secure
than property-preserving encryption.

In recent years, searchable symmetric encryption (SSE) has emerged as an
important problem at the intersection of cryptography, cloud storage, and cloud
computing. SSE allows a client to store a large collection of encrypted documents
with a server, and later quickly carry out keyword searches on these encrypted
documents. The server is required to not learn any more information from this
interaction, beyond certain patterns (if two searches involve the same keyword, and
if the same document appears in the result of multiple searches, but not the actual
keywords or the contents of the documents).

A long line of recent work has investigated SSE with improved security, more
flexible functionality and better efficiency [50, 53, 57, 58, 7]. The techniques in all
these works build on the early work of [53, 85]. In this work we present a radically
different approach that achieves stronger security guarantees and flexibility, with
significant performance improvements. In particular, our construction enjoys the

following features:

e Dynamic SSE, which supports adding and removing documents at any point

during the life-time of the system.

e The server is “computation free”. Indeed, the only operations that need
to be supported by the server are uploading and downloading blocks of

data, if possible, parallelly. This makes our system highly scalable, and any

41

optimizations in these operations (e.g., using a content delivery network)

will be directly reflected in the performance of the system.

e The information revealed to the server (“leakage functions”) is strictly lesser
than in all prior Dynamic SSE schemes except [59]. Scheme of [59] reveals
less information to the server at the expense of poly-logarithmic overhead

on top of Dynamic SSE overhead of other schemes (including ours).

o Satisfies a fully adaptive security definition, allowing for the possibility that
the search queries can be adversarially influenced based on the information

revealed to the server by prior searches.

e Security is in the standard model, rather than the heuristic Random Oracle
Model; relies only on the security of block ciphers and collision resistant
hash functions.

e Optional document-set privacy. The number of documents in the system
and their lengths can be kept secret, revealing the existence of a document
only when it is accessed by the client (typically after learning that a keyword
appears in that document). This allows one, for instance, to archive e-mail
with support for keyword searching, while keeping the number and lengths

of e-mails hidden from the server (until each one is retrieved).

A simple prototype has been implemented to demonstrate the efficiency of the

system.

Blind Storage. An important contribution of this work is to identify a more basic
primitive that we call Blind Storage, on which our Dynamic SSE scheme is based.
A Blind Storage scheme allows a client to store a set of files on a remote server in
such a way that the server does not learn how many files are stored, or the lengths
of the individual files; as each file is retrieved, the server learns about its existence
(and can notice the same file being downloaded subsequently), but the file’s name
and contents are not revealed. Our Blind Storage scheme also supports adding
new files and updating or deleting existing files. Further, though not needed for
the Dynamic SSE construction, our Blind Storage scheme can be used so that the
actual operation — whether it is reading, writing, deleting or updating — is hidden
from the server.

Though not the focus of this work, we remark that a Blind Storage system would

have direct applications in itself, rather than as a tool in constructing flexible and

42

efficient Dynamic SSE schemes. As our Blind Storage scheme does not make
requirements on the server other than storage, it can be used with commodity
storage systems such as Dropbox. This enables a wide range of simple applications
that can take advantage of modular privacy protections to operate at a large scale
and low expense but with strong privacy guarantees. Applications can range from
backing up a laptop to archiving patient records at a hospital. Further, in our
dynamic SSE scheme, document set privacy with relatively low overhead is made
possible because we can simply store all the documents in the same Blind Storage

system that is used to implement the SSE scheme.

4.1 Overview

In this section, we briefly discuss our techniques and the advantages of our scheme
compared to prior SSE constructions. Most of the advantages follow from the
simplicity of our scheme, and in particular, as depicted in Figure 4.1, from the fact

that our server is computation free.

Techniques. Our main construction is that of a versatile tool called Blind Storage,
which is then used to build a full-fledged SSE scheme. A Blind Storage scheme
lets the client keep all information — including the number and size — about files
secret from the server storing them, until they are accessed. In building the SSE
scheme, the search index entries for all the keywords are stored as individual files
in the Blind Storage scheme (with care taken to facilitate updates).

Our Blind Storage scheme, called SCATTERSTORE, is constructed using a
simple, yet powerful technique: each file is stored as a collection of blocks that are
kept in pseudorandom locations; the server sees only a super-set of the locations
where the file’s blocks are kept, and not the exact set of locations.! The key security
property this yields us is that, from the point of view of the server, each file is
associated with a set of locations independent of the other files in the system.
(Indeed, the sets of locations for two files can overlap.)

A rigorous probabilistic analysis shows that for appropriate choice of parameters,
the probability that any information about files not yet accessed is leaked to the

2—40

server can be made negligible (say, or 278%), with a modest blow-up in the

storage and communication costs (e.g., by a factor of 4) over unprotected storage.

ITo the extent that extra blocks are read, our scheme is similar to existing Oblivious RAM
constructions. However, in our case, the overhead of extra blocks is bounded by a constant factor.

43

command/data ﬂ% upload

- response - download
Processing Storage Storage

Figure 4.1: Contrasting the architecture of existing SSE Schemes (on the left) with that of
the proposed scheme.

The only cryptographic tools used in our scheme are block ciphers (used for stan-
dard symmetric key encryption as well as for generating pseudorandom locations
where the data blocks are kept) and collision resistant hash functions. The security
parameters for these tools are chosen independently of the other parameters in the

scheme.

Architecture. Most of the previous SSE schemes were presented as using a
dedicated server, that performed both storage and computation. (See Figure 4.1.)
The computation typically involved an (unparallelizable) sequence of decryptions.
To deploy such a scheme using commodity services, one would need to rely
not only on cloud storage services, but also cloud computation services. This
presents several limitations. Firstly, this limits the choice of service providers
available to a user: one could use Amazon EC2 for computation, combined with
Amazon S3 for storage; however, it is not viable to use Dropbox for persistent
storage and Amazon EC2 for computation, as this would incur high costs for
communication between these two services. Storage and compute clusters are
physically separated in modern data centers. This would add additional latency in
all dynamic SSE schemes except ours, as data needs to be transmitted from storage
nodes to compute nodes over the data center network. In contrast, our system
can be easily implemented using Dropbox or other similar services which provide
only storage. Secondly, relying on cloud computation makes the deployment less
flexible, as it is harder to change choices like that of the operating system (due to
pricing changes or technical support, for instance).

Another important issue in existing schemes is that one relies on availability
and trust assumptions (e.g., honest-but-curious) for both computation and storage.
Clearly, it is desirable to trust storage alone, as is the case in our scheme. Further,
in ongoing work, we consider obtaining security against actively corrupt (rather
than honest-but-curious) servers; this is easier and more efficient to achieve starting

from our scheme, since we need to enforce honest behavior on part of a server that

44

provides storage alone.
Finally, it is significantly cheaper to rely on a cloud-storage service alone than

on cloud computation (plus persistent storage).

Security definition. An important feature of our schemes is the stronger and
easier to understand security guarantees. All the information leaked to the server is
fully captured in relatively simple functionalities. For the Blind Storage scheme, as
shown in Figure 4.2, each time a file is accessed, the functionality Fgroge reveals
just a triple (op, 7, size) to the server, where op specifies what the access operation
is (read, write, update or delete), j specifies the last time, if any, the same file was
accessed, and size specifies the size of the file.

The functionality Fss: (shown in Figure 4.7) specifies all the information re-
vealed by our SSE scheme. It is slightly more complex, partly because it allows
the client to reuse document IDs. Further, it offers a higher level of secrecy for
documents that are originally in the system, compared to those added later during

the operation of the system.

Fully Adaptive Security. We achieve fully adaptive security, without relying on
heuristics like the random oracle model. Technically, this is a consequence of the
fact that the server does not carry out any decryptions. We point out that achieving
adaptive security by making the client do decryptions for the server would not
be viable in existing SSE schemes because a long sequence of decryptions (that
cannot be parallelized) need to be carried out; several rounds of communication
(with attendant network delays) would be necessary if the client carries out these
decryptions for the server. Nevertheless, a similar approach was mentioned in [7]
as a theoretical solution to avoid the Random Oracle Model and retain adaptive
security.

The price we pay for the improved security, greater computational efficiency, par-
allelizability and simpler architecture is that the server storage and communication
costs are possibly higher than that of some of the existing schemes (e.g., a factor of
2 to 4 over unprotected storage, which is in fact, comparable to overheads incurred
in some other schemes like that of [7]). Also our SSE scheme could, in principle,
involve up to three rounds of communication for retrieving the documents (this
happens if the keyword has a large number of matching documents). In contrast,
many existing schemes involve only two rounds (one to retrieve encrypted list of

documents, and one to retrieve the documents themselves).

Comparative Performance. The most natural prior work for us to compare

45

against is [57] (though, unlike this work, it uses the Random Oracle Model). We
remark that the more recent work of [7] augments the functionality of [57] (but
without support for dynamic updates), and provides a highly streamlined imple-
mentation over very large scale data; however, for the task of simple keyword
searches, its algorithm remains comparable to [57]. Since [57] reports performance
of a prototype implemented in a comparable environment as ours (conservative
comparison: we use a laptop and they used a server), we compare with it. Asymp-
totically, the client-side storage and computation in our system is same as [57], but
the constants for our scheme are much better, and is reflected in the performance
measured. Our scheme completely avoids server-side computation (which is quite

significant in [57]).

4.2 Blind Storage

An important contribution of this thesis is to identify a versatile primitive called
Blind Storage. It allows a client to store a set of files with a remote server, revealing
to the server neither the number nor the sizes of the files. The server would learn
about the existence of a file (and its size, but not the name used by the client to
refer to the file, or its contents) only when the client retrieves it later. We also allow
the client to add new files, and to update or delete existing files. The client’s local
storage should be independent of the total amount of data stored in the system.

In this section, first we present the definition of a Blind Storage system, followed
by an efficient construction SCATTERSTORE, and a proof of security. Later, in
Section 4.3.2, we show how to build a Dynamic SSE scheme using a Blind Storage

system.

4.2.1 Definition

Below, first we define the syntax of a Blind Storage system (and the infrastructure

it needs), followed by the security requirements on it.

The Syntax. A blind storage system consists of a client and a “dumb” storage
server. The server is expected to provide only two operations, download and upload.
The data is represented as an array of blocks; the download operation is allowed to

specify a list of indices of blocks to be downloaded; similarly, the upload operation

46

e On receiving the command Fgrorg.Build from the client:

— Fsrore accepts input (dp, {id;, data; }!_,) from the client (where d is an
upperbound on the total number of data blocks to be stored in the system at
any time, and the rest specify files to be stored in the system initially); it
internally stores the specified files.

— Build Leakage: In addition, Fsrorg sends dy to the server.
e On receiving the command Fgrogg.Access(id, op) from the client:

— If no file matching the identifier id exists, and the operation op €&
{read, delete}, Fsrore returns a status message to the client indicating so.
Else, if op = read, Fsrore returns the file with identifier id; if op = delete,
it is removed. If op = write, the content data for the file is also accepted
from the client, and the file is created or its content replaced with data. If
op = update, Fsrorg interacts with the client as follows:

x JFsrorg returns the current size of the file (in blocks — possibly 0, if the
file does not exist) to the client.

* Fsrore accepts the size of the updated file from the client.

x JFsrore returns the current contents of the file to the client.

x JFsrore accepts the updated contents of the file from the client. The
file stored internally is updated with this.

— Access Leakage: In addition, Fsrore sends the tuple (op, j, size) to the
server where:

* op specifies what the current access operation is,*

* j is the last instance when the same file was accessed (j = 0 means
that this file was not accessed before)

* size is the size (in number of blocks) of the file being accessed. For
the update operation, size is the larger of the sizes before and after the
update.

“A refined version of Blind-Storage would require the operation to be not revealed. See
Section 4.2.2.

Figure 4.2: The Fsrore functionality: all the information leaked to the server in our Blind
Storage scheme is specified here.

47

is allowed to specify a list of data blocks and indices for those blocks.
A blind storage system is defined by three polynomial-time algorithms on the
client-side: KeyGen, BSTORE.Build and BSTORE.Access. Of these, BSTORE.Access

is an interactive protocol.

o KeyGen takes security parameter as an input and outputs a key Kgsrore
(typically a collection of keys for the various cryptographic primitives used).
Note that Kgsrorg, Which the client is required to retain throughout the

lifetime of the system, is required to be independent of the data to be stored.

key, dj is an upperbound on the total number of data blocks to be stored in
the system, (id;, data;) are the id and data of the files that the system to be

initialized with; it outputs an array of blocks D to be uploaded to the server.

e BSTORE.Access takes as input a key Kggrore, @ file id id, an operation specifier
op € {read,write, update, delete}, and optionally data data (if op is write
or update). Then it interacts with the server (through the upload/ download
interface) and returns a status message and optionally file data (for the read
and update operations). For the update operation, BSTORE.Access allows
more flexibility:? first it requires only id as input, and outputs the current
size of the file with that ID; then it accepts as input (an upperbound on) what
the size of the file will be after update; then it outputs the current file data,

and only then requires the new data with which the file will be updated.

Security Requirement. We specify the security requirement of a blind-storage
system following the “real/ideal” paradigm that is standard for secure multi-party
computation (as opposed to using specific game-based security definitions used in
some of the earlier literature on SSE). This includes specifying an adversary model
and an “ideal functionality,” as detailed below. The formal security requirement
we shall require is that of Universally Composable security [86] (but restricted to

our adversary model).?

2One can always use a read followed by a write to get the effect of an update, but this is less
efficient and potentially reveals more information.

3We remark that for our setting of passive adversaries, UC security is a conceptually simpler
notion than for the setting of active adversaries. Nevertheless, for the sake of concreteness, we use
the UC security model, which automatically ensures security even when the inputs to the client are
adaptively chosen under adversarial influence.

48

In the adversary model we consider, the adversary is allowed to corrupt only the
server passively — i.e., as an honest-but-curious adversary. (If the client is corrupt,
we need not provide any security guarantees.)

The ideal functionality is specified as a virtual trusted third party Fgrore that
mediates between the client and the server (modeling the information leaked
to the server). Fgrore accepts two commands from the client: Fgrorg.Build and
Fsrore-Access, along with inputs to these commands (which are identical to the
inputs to BSTORE.Build and BSTORE.Access as described above, except for the key
Ksstore). In this ideal model, it is Fyrore Which maintains the collection of files,
and performs all the operations specified by the Fgrorg.Build and Fgrorg.Access
commands. In addition, it reveals limited information to the server as specified in
Figure 4.2.

We stress that all the information revealed to the server by our blind-storage
scheme is captured by the Fsrorg functionality. Note that the information leaked
(during Fsrore-Build and Fgrore.Access) is limited and simple to specify. This

simplicity is one of the important contributions of this work.

Remark. Even when using the ideal Fg;ore functionality, an adversary can
learn some statistics about the files and accesses by analyzing the patterns in the
information revealed to it. Such information could indeed be sensitive, and it is up
to the higher-level application that uses a blind-storage system to ensure that this is
not the case. The cryptographic construction seeks to only match the guarantees

given by Frore-

4.2.2 Our Construction

Our Blind Storage construction is called SCATTERSTORE. First, we shall present
a simplified version, called SCATTERSTORE-LITE, which already involves most
of the critical components in the full construction. The only drawback of the
simplified construction is that the client is required to maintain a data structure to
map each file-name to a small piece of information. This solution is well-suited
for a scenario when the system consists of a moderate number of large files. In
our final construction, we show how to avoid this local data structure, so that the

client’s storage is of constant size, independent of the number of files in the system.

49

The construction relies on the following primitives:

— a full-domain collision resistant hash function (CRHF), H,

a pseudorandom function (PRF), @,

— afull-domain pseudorandom function (FD-PRF), ¥ (implemented by applying ® to the output of H),

a pseudorandom generator (PRG), I'.

(In our prototype, as described in Section 4.4, the implementation of ®, ¥ and I" all rely on the AES block-cipher; H
is implemented using SHA-256.) The security parameter £ is an implicit input to all the cryptographic primitives used
in the construction. The other parameters in the construction are the size parameters np, mp, an expansion parameter
« > 1, and the minimum number of blocks communicated in each transaction, k.

o KeyGen: A key K¢ for the PRF &, and a key Kip for the FD-PRF W are generated; Kgsrore is set to be the
pair (K¢, KID)A

e BSTORE.Build(F, Kgsrore): F is a list of files f = (id¢, datag). Below sizeg denotes the number of blocks
in an encoding of datag; each block has two short header fields containing a version number initialized to 0,
and H (idg); the latter is not allowed to be all Os, which is reserved to indicate a free block. In addition, the
first block has a header field that records sizeg. (It will be convenient to keep the version number field at an
extreme end of the block, as it needs to kept unencrypted, whereas the rest of the block will be encrypted at
the end of this phase.)

— Let D be an array of np blocks of mp bits each.
— Initialize every block in D with all Os (to be encrypted later).
— Foreach file fin F,

1. Generate a pseudorandom subset S¢ C [np], of size |Sg| = max([« - sizeg], k) as follows.
(a) Generate a seed of = W, (idg) for the PRGT.
(b) Let St be the set of integers in the sequence A[og, | Se|]. Here Ao, £] denotes a sequence
of £ integers obtained as follows.
* Generate a (sufficiently long) output from the PRG I', with seed o, and parse it as a
sequence of integers in the range [np].
x Ao, £] is the first £ distinct integers in this sequence.

2. Check if the following two conditions hold:
* at least sizeg blocks in D that are indexed by the numbers in St are free;
* at least one block in D that is indexed by the numbers in S? is free.
If either condition does not hold, abort. By the choice of our parameters, this will happen only
with negligible probability.

3. Pick a pseudorandom subset §f C St of size \§f\ = sizeg, such that the blocks in D that are
indexed by the numbers in Sy are all free. For convenience, we shall rely on the fact that the
numbers in the sequence used to generate St are in a pseudorandom order; we pick the shortest
prefix of this sequence that contains sizey numbers indexing free blocks, and let St be the set
of these sizeg numbers.

4. Write the sizeg blocks of datag onto the blocks in D that are indexed by the numbers in §f (in
increasing order). These blocks get marked as not free.

— Encrypt each block of D using the PRF & and the key K¢. The version number field is left unencrypted,
while the rest is encrypted using the version number (initialized to 0) and the index number of the block
as IV. More precisely, for the 5™ block D[i], we split it as v;||B[i] (v; being the version number), and
then update B[i] to B[] © P, (vs|]7).

(If the block-size of the PRF is less than the size of the block BJ[é], then a few lower-order bits of the
IV are reserved for use as a counter, to obtain multiple blocks from the PRF for a single block in D.)

Figure 4.3: SCATTERSTORE: A Blind-Storage Scheme (continued on next page)

50

1.

10.

11.

12.

e BSTORE.Access(ids, op, Kestore): We describe the case when op = update, and mention how the other
operations differ from it.

First, compute o = lI/KID (idg), and define the set S? of size k, to consist of the numbers in the
sequence A[og, k]. Retrieve the blocks indexed by S¢ from D.

Decrypt the blocks of D[S?] (where D[i] = (v;||B[i]) is decrypted as B[i] @ ®k,, (v;||7)), in the order
in which they appear in A|o¢,], until a block which is marked as belonging to id¢ is encountered. If
no such block is encountered the file is not present in the system. In this case, set sizef = 0.

Otherwise (if a block marked as belonging to ids is found), this is the first block of the file with
identifier idg: recover the size of the file sizeg from the header of this block.

Output sizer to the client and accept as input size}, the size of the file after update.

Let £ = [o- max(sizeg, sizeg)]. If € < &, let Sp = S?. Else, let St be the set of numbers in Afog, £].
In this case, retrieve the blocks indexed by Sg \ S? from the server.

Some of the blocks indexed by Sy would have already been decrypted in Step 2 above. Decrypt the
remaining blocks indexed by S, as well.

Identify Sg as the set of indices of blocks belonging to the file being accessed (by checking if their
headers match idg). If S is not empty, combine these blocks together (in increasing order of their
indices) to recover the entire contents of the file, and output it.

Accept as input new contents data’ encoded as size’f blocks.

Identify a subset §t/" C Sf of size size’f as follows. Find the shortest prefix of the sequence Afo, /]
which contains size;- blocks that are either marked as belonging to id¢ (i.e., in §f) or are free.

If no such prefix exists, or if the first of the sizef blocks identified is not within Ao,] (this can
happen only when sizey = 0), then abort; again, by the choice of our parameters, this will happen
only with negligible probability.

Note that if size; < sizer, then §§ C Spselse, S¢ C §§ C St.
Then update the blocks indexed by :S‘\g with the blocks of data’. If size} < sizeg mark as free the
blocks indexed by S¢ \ Sj.

Encrypt all the blocks indexed by Sg using the IV v;]|¢ as described in the BSTORE.Build step, but
after incrementing v; for each block.

Upload the newly reencrypted blocks back to the server. Note that all the blocks that were downloaded,
i.e., D[S¢], are uploaded back, with their version numbers incremented by 1, and reencrypted.

e When op = read, the Steps | through 7 from above are carried out, but setting size} =0.

e When op = write, the behavior is the same as when op = update, except that the new file data is taken as
input upfront, and no data is returned.

e When op = delete, the behavior is the same as when op = write, except that it takes size} =0.

Figure 4.4: SCATTERSTORE: A Blind-Storage Scheme (continued from Figure 4.3)

Simplified Construction: SCATTERSTORE-LITE

In this section, we present a sketch of SCATTERSTORE-LITE, our simplified Blind-

Storage construction. We defer a formal description to the next section where we

present the full construction.

In our construction, each file in the blind storage system is kept in a large array

D of encrypted blocks, at positions indexed by a pseudorandom set. This set is

defined by a short seed and the size of the set: the seed can be used to generate a

51

(virtually infinite) pseudorandom sequence, and the size specifies the length of the
prefix of this sequence that defines Sg. In our simplified construction, the client
stores this information in a data-structure that maps the file-names to the descriptor
of the pseudorandom set.*

The main security property that we need to ensure is that the location of the
blocks of one file does not reveal any information about the blocks of the other
files, or even the proportion of occupied and free blocks in D.> However, clearly,
we cannot choose the positions to store blocks of one file independent of the
blocks of the other files, since two files must not occupy the same block. A naive
solution would be to use a large D, to reduce the probability that the blocks chosen
for one file do not overlap with that for any other file. But this is problematic,
because to reduce the probability of such a collision to a small quantity (say,
negligible in the security parameter), size of D needs to be enormously larger (i.e.,
a super-polynomial factor larger) than the actual amount of data stored.

We overcome this inherent tension between collision probability and wasted
space as follows. To store a file fof n blocks, we choose a pseudorandom subset
St of not n blocks, but say (for a typical setting of parameters), 2n blocks. This
subset of 2n blocks will be chosen independent of the other files in the system (and
it is this subset that the server sees when the client accesses this file). Within this
set we choose a subset §f C St of n blocks, where the actual data is stored. The
set §f 1s of course, selected depending on the other blocks used by other files, to
avoid collisions. However, since the contents of the blocks are kept encrypted, the
server does not learn anything about §f (except its size).

This, it turns out, allows D to be only a small constant factor larger than the total
data to be stored in the system. A typical parameter setting would be to let D have
4 times as many blocks as total data blocks to be stored. Then, we can drive the
information leaked to the server to a negligible quantity with only small constant

factor overheads in the storage and communication.®

4Only the size of the pseudorandom set needs to be stored. The seed for the set can be derived
by applying a (full-domain) pseudorandom function to the file-name. See next section.

3This property manifests itself in the simulation based proof of security, since the simulator
will pick the locations of blocks of a file being accessed independent of the number and size of files
that are not yet accessed.

5We note that the pseudorandom set Sy would have to be at least a minimum size x (say,
+ = 80 blocks); when accessing small files which are just a few blocks long (i.e., n is small), 2n
will be less than this minimum. For such files, the communication involves an adcﬁtive overhead
equal to this minimum. However, the number of blocks occupied in D, i.e., size of Sg, is always n,
irrespective of n being small or large.

52

An important feature of our pseudorandom set construction, compared to linked-
list based construction of related work in the literature, is that the server need not
carry out any decryptions. In linked-list based constructions, each node in the
list is progressively revealed; even if the server were to take the help of the client
in decrypting each node, several rounds of communication will be required.” In
contrast, our construction allows the server to be “crypto-free” and still have only
constant number of rounds of interaction.

This simplicity leads to another advantage: our construction meets a fully
adaptive security definition for blind storage (and for searchable encryption) against
honest-but-curious servers. Here, adaptive security refers to the fact that the choice
of which files the client needs to access can be adversarially influenced, after the
system has been deployed. Prior work required less efficient and more complicated
schemes to achieve adaptive security, and often employed the Random Oracle
heuristics [57, 53]. We use only standard primitives (PRFs and collision-resistant
hash functions) and obtain security in the standard model (i.e., not in the Random
Oracle model).

Finally, our pseudorandom set construction easily supports a dynamic blind-
storage scheme. We sketch the update operation (creating and deleting a file are
essentially special cases of the update operation). To update a file, the client
retrieves the encrypted blocks corresponding to the file’s pseudorandom set St,
decrypts them, updates the subset of blocks §f where the file’s blocks are present,
reencrypts all of the downloaded blocks (i.e., all of St), and uploads them back to
the server. There are two details worth highlighting:

e Encryption of each block is carried out by XOR-ing the contents of the block
with the output of a PRF, which keyed using a fixed secret key, but whose
inputs depend on the block: this input consists of the block’s index in D and
its current version number. (The version number is specific to each block,
and it is kept unencrypted in the block.) Initially, all blocks have version

number 0, and when reencrypting a block, its version number is incremented.

e In the above process, the updated file may need fewer or more blocks than
the original file. We let the size of the set St that is retrieved to correspond to

the longer of the two versions of the file. If the updated version needs fewer

7In our full construction, the server does take the help of the client to carry out a decryption
and to recover the description of the pseudorandom set; but this involves only one round of
communication.

33

blocks than the original file (in which case S¢ corresponds to the original
file), the extra blocks are marked as free. If the updated file needs more
blocks, then the subset S that is retrieved corresponds to the size of the file
after the update; then, additional empty blocks are located in St to extend §f
to be large enough for the updated file. In either case, the server sees the size

of the larger of the two versions.

Full Construction: SCATTERSTORE

We present the details of our final Blind Storage scheme in Figure 4.3 and Figure 4.4.
Here we give a brief sketch of the main ideas.

In the simpler scheme above, we allowed the client to maintain a data-structure
mapping a file-identifier id¢ to a descriptor of the pseudorandom set Sg. This is not
desirable if the system would store a large number of small files; then the size of
this data structure is comparable to that of the entire collection of files. We would
like our client to store only a constant number of cryptographic keys, so that its
storage requirement does not grow with the size of the entire set of files stored in
the system.

For this, recall that the two pieces of information needed to define a pseudo-
random set S¢ are a seed and the size of the set. The seed itself can be obtained
by applying a full-domain PREF to the file-identifier. (A full-domain PRF can be
implemented using a full-domain collision resistant function (CRHF) and a normal
PRF: an arbitrary-length file-identifier is first hashed to a fixed-length input for the
PRF using the CRHF.) If the client knew the size of St as well, there will be no
need to store this map at all. We exploit this to use a two-level access to a file, as
follows.

For each file, the first block consists of a header that stores the size (number of
blocks) of the file. To retrieve a file id¢, the client assumes that the file is “small”
and retrieves a pseudorandom set S¢ with the smallest possible number of blocks,
i.e., k. After recovering the first block of the file from the blocks in S, the client
computes the actual size of S¢ and if it is larger than x, then retrieves the rest of S¢
from the server. (Note that St is simply a superset of S¢, obtained from a longer
pseudorandom sequence.) We remark that it is important for security that when
|Sg¢| > & the client performs this second access, even if the entire file happened to
fit within the blocks in S§.

54

The update functionality as we have defined, fits well into this two-level access.
To update a file idg, first the client is allowed to learn the current size of the file
before providing any information about the update; this size information is retrieved
after the first level of access and returned to the client. (Note that we could have
in fact provided the client with the first few blocks of the current file too, but for
simplicity we omit this from the specification of the functionality.) Next, before
the second level of access, the larger of the current file size and updated file size
needs to be known. So at this point, we require the client to submit the size of the
updated file. Then the size of the set St to be retrieved is defined by the larger of
the current and updated sizes. If this set has more than x blocks, the second level
of access retrieves the remaining blocks; then, as in the simpler construction, all
the retrieved blocks will be reencrypted (with a subset of them having updated

contents) and uploaded back on the server.

Variations and Enhancements

There are several optimizations and variations to this construction that would be of

interest. We mention a few.

e The time taken for the read operation can be significantly improved as follows.
As presented above, in reading file, the client retrieves a pseudorandom subset
of blocks from the server, and decrypts all of them. Of these, the blocks that
actually contain data from this file are identified from each block’s header.
Since decryption is the most computationally intensive operation, if we can
avoid decrypting the blocks not belonging to the file being read, we can speed
up the operation by a constant factor (namely, o, a parameter discussed later).
This is indeed possible by storing the relevant information in the first block
of the file. Note that we still need to sequentially decrypt a few blocks (for
our choice of parameters, up to four blocks, in expectation) before the first

block of the file is encountered.

e Almost all our operations — especially the computationally intensive parts
involving encryption and decryption — are “embarrassingly parallel.” For
instance, a set of blocks received from the server can be decrypted in parallel
and assembled together using an array pre-allocated to hold all the blocks in
the file.

55

e Our construction can be easily extended to meet a stronger security require-
ment, that the server does not learn the kind of operation (read, write or
update) performed by the client (beyond what it can infer from the access
pattern). For this, we shall use the update operation in place of every oper-
ation, since it offers the facility of reading and writing. (If this is used for
actual updates — which allow read and write in the same operation — and if
the data being written depends on the date being read, then care should be

taken to avoid observable delays that can lead to a timing attack.)

4.2.3 Security Analysis

We sketch a proof of security that our construction is a secure realization of the
deal blind storage functionality Fsrore, for the adversary model in which the server
is corrupted only passively. The proof follows the standard real/ideal paradigm in
cryptography (see [87], for instance), and uses some of the standard conventions
and terminology.

Roughly, the proof involves demonstrating a simulator Sim which interacts with a
client only via the ideal functionality Fsroxe (the ideal experiment), yet can simulate
the view of the server in an actual interaction with the client in an instance of our
scheme (the real experiment). The simulated view would be indistinguishable
from the real view of the server, even when combined with the inputs to the client.
Further — and this is the adaptive nature of our security guarantee — the inputs
to the client at any point in either experiment can be arbitrarily influenced by the
view of the server till then.

Before describing our simulator, we describe the main reason for security. Sup-
pose the client makes a read access to a file ffor the first time. In the ideal
experiment, the server learns this file’s size from Fyrorg, and nothing about the
other files. In the real experiment, the server sees one or two downloads from D—
a set of x blocks SP and a set of blocks S¢ \ Sf (with the possibility that S¢ = S§,
in which case there is only one download). Thanks to the encryption, it is easy to
enforce that the contents of these downloaded blocks give virtually no information
to the server (beyond the size of). But we need to ensure that the location of
these blocks also do not reveal anything more. For instance, it should not reveal
how many other files are present in the system. In our construction, this is ensured

by the fact that the pseudorandom subsets S{ and S are determined by a process

56

The simulator Sim interacts with the functionality Fsrorg On the one hand, and interacts
with the server on the other, translating each message it receives from Fgrogg into a set
of simulated messages in the interaction between the client and the server in our scheme.

1. When it receives the initial message from Fgrorg With the system parameters, Sim
can calculate the size of D; it simulates the contents of the blocks in D by picking
uniformly random bit strings, with the version number in each block set to 0.

2. Sim initializes a map with entries of the form (j; A;, size;), which maps an integer
J (indicating the sequence number of accesses) to a sequence of blocks in D and
the size of the file accessed (in blocks).

The maps are initialized to be empty, and is filled up as Fsrorg reports file accesses
to Sim.

3. For access number j*, first the table entry (j*; Aj«, size;«) is created as described
below.

Let the triple reported by Fsrore to Sim for access number j* be (op, 7, size).
Recall that if 7 > 0, then the file being accessed has already been accessed (as the
5™ access).

(a) If op = delete, then let size;« = 0. Else, set sizej« = size. Let { =
max ([- sizej |, K).

(b) If j = 0, then Sim samples a random sequence of ¢ distinct integers in the
range [np], uniformly randomly, and sets A« to be this sequence.

(c) Else (j > 0),if [A;| > £, set Aj=~ = Aj;else (j > 0, and |A;| < £), extend
A; to a sequence of length ¢ uniformly at random (without duplicates). Set
A+ to be this extended sequence.

4. Next, Sim creates the simulated view in which first the server gets a request
to download x blocks indexed by the first x entries of Aj«; if £ > k, this is
followed by a request to download blocks indexed by the next £ — « entries of A j«.
For operations other than read, this is followed by an upload consisting of new
versions (with the blocks’ version numbers incremented, and with fresh random
strings as contents) of the blocks indexed by the first £ entries of A j«.

Figure 4.5: Description of the simulator Sim used in the proof of Theorem 4.2.3.1.

57

that is independent of the other files in the system — they are chosen randomly (or
rather, pseudorandomly) for each file independently. The other files in the system
influence the subset §f C St of blocks that actually carries the data (because these
blocks must not be shared with the data-carrying blocks of any other file). However,
due to the encryption, the server does not learn anything about §f (beyond the fact
that it must be a subset of S¢).

Formally, a simulator can simulate the view of the adversary randomly, based
only on the size of the file fbeing accessed. The only difference between this
simulation and the real execution (beyond what is hidden by the encryption and
the security of pseudorandomness) is the following: in the real execution, there is a
small probability that an update could fail, if there are not enough free blocks within
the pseudorandom subset S? or S¢. In the simulation, no failure occurs. Thus
the crucial argument in proving security is to show that it is only with negligible
probability that the client would be left without adequate number of free blocks in
such a pseudorandom set, forcing it to abort the protocol. We will give a standard
probabilistic argument to prove that this is indeed the case.

In the proof below we describe our simulator Sim more formally, and then
discuss the main combinatorial argument used to show that the simulation is
indistinguishable from the real execution. For the sake of clarity, we leave out
some of the routine details of this proof, and focus on aspects specific to our
construction.

The following theorem statement is in terms of the “storage slack ratio” in a
Blind Storage system, which is the ratio of the number of blocks np in the system
to the number of blocks of (formatted) data in the files stored in the system. Note
that the storage slack ratio decreases as files are added (or updated to become
longer) and increases as files are deleted (or updated to become shorter). The
security guarantee below uses the standard security definition in cryptography
literature (see, for instance, [87]), which assures that the security “error” (statistical
distance between the simulated execution and the real execution) is negligible,
as a function of the security parameter. Later, we discuss the choice of concrete

parameters.

Theorem 4.2.3.1. Protocol SCATTERSTORE securely realizes the functionality

Fsrore against honest-but-curious adversaries, provided the storage slack ratio at

8A function v : N — R is said to be negligible if, for every ¢ > 0, there exists a sufficiently
large ko € N such that for all k > ko, v(k) < 7. Thatis, v(k) becomes smaller than 1/poly (k)
eventually, for any polynomial poly.

58

all times is at least ﬁ and np > k = w(log k).

Proof. The non-trivial case is when the server is corrupt (honest-but-curious) and
the client is honest. We describe a simulator for this setting in Figure 4.5. The
simulator essentially maintains the indices of the sets of blocks seen by the server.
It need not maintain the subsets within these sets that carry actual data for the file
being accessed. The maps are used to maintain consistency in terms of the pattern
(same subsets are used if the same file is accessed) and the size of the files.

There are two differences between this simulation and the real execution. Firstly,
the simulated execution uses truly random strings instead of the outputs from P,
® and I'. To handle this we can consider a “hybrid experiment” in which the real
execution is modified so that instead of ®, W and I, truly random functions are
used. By the security guarantees of the PRF, the FD-PRF and the PRG (applied
one after the other), this causes only an indistinguishable difference.

The second difference is in aborting: in the real protocol, the client aborts when
it cannot find enough free blocks in a pseudorandom subset, whereas the simulation
never aborts. Conditioned on the protocol never aborting in the hybrid execution,
the server’s view in that execution is identical to that in the simulated execution.

To complete our proof, therefore it remains to show that the probability of
the client aborting in the hybrid (or real) protocol is negligible. We denote this
probability by p.,.. Before proceeding, we remark that our goal here is to give an
asymptotic proof of security (showing that p.,, goes down as a negligible function
of the security parameter). The concrete parameters from this analysis are overly
pessimistic and an actual implementation can use less conservative parameters.
The key message is that p.,; provides a bound on the extent of insecurity, and this
probability can be quickly driven down by modestly large parameters that scale
linearly with the size of the data stored.

To analyze p., recall that we are analyzing a modified execution in which the
output of the PRG I' on pseudorandom seeds (used to define the pseudorandom
subsets) have been replaced with truly random strings. Suppose there has been
no abort so far, and a new file fof sizeg blocks is to be inserted into the system
(either during the BSTORE.Build stage of during an update or write operation). Let
d out of the np blocks in D be filled. These blocks were filled by picking random
subsets, and then within these subsets, choosing random subsets with free blocks.
The net effect is of choosing a random subset of d blocks out of the np blocks.

Now, when fis being inserted, we pick a random subset S of size x and a random

59

set S¢ 2 SY of size | S| = max([« - sizeg], k). The expected number of occupied

blocks within this set is % - |S¢|. By a standard application of Chernoff bound,’

Q(| e

the probability that more than 2 dD |S¢| blocks are occupied is 2~), provided

n
d
np

2-%%)_and since & is super-logarithmic in % (for e.g., log” k), this probability is

is upperbounded by a constant less than 1. Since | Sg| > k, this probability is

2-w(logk) which is negligible in k. Thus except with negligible probability, of the

|S¢| blocks chosen, at least | Sg|(1 — 2%) > o -sizep - (1 — 2%) are free.

_2
-1/’

or equivalently, 1 — 2% > L. Thus, except with negligible probability, of the | S¢|

By the hypothesis in the theorem statement, the storage slack ratio =7 >

blocks chosen « - sizeg - (1 — 2%) > sizer blocks are free. The same analysis
shows that S? will have at least one free block (in fact, at least | x/a/| free blocks),
except with negligible probability. If both these conditions hold, the client will
not abort when adding this file. By a union bound, the probability that it aborts

remains negligible as long as it adds only polynomially many files. 0

On the choice of parameters. There are a few parameters that one can set in
an implementation of our blind storage scheme to optimize security levels and
performance. For simplicity we treat p.,, (Which measures the probability that any
illegitimate information is revealed to the server) as fixed at either 2740 or 2%,

The other important parameters are the following:

np
) %5

bound on the total number of blocks of all the files (formatted correctly);

e 7, an upperbound on the storage slack ratio — i.e. where d is an upper-

e «, the ratio between the number of blocks in a (large enough) file and the
number of blocks in the pseudorandom subset which is downloaded/uploaded

when that file is accessed; and
e x, the minimum number of blocks in a pseudorandom subset.

The higher these parameters, the better the security level would be. However, they
also reflect higher storage and communication costs. One can find different combi-

nations of (7, «, k) to meet a security level (probability of “error” in simulation)

°In choosing a random subset of blocks, the blocks are not chosen independent of each other.
So in order to apply Chernoff bound, we first consider the experiment in which the blocks are
selected independent of each other with the same fixed probability, so that the expected number
of blocks chosen is, say 3/2d. Then, by an application of Chernoff bound, except with 2~¢("0)
probability, at least d blocks are occupied. Now, in this experiment, we bound the probability that
more than 2% |Sg| blocks in St, again using Chernoff bound. This probability is an upperbound on
the corresponding probability in the original experiment.

60

using the following explicit upperbound, which is tighter than the Chernoff bound

used for asymptotic analysis above.'’

— /[an v—1 1\ fent=
() (20
5 Y g

=0

M

Figure 4.6 plots various possible combinations of o and « for various choices of pe;.
and . A few suggested choices of (7, a, k) which achieve pe; < 27 are (4, 4, 45),
(2,8,60) and (4, 8,25). Thus, for instance, one could use the parameter setting
of (v,a, k) = (4,4, 45) which means that the amortized storage requirement for
each file and the communication requirement for reading large files is roughly 4
times the size of the file; however, for small files — any file with at most 11 blocks,
including empty or non-existent files — 45 blocks would be downloaded, decrypted,
reencrypted and uploaded back.

While a very large value of £ would require a large amount of communication
and extra computation on part of the client (for updates), we recommend moderately
large values for «. This is because, firstly, increasing x does not have any effect on
the storage needed (because only as many blocks are occupied in D as the actual
data consists of), and secondly it actually provides a higher security guarantee and
may slightly increase the overall efficiency too! Apart from lowering pe,, another
reason for a higher security guarantee (not captured in Fgrogg, for simplicity) is that
the server does not learn the exact number of blocks in every file that is accessed;
for “small” files, it learns only that the file is small (at most 11 blocks, in the above
example). The higher the value of «, the less the information that the server learns.
The potential (slightly) higher efficiency is due to the fact that when a “small” file
is retrieved, a single round of interaction suffices, and again, the higher the value
of x, the more the files that fall into the “small” category. This does not increase
the computational cost during read operations.

We point out that while «, x (and np) are parameters built into the system
specification, it is not necessary to have a hard bound d on the number of blocks
of D that can be filled. In other words, and p.,, exhibit graceful degradation: as
the array D fills up and decreases, pe,, increases.

Another parameter that affects the choice of these parameters is the size of the

19The error probability when adding a file of n > + blocks is upperbounded by the probability
that when [an| blocks are picked (with replacements) from a set of np blocks of which at most dg
would be occupied, ¢ < n distinct blocks that are picked are free. The actual experiment involves
picking blocks without replacement, but for our range of parameters, this gives a valid upperbound.

61

blocks in D. As the block size decreases, on the one hand, the number of blocks
in files grows and the effect of the communication overhead due to the minimum
number of blocks used for small files (the parameter x) decreases; on the other
hand, the overhead due to the header size in each block increases.

An implementation can choose a default standard setting of the above parameters,
or seek to optimize performance by tuning them to suit the profile of the files to
be stored in the system. For instance, the set of parameters appropriate for an
application like our SSE construction in the sequel (in which the keyword index
files are stored in a Blind Storage system) may be different from those appropriate
for an application storing a relatively small number of large files. But it is important
that any such optimization is based on a public profile of the set of files to be stored
in the system. This is because, conservatively, we should assume that the server
would know all the system parameters (and exact sizes of the files accessed). It
is true that, heuristically, slightly better guarantees may be available, since the
server learns only max([« - size], k), and need not exactly know « and « (except
as revealed by the former, combined with any auxiliary information it may have
about the sizes of the files being accessed). Further heuristics could be employed
to make this information noisy, so that it remains hard to decipher the parameters
even from a large number of correlated accesses. Nevertheless, we recommend
that the system parameters are optimized only using information that can be made

known to the server.

18 \
16 1
14 n

\ = = 2740 4x
12 v -
10 N ———————— 2740 8x

=] \\ ‘\‘ ~
8 TN “\ 2°-40 16x
hS P L
6 NS Tt~ T~ ——- - = =27-80 4x
4 o~ ==
P e —— 2/-80 8x
0 T T T T T T T 1 27-80 16x
16 32 48 64 80 96 112 128
K

Figure 4.6: Finding the right parameters. Each line on the graph corresponds to trade-offs
between « and £ for a choice of per € {270,270} and v € {4,8,16}.

62

4.3 Searchable Symmetric Encryption

In this section we formally define the syntax and security requirements of a dynamic
SSE scheme, and also present an efficient construction. As we shall see, our syntax
for a dynamic SSE scheme is simpler than in [57], since all non-trivial operations
are carried out by the client, and hence, there are no server side algorithms to be

specified. Our construction

4.3.1 Definitions

A dynamic searchable symmetric encryption scheme (or simply, SSE) consists
of five probabilistic polynomial time procedures (run by the client), SSE.keygen,
SSE.indexgen, SSE.search, SSE.add and SSE.remove. These procedures interact
with a “dumb” server which provides download and upload facilities to access
blocks in an array (see Section 4.2.1), and also a simple file-system to lookup
documents by identifiers. Looking ahead, in our implementation, the upload and
download facilities are used to implement a blind-storage scheme which is used to
store the keyword indices, and the file lookup facility is used to store the actual

(encrypted) documents.'!

e SSE.keygen: Takes the security parameter as input, and outputs a key K.

All of the following procedures take Ky as an input.

e SSE.indexgen: Takes as input the collection of all the documents (labeled
using document IDs), a dictionary of all the keywords, and for each keyword,
an index file listing the document IDs in which that keyword is present.'? It
interacts with the server to create a representation of this data on the server

side.3

e SSE.search: Takes as input a keyword w, interacts with the server, and returns

all the documents containing w.

"Tn our scheme, if we opt to have document-set security, then the file lookup facility is not used,
as the documents will also be stored in the blind-storage.

12The index files can be created by SSE.indexgen, if it is not given as input.

3Typically, this would consist of a collection of (encrypted) documents, labeled by document
indices (different from document IDs), and a representation of the index, which in our constructions
will be stored using a blind-storage system.

63

o [nitialization. On receiving the command Fgsg.indexgen from the client, Fggg
accepts a set of Jy documents — refered to as the original documents (as opposed
to newly added documents) — and stores them internally in an array A. For
1 < 9 < 9y, the array stores A[9] = (idy, contentsy, Wy) — a unique document
ID, the document contents and a set of keywords in the document. It also accepts
from the client a number N, which is a (possibly liberal) upperbound on the total
number of (keyword, document) pairs that will be present in the system at any
one time. Fgsi also maintains a set called Removed initialized to ().

- Initialization Leakage. Fss reveals to the server the (N, s1,--- ,sg,)
where sy = |contentsy| (in number of bits).

e Addition. On receiving the command JFgssz.add to add a document
(id, contents, W) (with a new or existing document ID), Fss: appends it to the
array A: i.e., if there are 0 — 1 entries currently, let A[0] = (id, contents, W). If
there exists 9’ < 0 with idys = id and &' ¢ Removed, then add 9’ to Removed.

— Addition Leakage. Fsi reveals to the server the updated set Removed and
{M>*"|w € W}, where MV = {J'|0' > Jp and w € Wy }. i.e., MW
is the set of newly added documents (i.e., not the original documents) that
have the keyword w. Note that only the sets M, and not their labels w,
are shared with the server.

e Removal. On receiving the command Fggg.remove, Fssg accepts a document 1D
id and identifies O (if any) such that idy = id and O € Removed. If such an index
0 exists, it adds 0 to Removed.

— Removal Leakage. F;; reveals to the server the updated set Removed.

e Search. On receiving the command Fggg.search, it accepts a keyword w from the
client and returns {(idg, contentsy)|w € Wy and 0 ¢ Removed} to the client.

— Search Leakage. Fg: reveals to the server the last instance the same
keyword was searched on (or that it is being searched for the first time) and
also My, = {0lw € Wp}.

Figure 4.7: The Fss; functionality: all the information leaked to the server in our SSE
scheme is specified here.

64

e SSE.add: Takes as input a new document (labeled by a document ID that
is currently not in the document collection), interacts with the server, and

incorporates it into the document collection.

e SSE.remove: Takes as input a document ID, interacts with the server, and if a
document with that ID is present in the server, removes it from the document

collection.

Security Requirement. As in the case of blind-storage, we specify an ideal
functionality, Fsse (Figure 4.7) to capture the security requirements of a dynamic
SSE scheme. We note that the standard simulation-based security (with an environ-
ment) applied to the functionality Fg; automatically ensures what has been called
security against adaptive chosen keyword attacks (CKA2-security) for searchable
encryption.

The functionality Fi is described in detail in Figure 4.7. If document-set
privacy is required, then the functionality behaves slightly differently: the original
set of documents are not added to the list of documents A upfront, but each
one is added only at the first instance when it is accessed using Fggz.search or
Fssp.remove.

We highlight a few aspects of our security definition, compared to that in [57]
and prior work. In all forms of SSE, keyword access pattern and document access
pattern are revealed: i.e., if the same keyword is searched for multiple times or if
the same document appears in multiple keyword searches, the server learns about
that; techniques for hiding this information incur significant costs. The goal of an
SSE scheme is to reveal as little information as possible, beyond this information.
In our scheme we reveal very little information beyond this, for the original set
of documents. For newly added documents, a little more information is revealed,
as they are added (see Addition leakage in Figure 4.7). This has the effect that
for every subset of newly added documents, the server learns only the number of
keywords that are common to all the documents in that subset.

Existing schemes reveal significantly more information. For example, in [57],
when a document is removed, the scheme reveals the number of keywords in the
document and further, for each keyword in it, up to two other documents that share
the same keyword. This is the case even if that keyword is never searched on. In
contrast, by our security requirement, if an original document is removed, only

the number of keywords in it that are searched can be revealed. Further, it is not

65

revealed that a removed document shared a keyword with another document, unless
such a keyword is explicitly searched for.

We remark that our functionality reveals “removed” versions of the documents
in search results, but this information was revealed (implicitly) by the leakage
functions in [57] as well, as the identifiers for each keyword in a removed document
is revealed and this information links the removed documents to future searches on
the same keyword (when the same identifier for the keyword is revealed).

Finally, our scheme allows the client to refer to a document using an arbitrary
document ID rather than a serial number (which is useful when removing docu-
ments from the collection). We also allow the client to reuse document IDs. The
server does learn when a document ID is reused (though not the actual identifier of
the document ID itself); further, in the pattern information revealed to the server,
the different versions that use the same document ID are differentiated. Other
dynamic SSE schemes often avoid this aspect simply by not using document IDs.
This suffices if the only time a document is removed is immediately after retrieving
it from a search (or if the client is willing to maintain a map from document IDs
to serial numbers); however, realistically, in many applications of a dynamic SSE
scheme, it will be important to efficiently remove documents referenced by their

document IDs.

4.3.2 Searchable Encryption from Blind Storage

In this section, we describe an efficient dynamic searchable encryption scheme,
BSTORE-SSE, built on top of a blind-storage scheme. The full details are given in
Figure 4.8. Here we sketch the main ideas.

First, note that we can implement a static searchable encryption scheme simply
by storing the index file for each keyword (which lists all the documents containing
that keyword) in a blind storage system. The guarantees of blind storage readily
translate to the security guarantees of searchable encryption: the server learns only
the pattern of index files (i.e., keywords) accessed by the client.

In a dynamic searchable encryption scheme, we need to support adding and
removing documents, which in turn results in changing the index files. We seek
to do this without revealing much information about the keywords in a document
being added or removed, if those keywords have not been searched on before.

To support dynamic searchable encryption (with much better security guarantees

66

The construction uses a blind-storage system BSTORE, and a pseudorandom permutation ¥/ for mapping document IDs
(with versioning) to pseudorandom document indices. It also uses a clear-storage system CLEARSTORE (see text).

e sSE.keygen: Let Kssg = (Kgstore, Kaip) where Kgsrore is generated by KeyGen and Kg)p is a key for the
PRP V',

e SSE.indexgen:

1.

Firstly, for each document 0, assign a pseudorandom ID ng = \I/’KGID (idg), where idy is the document
ID.

For each keyword w that appears in at least one document, construct an index file with file-ID indexg,
that contains ng for each document O that contains the keyword w. No specific format is required for
the data in this file; in particular, it could contain a “thumbnail” (of fixed size) about each document in
the list.

Next, initialize a blind-storage system with the collection of all these index files (using BSTORE.Build).

Also, (outside of the blind-storage system) upload encryptions of all the documents labeled with their
pseudorandom document index ng.

e SSE.remove: To minimize the amount of information leaked, and for efficiency purposes, we rely on a lazy
delete strategy.

Given a document ID idg, check if a document with index ng = \IlkalD (idg) exists, and if so remove
it, using the file system interface of the server. The index files (in the blind storage or the clear storage)
are not updated for the keywords in this document right away, but only during a subsequent search

operation (see below).

e SSE.add: To add a document O to the document collection, first call SSE.remove to remove any earlier copy
of a document with the same document ID. Then proceed as follows:

1.
2.

(ida).

Generate a random tag tag and add it to the document (say, as a prefix, before or after encrypting the
document). Encrypt the document and upload it, as in the SSE.indexgen phase, using the label né.

Compute a pseudorandom document index né = \P,Kau)

Then, for each keyword w that appears in this document, use the append facility of the clear-storage
scheme to append a record consisting of (né7 tag) to the file with file-ID index%u to include né. Note
that the append operation will create a file in the clear storage system, if it does not already exist.

e SSE.search: Given a keyword w, retrieve and update the index files with file-ID index® and index’, as

follows:

. Retrieve the index file index?U from the blind storage system using the first stage of update operation

of the blind storage scheme. Also, retrieve the index file index., from the clear storage system, using
the first stage of its update operation. All the documents containing the keyword w have their doc-
ument indices listed in these two index files. Attempt to retrieve all these documents listed from the
server.

Some of the documents listed in the index file index?, could have been removed. Complete the blind
storage update operation on the file indexgj to erase the removed files from its list, without changing
the size of the file.

Some of the documents listed in the index file index., may have been removed or replaced with newer
versions. Complete the clear storage update operation on the file index}ﬂ to remove from its list any
document that could not be retrieved, or for which the listed tag did not match the one in the retrieved
document. (Both the update operations are completed in the same round).

One could add an extra round to first check just the tags of the documents before retrieving the documents
themselves.

Figure 4.8: Searchable Encryption Scheme BSTORE-SSE

67

than previous constructions), we rely on the following observation. The access
pattern that server would be allowed to learn tells the server if two newly added
documents share a keyword or not, as soon as they are added and before such a
keyword is searched for (but not whether they share keywords with the original
set of documents that were added when initializing the system). This means we
can treat the set of newly added documents virtually as a different system, with
significantly weaker security requirements.

Thus, for each keyword, we use two index files: one listing the original docu-
ments that include that keyword, and another listing the newly added documents
that include it. The first index file is stored with the server using a blind storage
scheme, where as the second can be stored in a “clear storage” system (see below).
Searching for keywords now involves retrieving both these index files. Adding
documents involves updating only the second kind of index files (using an append
operation of the clear storage). Also, removing a newly added document involves
updating only the second kind of index files, which is straightforward (except for
efficiency concerns, addressed below). But in removing an original document, we
need to ensure that the information on keywords in it that are not searched for
(for e.g., the number of such keywords) remains secret. This is achieved by a lazy
deletion strategy. The index file of a keyword (for the original set of documents) is
not updated until that keyword is searched for. At that point, if the client learns that
a document listed in that index has been deleted, the index is updated accordingly.
This update can be carried out in a single update operation of the blind storage
scheme, with little overhead.

In fact, for removing newly added documents too, we follow a similar lazy delete
strategy, for efficiency purposes. (Otherwise, during a delete operation, the client
will need to fetch the index files for all the keywords in the deleted document in
order to update them, unless the server is willing to carry out a small amount of
computation.) However, we need to account for the possibility that a document
ID could be reused and that a later version may not have a keyword present in an
earlier version. We associate a random tag with a document to check if the version
listed in an index is the same as the current version.

Properly instantiated, this simple idea yields strictly better security than prior
dynamic searchable encryption schemes [57, 53] which revealed more information

about keywords not searched for, especially when removing documents.

Clear Storage. To store the index files for newly added documents, our SSE

68

scheme uses a “clear storage” scheme CLEARSTORE that supports the following

operations:

e Files labeled with file-IDs can be stored (in the clear, without any encryption).
A two-stage update operation can be used to read this file and then write

back an updated version (which could be shorter).

e In addition, there is an efficient append operation, that allows appending a
record (of fixed size) to the file in constant time (without having to retrieve

the entire file and update it).

Note that a standard file-system interface provided by the server can support all
these operations. But the append operation may not be supported by a cloud
storage provider. In this case, it can be implemented by the client, as we consider
in our evaluation.

We consider a simplified version of the SCATTERSTORE scheme to implement
CLEARSTORE with efficient append. In this implementation, to store a file f =
(idg, datag), the file data datay is stored (unencrypted) in a subset of blocks of
a pseudorandom set §f C St. We use a separate file-system interface (without
append) to store fixed-size header files labeled with the file-name id¢; This header
file stores an index indicating the last block of S that is occupied by the file (i.e.,
the length of the shortest prefix of Sy that contains §f14 To append a record to a
file, the client retrieves the header block via the file-system interface, using the
file-name id¢. Then it generates Sg, and recovers the i™ block in Sg, where i is the
index stored in the header block. Then it checks if there is enough space in this
last block, and if so adds the record there. Else, it generates x more entries in St,
fetches those blocks from the clear storage, adds the record to the first empty block
in this sequence,' and updates the index of the last block stored in the header
file accordingly. Note that the number of blocks fetched is a constant on average
provided a block is large enough to contain (say) ~ records; the number of blocks

written back is at most two (and on the average, close to 1).

Choice of parameters. We instantiate BSTORE-SSE with our SCATTERSTORE
constructions. By choosing the parameter « for SCATTERSTORE, we can ensure

14The first block of the data could also be stored in the header file. Note that then it is possible
that the header block itself contains all the data of the file; in this case the index indicating the last
block is set to 0.

5Unlike in the case of blind-storage, if no empty block is found among the blocks fetched, the
client can go on to fetch more blocks. This also allows one to optimistically fetch a smaller number
of blocks, without a significant penalty.

69

that a single search operation can typically be completed in one and half rounds
of interaction. This is because the typical size of an index file could fit into a few
blocks, and by choosing x = 80 as we do in our experiments, the index file can
often be retrieved without having to fetch more blocks. However, in the worst
case (e.g., searching for the keyword “the,” as we report), two and half rounds of

interaction will be needed.

Security Analysis

Theorem 4.3.2.1. Protocol BSTORE-SSE securely realizes Fssi against honest-

but-curious adversaries.

Proof Sketch: The security of this scheme is fairly straightforward to establish,
since it uses the blind storage scheme as a blackbox, and involves no other cryp-
tographic primitive. All the information available to the server from the blind
storage scheme as used in this construction (i.e., the access patterns of the index
files) is easily derived from the information that the server is allowed to have in
the searchable encryption scheme. In other words, a simulator can simulate to the
server all the messages in the protocol using the information it obtains in the ideal

world. The details are straightforward, and hence omitted. O]

4.4 Implementation Details

We implemented prototypes of our blind storage and searchable encryption schemes.
The code was written in C++ using open-source libraries. We used Crypto++ [88]
for the block cipher (AES) and collision-resistant hash function (SHA256) imple-
mentations.

As our schemes only require upload and download interface and do not re-
quire any computation to be performed on the server, they can be implemented
on commercially available cloud storage services. As a proof of concept, we
further implemented a C++ API to interface with Dropbox’s Python API. This
enables a Dropbox user to use a C++ implementation of BSTORE-SSE (using
SCATTERSTORE) with Dropbox as the server. In our Dropbox implementation,
each block in the SCATTERSTORE scheme is kept as a file in Dropbox. We recom-
mend using SCATTERSTORE with a block size that is a multiple of the block size

70

in the cloud storage provider’s storage (typically, 4KB).

4.5 Searchable Encryption Evaluation

For concreteness, we will compare the performance of our SSE scheme with that
of the recent scheme in [57], as one of the most efficient dynamic SSE schemes
in the literature, implemented in a comparable setting. The more recent work of
[7] offers a possibly more optimized version of this protocol (without dynamic
functionality), but is harder to compare against experimentally, as the reported
implementation was in a high performance computing environment. We remark
that for the case of simple keyword searches (which is not the focus of [7]), the
construction of [7] is similar to that of [53, 57], and is expected to show similar
performance.

We focus on computational costs; space and communication overheads in the

prior constructions are often not reported making a direct comparison hard.

e The computation times reported are for the client. In our case the server
is devoid of any computation (beyond simple storage tasks) and hence this
constitutes all the computation in the system. In contrast, in previous SSE
schemes, the server’s computation is often much more than that of the client.
Thus it would already be a significant improvement if our client computation
costs are comparable to the client computation costs in prior work. As we

shall see, this is indeed the case.

e There are several possible engineering optimizations in the Blind-Storage
scheme which can significantly improve the performance of the SSE scheme
(for instance, the first one listed in Section 4.2.2 cuts down the time taken for
the search operation by a factor of « or more). None of these optimizations

have been implemented in the prototype used for evaluation.

Datasets. We use two datasets to evaluate our searchable encryption scheme,
emails and documents.

1) For emails we use the Enron dataset [89] which was also used by [57] and
several other works. From the Enron e-mail dataset, we selected a 256MB subset,

consisting of about 383,000 unique keywords and 20,695,000 unique (document,

71

keyword) pairs. In the experiments involving smaller amounts of data, subsets of
appropriate sizes were derived from these datasets.

2) For documents, we created a dataset with 1GB of four types of documents,
namely PDF, Microsoft PowerPoint, Microsoft Word and Microsoft Excel. The
documents were obtained by searching for English language documents with file-
types pdf, ppt, doc and xls, using Google search. The resulting collection consists
of 1556 documents (roughly evenly distributed among the four filetypes), with over
214,000 unique keywords and about 1,372,000 unique (document, keyword) pairs.

Experiments. The code was compiled without any optimizations on Apple Mac
OS X. We used a well provisioned laptop — with Intel Core 17 3615QM processor,
8GB memory, running Mac OS X 10.9 — for the experiments, keeping in mind that
the typical user of our system will use searchable encryption on a cloud via her
personal computer, just the same way a cloud storage service like Dropbox is used.
This is in contrast with prior research which typically evaluated their work on large
servers with large amounts of memory.

As we shall see below, our scheme is highly scalable and practically efficient.
We cannot offer a direct comparison between our performance speeds and that
of [57], because of different hardware configuration and limited test equipment
information presented in [57]. Nevertheless, our evaluation shows that our scheme
should be significantly more efficient than that of [57].

4.5.1 Micro-benchmarks — File-keyword pair analysis

In [57], micro-benchmarks were used to evaluate the SSE operations. We do the
same for the SSE.indexgen algorithm. (For our search, add and delete operations,
the performance is essentially independent of the total number of file-keyword
pairs already stored in the system, and this micro-benchmark does not provide
a meaningful evaluation of these operations. These operations are evaluated
differently, as explained below.)

Figure 4.9 shows micro-benchmarks for our scheme. The parameters used in
the scheme are held constant, and are the same as detailed in the next section.
Each data point is an average of 5 runs of SSE.indexgen. Note that the amortized
per-pair time falls as the number of pairs increases, before tending to 1.58s; this is
because our SSE.indexgen operation involves encrypting the whole array D (which

has the same size in all the experiments), and this overhead does not increase with

72

the number of pairs.

Compared to the time for index generation operation reported in [57], our
performance is significantly better. [57] reports a per-pair time of 35us for the
same operation. Thus our index generation operation is an order of magnitude
faster.

120.00
—— Enron dataset
100.00 % Documents

80.00

60.00 1} 61.03

40.00

Time per pair (microsecons)

28.94

20.00
2.78

0.00 - T — 158
0 5000000 10000000 15000000 20000000 25000000
Number of File-keyword pairs

Figure 4.9: File/Keyword pair versus amortized time for SSE.indexgen. Time per
file/keyword pair tends to 1.58us, much better than the 35us reported in [57] in a similar
dataset.

4.5.2 Full evaluation

Each data point for Index Generation is the average of 5 runs of SSE.indexgen.
Each data point for the Search is the average of 5 runs using the most frequent

English word "the". Each data point for addition is the average of at least 5 runs.

Parameters Used

The parameters used for the experiments guarantee pe, < 27°° (recall that pe,, is
the probability of the scheme aborting and measures the security “error”) if less
than 1/s of the total blocks in D are filled and guarantee p., < 274 if less than 1/
of the total blocks in D are filled. We set kK = 80 and o« = 4, block size of D to 256
bytes, the total number of blocks in D to np = 224,

73

Index Generation

Index generation is computationally the most expensive phase of any searchable
encryption scheme. Our index generation performance measurements include
encryption of documents and all other operations except the cost of plaintext
index generation. Plaintext index generation performance is orthogonal to our
contributions, doesn’t reflect the performance of our system and is ignored by all
prior work. Figure 4.10 shows our index generation performance on the email
dataset. Our performance is much better when compared to that of [57], which
takes 52 seconds to process 16MB of data. Our scheme can process 256MB (16
times more data) in about 35s. [57] extrapolates this to to 16GB of text e-mails
without any attachments and, since the time for index generation scales roughly
linearly with data, estimates that their index generation would take 15 hours; in
contrast, it would take only 41 minutes in our scheme.

This matches our conclusion from the micro-benchmarks evaluation, that our
index generation operation is at least an order of magnitude faster than that of [57].

Figure 4.11 shows the performance of our scheme on the document dataset.

40.00
35.00 .
30.00
22500
E 20.00 —=
= 15.00 1 =
10.00
5.00 1
0.00

W SKE
SSE

4 8 16 32 64 128 256
(252266) (573456) (1285025) (2506100) (5224133) (10501508) (20694991)

Subsets of Enron email dataset in MBs
(File-keyword pairs)

Figure 4.10: SSE.indexgen performance on email dataset with 99% confidence intervals:
SKE stands for Symmetric Key Encryption and is the time required to encrypt the
documents. All SKE costs are non-zero but some are very small.

Communication costs. The communication cost of initial index upload depends
upon the parameters used for Blind-Storage, and specifically, the size of the array D.
As mentioned above, in Section 4.5.2, the size of D was set to 1GB (2%* blocks of
256 bytes each) in our experiments. In comparison, the actual amount of index data
for the 256MB subset of the email dataset consisted of 20,694,991 file-keyword
pairs, which, using 4-byte fields for document IDs, translates to about 78MB of
data. Given the small size of some of the index files, on formatting this data into
256-byte blocks for the Blind-Storage scheme, this resulted in about 178MB data.

74

35.00

30.00 7

- .-
22000 -

£ 20.00 — .

£ 15.00 1
= SKE

SSE

10.00 7
5.00

0.00
1/8 1/4 3/8 12 5/8 3/4 718 1
(142910) (296191) (422417) (644812) (813491) (1010474) (1242043) (1371656)

Fractions of 1GB Documents
(File-keyword pairs)

Figure 4.11: SSE.indexgen on the document dataset with 99% confidence intervals

For our choice of k and «, v = 4 is sufficient to bring pe, below 274, That is, it
would be sufficient to use about 712MB as the size of D. Hence the choice of 1GB
as the size of D in our experiments leaves abundant room to add more documents
later.

For the document dataset, there are only 1,371,656 file-keyword pairs, which
translates to a plaintext index size of SMB (with 4-byte document IDs). Thus the
size of D could be as low as 20MB. Note that the document collection itself is
of size 1GB in this case. For rich data formats, it will typically be the case that
the communication overhead due to SSE.indexgen would be only a fraction of the

communication requirement for the documents themselves.

Search

Figure 4.12 shows the search performance of our scheme excluding the final
decryption of the documents. Figure 4.12 does include overhead incurred at search
time to handle lazy delete. We searched for the most frequent English word “the”
and it was present in almost all the documents. (The exact query word is not
mentioned in the previous work we are comparing against, so we chose a worst-
case scenario for our experiments.) Our scheme performed better than [57] for all
data sizes. Their scheme needs 17 ms, 34 ms and 53 ms for 4MB, 11MB and 16MB
subsets of the Enron dataset respectively. Our scheme consumed 5 ms, 11 ms and
25 ms for 4MB, 8MB and 16MB subsets of the Enron dataset respectively. The
search time grows proportionately to the size of the response. Figure 4.13 shows
the search performance on the document dataset.

Note that our scheme uses a lazy deletion strategy to handle removals. This

lazy delete mechanism allows us to obtain vastly improved security guarantees

75

518

204
101

— 47
100 | . 75 g

4 8 16 32 64 128 256
(867) (2112) (5137) (10101) (21776) (43490) (85504)

Subsets of Enron dataset in MBs
(Number of documents containing word "the")

Figure 4.12: Search performance on the email dataset with 99% confidence intervals

10.00 -
7.73
8.00 - 6.93 I
5 5.13 5.83 I
£ 6.00 - 5.12 I
I
(5]
B 4.00 - 296 3.27
= 2.17 T =
200 1 °F
0.00
18 14 348 12 58 34 78 1

(132) (284) (415) (670) (818) (994) (1185) (1336)

Fractions of 1GB Documents
(Number of documents containing word "the")

Figure 4.13: Search performance on the document dataset with 99% confidence intervals

by limiting the information leaked to the server (only for files uploaded during
initial index generation). One might ask if this leads to any efficiency degradation
during subsequent searches, since the actual updates to the index take place when
a keyword that was contained in a deleted document is searched for later.

As it turns out (and as was experimentally confirmed), the overhead for searches
does not significantly vary depending on whether the search operation involved a
lazy deletion or not. This is because all search operations use the update mecha-
nism of the underlying Blind-Storage scheme and the clear storage scheme. The
efficiency of the update mechanism itself does not depend significantly on whether
the file was modified or not. Indeed, in the case of Blind-Storage updates, it is
important for the security that it must not be revealed to the server if a lazy deletion

was involved or not.'¢

1We remark that our security model does not consider timing attacks. Depending on the

76

250.00
¥ Index data (MB) 218.12

200.00 Document data (MB)

o
=)
2150.00
3
g 108.19
g [
EIOOAOO
= 57.19
g
8 50.00) -
14.02
00349 00403 009 0.18 039 0.77 1.51
0.00 — - = - - -
4MB SMB 16MB 32MB 64MB 128MB 256MB

Subsets of Enron dataset in MBs

Figure 4.14: Communication needed for searching on the email dataset. The graph shows
the size of the retrieved documents themselves alongside the extra communication
incurred by our scheme.

Communication costs. As our scheme does not involve any server-side compu-
tation, we download slightly more data compared to [57]. But as shown in Fig-
ure 4.14, for the email dataset, the communication overhead is negligible compared
to the size of the documents retrieved. The document dataset is much richer and
contains much fewer keywords compared to the email dataset of the same size
(1GB of documents in our dataset contains only 70MB of text), and therefore the

overhead would be even lower for it.

Add

As opposed to [57] and other prior work, performance of our add operation does
not depend upon the amount of data (i.e. the number of file-keyword pairs) already
present in the searchable encryption system. Figure 4.15 shows the performance of
addition of files of specified size when 256MB of data was initially indexed into

the system.

Communication costs. We only need, on average, to download three blocks and
upload two blocks per unique keyword in the document that is being added. (If the
server supports an append operation that allows to append data to existing files on

the server, we do not need to download any data during Add.)

implementation, we do not rule out a small dependence between the time taken and the extent of
lazy delete computations involved. A serious implementation should take this into account. Since
our SSE scheme is a relatively thin wrapper around the Blind-Storage mechanism, timing attacks
can be effectively mitigated with relative ease.

77

300

250 o =
. SSE
7200
o 150 -
:
= 100 -

50 - -

0 - .
119 693 2267 214

(1KB) (10KB) (1516KB) (126KB)
Number of unique keywords (Filesize)

Figure 4.15: Add performance on email dataset with 99% confidence intervals. SKE costs
are non-zero but very small.

Remove

The communication and computation cost of removing a document is virtually
negligible, since it uses a lazy deletion strategy. Removal of a document in our
scheme only requires the client to send a command to the server to delete the
document from its file-system, and does not need any update to the searchable

encryption index.

4.5.3 Summary

Evaluation of our scheme shows that it is more efficient, scalable and practical than
prior schemes. Index generation in our scheme is more than 20 times faster than
that of [57]. Search operations are 2-3 times faster, in our experiments. Further,
unlike [57], our addition and removal times are independent of the total number
of file-keyword pairs, and is much more scalable. Removal in our scheme has
virtually zero cost. We stress that several possible optimizations have not been

implemented in this prototype.

78

700 -

600 - BSKE =

SSE

Time (ms)
WA W
S o S
S S 3

! | l

b

=

o
i

100 -

0 -
180 374 580 10005
(4.4MBppt) (IMBppt) (80KBpdf) (27MB pdf)

Number of unique keywords (Filesize)

Figure 4.16: Add performance on document dataset with 99% confidence intervals: SKE
costs are non-zero but very small.

4.6 Efficacy of Oblivious RAM in Searchable
Encryption

Oblivious RAM (ORAM) enables accessing the memory without leaking the access
pattern. A lot of effort is underway to make ORAM schemes efficient. Searching
for the exact phrase “Oblivious RAM” on the Google Scholar returns 671 articles,
565 of them published since 2010. ORAM is a cryptographic primitive that allows
accessing memory without leaking the access pattern; however, it provides a
random access memory (RAM) interface that allows accessing a block of memory
using its address. Therefore, the access pattern hiding properties of ORAM are
only valid if memory is accessed single block at a time, which is not always the
case with real applications. Many applications such as searchable encryption (SSE)
or cloud storage'’, requires downloading multiple blocks at a time as illustrated
in Figure 4.17, which leaks the number of blocks being accessed for a particular
request. The number of blocks in turn leaks partial access pattern information. In
SSE, each keyword query requires multiple blocks to be accessed. As different
keywords require different number of blocks to be retrieved, the number of blocks
retrieved leaks some information about the query. Similarly, in cloud storage, a

file may consist of multiple blocks; therefore, downloading the file leaks its size

"By cloud storage, we mean services such as Dropbox and Google Drive that allow users to
store their files.

79

Client Server Client Server

0 | want to search 3
for the keyword |
! ‘america’. Send he blocks !
1,3, 42, 56,
Send me blocks 2 9,13,69, 87, 2
0,2, 59, and 86. T s nosaas [S
5 &
¢ x Here are your blocks. !
Here are your bocks. |—— 5 —10
e ® Local processing : 19 ;1 °
- The list of S {14 :
. that contain the keyword |-42.] 69 | 25
= “america” is stored in | 56 | 87] 93 N
N blocks 3, 87, and 25.
(a) ORAM functionality (b) SSE on top of ORAM

Figure 4.17: ORAM functionality vs. SSE requirements. For each query, SSE accesses
multiple blocks which leaks the number of blocks being accessed. As the number of
blocks accessed depends upon the query, it leaks some information about the access
pattern. The ORAM overhead of 4 shown is just for ease of exposition. (a). The client
downloads multiple blocks (e.g., 4 in the figure) to access a single block from the ORAM.
(b). The client needs to retrieve 3 blocks from the ORAM and therefore downloads 12
blocks. The server learns that the client downloaded 3 blocks.

(rounded off to the block size). Suppose that a file has a unique size, then every
time the client accesses this file, the server observes, from the number of blocks
being accessed, that the client is accessing the same file.

Symmetric Searchable Encryption (SSE) enables a client to store encrypted
documents on a server and search over her encrypted documents to selectively
retrieve the documents. In the SSE setting, the client prepares an inverted index
for her documents and encrypts it using SSE, encrypts her documents using a
symmetric cipher (such as AES), and sends both the encrypted index and the
encrypted documents to the server. The server does not see the contents of the
documents or the queries, but for each query it observes some information leakage:
the search and document-access patterns (combination of search and document-
access patterns is commonly referred to as access pattern). Access pattern is a
significant leakage and may enable the server to infer information about the queries
or the documents [9].

Preventing the leakage in SSE is one of the motivations for the applied ORAM
research; however, no SSE construction that prevents the access pattern leakage has
been proposed yet. A search for articles on the Google Scholar that contains both
exact phrases “Oblivious RAM” and “Searchable Encryption” returns 214 articles.
At least 18 ORAM papers cite Islam et al. 2012 paper titled “Access Pattern
disclosure on Searchable Encryption: Ramification, Attack and Mitigation” [9] to
motivate the importance of eliminating leakage and the capability of ORAM to

do so in applications such as SSE. Similarly, it is widespread in the SSE literature

80

that ORAM can completely eliminate leakage in SSE. We show that using ORAM
to completely eliminate access pattern leakage or even achieve weaker notions of
access pattern hiding either renders the communication performance worse than
the trivial approach of streaming all of the outsourced data for each query or they
do not provide any meaningful reduction in leakage. To the best of our knowledge,
this is the first work studying the applicability of ORAM to SSE.

4.6.1 The fallacy of Composition

The fallacy of Composition occurs when one infers that something is true of
the whole based on the fact that it is true for a part of the whole, without any
Justification for the inference. An example of the fallacy of Composition follows:
Atoms are colorless. Cats are made of atoms. Therefore, cats are colorless.

The widespread fallacy of Composition of Oblivious RAM and Searchable En-
cryption is: Searchable encryption leaks access pattern. Oblivious RAM eliminates
access pattern. Therefore, there exists a method of using Oblivious RAM to elimi-
nate access pattern in searchable encryption. This fallacy is prevalent in ORAM
and Searchable Encryption literature; however, for brevity we do not cite all of the

papers.

4.6.2 Overview

We propose a new systematic methodology to study the applicability of ORAM to
searchable encryption (SSE). We develop a baseline linear searchable encryption
scheme: Linear—LCO-SSE. It supports arbitrary queries and leaks absolutely no
information, except an upperbound on the total size of the data stored on the server.
For each query, Linear—-LC0-SSE, however, needs to stream all the outsourced
data, storing only a small constant amount of data on the client at a time. The
client needs to stream all the outsourced data, but she does not need to store all of
it locally. She can stream in small chunks and discard any streamed chunk that
does not satisfy the query as soon as the local search on it completes. This makes
Linear—£C0-SSE an excellent worst-case baseline to gauge the communication
performance of any SSE scheme. If an SSE scheme needs to communicate more
data then Linear—LCO-SSE, then it is always better to use Linear—LC0-SSE. Note
that Linear—LCO-SSE does not require ORAM.

81

We propose four new leakage classes: L£C0,LC1,LC2, and LC3. We also
discuss £C4 which is the leakage of standard SSE schemes [90, 2]. Each leakage
class captures the information leaked to the server, with £C0 leaking the least
and L£C4 leaking the most information among the five classes. We prove that LC0
is impossible to achieve without downloading all outsourced data for each and
every query (communication required by Linear—LC0-SSE). We propose single
keyword SSE schemes for £C1, £C2, and LC3. We empirically demonstrate
that for a large fraction of queries, LC1-SSE and LC2-SSE perform worse than
downloading the entire outsourced data. We emphasize that a small fraction of
keywords are accessed most frequently (Zipf’s law) and therefore these small
number of keywords constitute a large fraction of the queries. Moreover, we
demonstrate that £C3 does not provide any meaningful reduction in leakage over
LC4. Our results show that more research is needed to develop techniques to

reduce access pattern leakage in searchable encryption.

Contributions. We summarize our contributions below:

e First work on composition of ORAM and SSE. To the best of our knowl-
edge, this is the first work studying the applicability of ORAM to reduce the
access pattern leakage in SSE.

e New Leakage Classes. We propose four new leakage classes for SSE.

e New Systematic Methodology. We develop a new systematic methodology
to study the applicability of ORAM to SSE. Although, we specifically de-
veloped the methodology for SSE, we believe that it can be useful for other
applications as well. First, we design a baseline scheme, called Linear—LC0-
SSE, with a worst-case communication performance. Second, we propose
static single keyword schemes for £LC1, £C2, and £C3. Third, we empirically
study the communication performance of LC1-SSE, LC2-SSE, LC3-SSE,
and £C4-SSE (Naveed’s et al. scheme [2]) relative to Linear—LC0-SSE.

o Interesting findings. We report interesting findings about the applicability
of ORAM to the leakage prevention in SSE. Using our systematic method-
ology, we show that it is impossible to eliminate leakage in SSE without
downloading the entire outsourced data. We show that LC1-SSE and LC2-
SSE have query communication worse than that of Linear—LC0-SSE for a

large fraction of queries (a small fraction of keywords make up the large

82

fraction of queries). We also demonstrate that £C3 and £C4 leak almost the

same amount of information.

e Evaluation. We provide a detailed evaluation of the query communication
performance of the single keyword LC1-SSE, £LC2-SSE, LC3-SSE, and
LC4-SSE schemes using the Enron Email Corpus and the complete English
Wikipedia Corpus.

Scope. We focus only on the applicability of ORAM to reduce access pattern leak-
age in SSE. ORAM has other applications such as secure multiparty computation
and secure co-processor; however, these applications are out of scope of this thesis.

Most of the ORAM schemes work with a storage-only server with a few excep-
tions. Throughout the rest of the chapter, we assume the server to be a storage-only

resource that allows the client to download and upload blocks of data.

Computation ORAMs. Recently ORAM schemes have been proposed that
use computation on the server to reduce the communication overhead [91, 92,
93]. While these schemes have low communication overhead, they incur a large
computation overhead on the server. In terms of respone time'®, the state of the
art computation ORAM schemes incur at least as much overhead as the traditional
ORAMs. The measurements in [93] report that it takes on the order of minutes to
access a single block using Paillier cryptosystem. The computation time can be
improved using NTRU cryptosytem at the cost of increased communication. While
we focus on ORAM schemes without any computation, we believe that in terms
of response time the efficiency arguments are valid for the computation ORAM
schemes as well. Moreover, the access pattern leakage arguments hold for any type
of ORAM.

4.6.3 Leakage Classes

We present five different leakage classes: £C0, LC1, £LC2,LC3, and LC4. LCO
represents absolute minimum leakage and £C4 captures the leakage of a typical
static symmetric searchable encryption (SSE) scheme (e.g., [90, 2]). LC1, LC2,
and £C3 leak more information than £CO0 but less than £C4. Table 4.1 shows all
the leakage classes. To clearly explain the leakage, Table 4.1 shows the leakage
for £CO, LC1, LC2, and LC3 relative to £LC4 which is the prevalent standard for

18The time it takes for an ORAM client to retrieve a block.

83

Leakage Classes
LCO [LC1 | LC2 [LC3 | LC4
Setup Leakage
Total combined size of index (if applicable) and all documents v v v v v
Total size of all documents v v v
Size of index v v v
Query Leakage

For each queried keyword q:
Search Pattern

Number of times q is queried, i.e., the access frequency of ¢ v

If g is the same or different from any of the keywords queried in the past v
Document-Access Pattern

Identifiers of the documents that contain ¢ v v

Number of documents that contain ¢ v v v

Size of each document that contain ¢ v v

Total size of all documents that contain ¢ v v v v

Table 4.1: Leakage Classes for Static Single Keyword Searchable Encryption. Padding
can be used to hide the exact sizes and leak an upperbound on the sizes instead. X shows
the information that is not leaked and v shows the information that is leaked.

SSE schemes in the literature [90, 2]; we believe that this juxtaposition make the
difference in leakage easy to compare and understand.

For each leakage class we describe setup and query leakage. Setup leakage
shows the information leaked when the client initially send the documents and index
to the server and the query leakage shows the information leaked by the queries.
Query leakage is divided into search pattern and document-access pattern: search
pattern represents the leakage about the query keyword itself, while document-
access pattern represents the leakage about the documents that contain the query
keyword. Most of the literature combine search and document-access pattern and
call it access pattern, however, for ease of exposition we explain them separately.

Padding can be used to hide the exact size and leak an upperbound on the size

instead. For simplicity, we omit this fact from this point onwards unless necessary.

Leakage Class 0 (£C0) represents the minimum possible leakage for an SSE
scheme. It only leaks the combined size (with padding an upperbound on the size)
of all documents and index (only if the SSE scheme uses index) during the initial
outsourcing to the server; however, this information is impossible to hide given that
the server is storing the data. No information whatsoever is leaked during queries,

and hence, there is no query leakage.

Leakage Class 1 (£C1) captures the minimum amount of leakage of an SSE
scheme with the query communication complexity linear in the size of the docu-
ments that satisfy the query. As the query communication complexity is linear in

the total size of the documents that satisfy the query, an upperbound on the total

84

size of the documents that satisfy the query is inherently leaked. Moreover, without
appropriate padding, the exact total size of documents being retrieved is leaked;

we consider this case for simplicity.

Leakage Class 2 (£C2) leaks the size as well as the number of documents that
satisfy the query. Moreover, during the setup the size of the index and total size of

all documents is leaked.

Leakage Class 3 (£C3) does not explicitly leak the search pattern, but does leak
the document-access pattern. Document-access pattern implicitly leaks search
pattern except in the following rare situation: If any two keywords ¢ and ¢’ appears
in exactly the same set of documents, then the server is not able to distinguish
between ¢ and ¢’. This condition is rare in realistic data and therefore £C3 is
almost same as £C4 which is leakage of standard SSE schemes. We explain £C3
to demonstrate that a straightforward method of obliviously accessing only the
index in an SSE scheme is not useful, we explain this in detail in Section 4.6.9.
Fig. 4.26 shows that £C3 is almost same as L£C4.

Leakage Class 4 (L£C4) captures the leakage of a static single keyword SSE
scheme (e.g., [90, 2]). It leaks the complete search and document-access patterns.

4.6.4 Communication Baseline

In this section, we present a simple Linear—LC0-SSE scheme, an SSE scheme
with query communication complexity linear in the total size of all documents, as
a communication performance baseline to study the communication performance
of our single keyword LC1-SSE, LC2-SSE, and LC3-SSE schemes we propose
in Section 4.6.5.

Linear—LCO-SSE scheme. We propose a Linear—-LC0-SSE scheme in Fig-
ure 4.18. The client encrypts her documents with any semantically secure symmetric-
key encryption scheme (such as AES) and sends the encrypted documents to the
server. Later, when the client wants to search her outsourced documents, she
streams all of them. The client streams data in small chunks, searches them locally,

and discards the streamed documents that do not satisfy the query.

Our Linear—£C0-SSE scheme has the following properties:
e Absolute minimum leakage (L£C0). It has leakage class £C0, which means

85

it leaks absolute minimum information.
e Arbitrary queries. It supports arbitrary type of queries'”.

o Worst-case query communication. It streams all outsourced documents to

the client for each query.

e Optimal query communication for £CO0. It has optimal query communica-
tion. Theorem 4.6.6.1 shows that Linear—LC0-SSE has optimal communica-

tion required to achieve LC0.

o Constant local storage. It requires the client to store only a single document
at any given instant; the client keeps the document if it satisfy the query and
discards it otherwise. Therefore, in addition to the documents that satisfy the

query, the client only needs to store a single more document.

e It does not need ORAM to achieve access pattern hiding.

Keygen
e The client generates a symmetric key K uniformly at random.
Setup

e The client encrypts all the documents as a single file using a semantically secure
symmetric-key encryption scheme with key K, and sends it to the server.

Search

e For each search query, the client streams all of the outsourced documents and
searches locally. The client stores only a (small) constant amount of data, say a
single document, at any given time. All documents that do not satisfy the query are
discarded after the completion of local search.

Figure 4.18: Linear—£LC0-SSE Scheme. Baseline for communication performance of SSE
schemes we propose in Section 4.6.5.

Baseline Query Communication. Linear—LC0-SSE supports arbitrary queries
and has absolute minimum leakage (£C0). The only problem Linear—LC0-SSE
has is that for each query it requires streaming all outsourced data to the client.

Therefore, it serves as an excellent worst-case communication baseline for any

9Sublinear SSE schemes are designed for a specific type of queries such as single keyword and

Boolean keyword queries.

86

Client Server Client Server

1 want to search
for the keyword
“america”.

1 want to search
for the keyword
“america”.

Send me the st of
document identifiers that[oRrAM
contain the keyword
“america’.

Send me the st of

Gocument identifiers that

contain the keyword
“america’.

Index
List of document identifiers|| ODICT

Index
List of document identifiers | ODICT

<«

———— 3| Document
«————— OorAM

Documents

o ——
oy ony
=i . =
65 —— |
12 -— 2
Client retfieves the : Client rettieves the :
documents in the list. (\H documents in the list. f"H
=B =D

(a) Single Keyword LC1-SSE (b) Single Keyword £C2-SSE

Client Server

| want to search
for the keyword
“america’.

Send me the list of

Gocument identifers that

contain the keyword
“america”

—_—
List o‘ document identifiers

—_—
o,
— =
- =

Client Server

1 want to search
for the keyword
“america”.

Send me the st of

Gocument identifiers that

contain the keyword
“america’”

x
15}
°
c

Index
List of document identifiers | ODICT

|

Documents

——
[0S
Client retrieves the =p
documents in the list.

Documents

Client retrieves the
documents in the list.

(d) Single Keyword £C4-SSE.
This captures leakage of

standard SSE schemes such as
[90, 2].

(¢) Single Keyword £C3-SSE

Figure 4.19: In all the schemes, the client searches for a keyword and retrieves a list of
document identifiers that contain the keyword. Next the client retrieves the documents in
this list from the server. For simplicity, the figures are only showing the important details.

SSE scheme. Any SSE scheme with query communication worse than the Linear—
LCO-SSE scheme can be trivially replaced with the Linear—LC0-SSE scheme.

4.6.5 Constructions

In this section, we first show that achieving £CO0 is, in general, impossible with
query communication better than that of Linear—LC0-SSE. We construct single
keyword SSE schemes for LC1, £C2, and £C3 such that they have optimal query
communication for the respective leakage class. These schemes capture simple
ways of using Oblivious RAM as a blackbox to reduce leakage in SSE. We show in
section 4.6.9 that query communication of £LC1-SSE and £C2-SSE is worse than
that of Linear—LC0O-SSE for a large fraction of queries (only a small number of
keywords constitute most of the queries). Moreover, £LC3-SSE has acceptable query
communication but as explained in section 4.6.9 it does not provide meaningful

reduction in leakage compared to £C4. Security of our schemes follows from the

87

security of the underlying ORAM and ODICT schemes; therefore, we omit the

security proofs.

Oblivious Dictionary (ODICT). Sublinear SSE schemes require inverted index
to function. Index needs a dictionary data structure and ORAM is not a dictionary
data structure. Therefore, we use AVL tree based Oblivious Map scheme of Wang et
al. [94] as an Oblivious Dictionary in our schemes. We consider that ODICT stores
key value pairs and ODICT.Lookup(key) operation returns the value associated
with the key.

4.6.6 LCO-SSE

We show that a scheme with Leakage Class 0 (£C0) necessarily requires download-
ing the entire outsourced data for each query. Therefore, completely eliminating
the leakage with communication less than that of the Linear—LC0-SSE scheme

(i.e., streaming all of the outsourced data) is impossible.

Theorem 4.6.6.1. The lower bound on the query communication complexity to
achieve the Leakage Class 0 (LCO0) is |D|, where |D| is the total size of all out-

sourced documents.

Proof. We prove that if for any query the communication is less than |D|, then the
information leaked to the server is strictly more than £C0. Suppose for a query g,
the client retrieves documents with total size |D'| < |D|, then the server learns the
size of the documents being retrieved |I'|. Suppose the client has another query
¢ that is satisfied by all the documents. For an SSE scheme to be correct, it has
to download all the documents for the query ¢/, i.e., the size of the documents
retrieved for the query ¢’ needs to be |D|. As the size of the data retrieved for the
query ¢ and the query ¢’ are different, the server can distinguish the query ¢ from
the query ¢/, which is strictly more leakage than £C0. Moreover, the server learns
an upperbound on the total size || of the documents that match the query ¢. This
shows that the only way to prevent this leakage is to retrieve all documents for
every query. Therefore, we conclude that |D| is the optimal communication for the
Leakage Class 0 (LC0). L]

88

4.6.7 LC1-SSE

LC1-SSE prevents as much leakage as possible while keeping the query commu-
nication less than the communication of Linear—LC0-SSE. We propose a single

keyword LC1-SSE scheme to study the query communication required to achieve
LC1.

Single Keyword LC1-SSE Scheme. We present our Single Keyword LC1-SSE
scheme in fig. 4.20. The client uses an ORAM O to store both the index ODICT
and the documents. To query a keyword, the client looks up the inverted index
stored in ODICT Dy to retrieve the list L of document identifiers that contain the

query keyword. She then retrieves all the documents in the list L from the ORAM
0.

Query Communication. Let n and d be the number of documents and the total
size of the documents that satisfy a query, e be the size of n document identifiers,
o be the overhead of the ORAM, co be the overhead of the ODICT (where ¢ shows
the number of ORAM accesses required for a single ODICT lookup), and B be
the blocksize used in ORAM and ODICT, then the communication overhead of
LC1-SSE is co x max(B, [£]) + o x max(B, [4]). We demonstrate using real
datasets in Section 4.6.9 that the optimal communication single keyword LC1-SSE
scheme requires more communication than Linear—£C0-SSE for a large fraction

of the queries (a small number of keywords constitute a large fraction of queries).

4.6.8 LC2-SSE

We propose a single keyword £LC2-SSE scheme to investigate Leakage Class 2
(LC2). Our single keyword LC1-SSE and L£C2-SSE schemes differ due the fact
that the former stores both index ODICT and documents in the same ORAM while

the later stores index ODICT and documents separately as shown in fig. 4.19.

Single Keyword £LC2-SSE Scheme. We describe a single keyword £C2 scheme
in Figure 4.21. As shown in Figure 4.19b, it uses an ODICT to store index and an
ORAM to store the documents. To search for a keyword ¢, the client retrieves a list
L of document identifiers of documents that satisfy ¢ from the ODICT D. Next,

the client retrieves the documents in list L from the document ORAM O.

Query Communication. Let n and d be the number of documents and the total

size of the documents that satisfy a query, e be the size of n document identifiers,

89

Keygen.

e The client generates a symmetric key Ko uniformly at random and use it in all
symmetric key operations of ODICT Dy and ORAM O.

Setup.

e The client setups an ORAM O on the server. She uses ORAM O to store both an
ODICT Dy for the index and the documents.

e The client creates an inverted index for all documents.

e The client writes the index in the ODICT Dg. This can be done during ORAM O
setup.

e The client writes all the documents in the ORAM O. This can also be done during
ORAM O setup.

Search.

e To query a keyword g, the client queries the ODICT D¢ using Do.Lookup(q) and
retrieves the list I of documents that contain the keyword.

e The client retrieves all the documents in list L from ORAM O.

Figure 4.20: Single Keyword £C1-SSE Scheme

o be the overhead of the ORAM, o be the overhead of the ODICT, and B be
the blocksize used in ORAM and ODICT, then the communication overhead of
LC2-SSEis o’ x max(B, [£]) +ox max(B, [4]). As LC1-SSE stores both index
ODICT and documents in the same ORAM and LC2-SSE stores them separately,
therefore, the size of the ORAM in LC1-SSE is bigger than index ODICT and
document ORAM in £LC2-SSE. Moreover, the ORAM and ODICT access increases
with their size, the LC2-SSE has slightly better query communication; however, it

may not worth the extra amount of information being leaked.

LC3-SSE.

We propose a single keyword £C3-SSE scheme to study Leakage Class 3 (£C3).
Our single keyword £C3-SSE scheme uses ODICT for the index but stores docu-
ment using plain encryption without ORAM.

Single Keyword £LC3-SSE Scheme. We present a Single Keyword £LC3-SSE
scheme in Figure 4.22. This scheme uses ODICT for the inverted index and

symmetric key encryption to store the documents.

90

Keygen.

e The client generates a symmetric key K uniformly at random, which is used for
encrypting blocks of ODICT D and ORAM O.

Setup.
e The client creates an inverted index for all documents.

e The client writes the index in an ODICT D stored on the server. This can be done
during ODICT D setup.

e The client writes all the documents in an ORAM O stored on the server. This can
be done during ORAM O setup.

Search.

e To query keyword ¢, the client queries ODICT D using D.Lookup(q) and retrieves
the list L of document identifiers that contain the keyword.

e The client retrieves all the documents in list L from ORAM O.

Figure 4.21: Single Keyword £C2-SSE Scheme

Query Communication Complexity. Let n and d be the number of documents
and the total size of the documents that satisfy a query, e be the size of n document
identifiers, o’ be the overhead of the ODICT, and B be the blocksize used in ODICT,
then the communication overhead of £C3-SSE is o x max(B, [5]) + d.

4.6.9 Evaluation

We have implemented our protocols to evaluate the query communication; however,
we only simulate the ORAM accesses, which we believe is enough to evaluate
the query communication overhead. We present detailed and comprehensive
experiments.

In the first set of experiments fig. 4.23, which we call realistic experiments,
we use simulated PathORAM (4 log(V) overhead, where N represents the total
number of blocks) [95] for the document ORAM and the Wang’s et al. AVL tree
based Oblivious Map ((4 log(N))? overhead) [94] for the index ODICT.

In the second set of more conservative experiments fig. 4.24, which we call

20

optimistic experiments, we use simulated ideal ORAM with log(V)*” overhead

20No existing ORAM scheme have this overhead. A loose ORAM bound proved by [96] is
log(N).

91

Keygen

e The client generates two keys K and K’ uniformly at random. K is used to encrypt
blocks of ODICT D and K’ to encrypts the documents.

Setup:
e The client creates an inverted index for all documents.
o She writes the index in an ODICT D. This is done during ODICT D setup.

e She encrypts each document with key K using a semantically secure symmetric
key encryption and send the encrypted documents to the server.

Search:

e To query a keyword ¢, the client queries the ODICT D using D.Lookup(q) and
retrieves the list L of documents that contain the keyword.

e The client retrieves all the documents in the list L from the server.

Figure 4.22: Single Keyword £C3-SSE Scheme

for the document ORAM. Furthermore, we assume that a single ODICT lookup
requires a single ORAM accesses.

We use a blocksize of 4KB throughout.

Before presenting our results, we describe the preliminaries required to under-

stand our results.

o Empirical CCDF Plots. We present our evaluation results using empirical
Complementary Cumulative Distribution Function (CCDF) plots. For exam-
ple, a point (z,y) in figs. 4.23 and 4.24 indicate that the query overhead is at

least x for y fraction of the keywords.

e Query overhead. Query overhead of a query is the ratio of the amount
of data retrieved in an SSE scheme to the total size of all the outsourced
documents. This allows us to compare the query communication of our SSE
schemes to our baseline Linear—LCO-SSE scheme: if the ratio is greater or
equal to 1, then the SSE scheme does not perform better than our baseline
Linear—LCO-SSE.

o Keyword Frequency. We plot keyword frequencies of all the keywords in
the Enron email corpus and the English Wikipedia corpus in fig. 4.25; which
shows that keywords follow Zipf’s law.

92

I3
o
-

14
3

14
o

o
I
[

o
/
[—

Fraction of keywords (CCDF)
°

Fraction of keywords (CCDF)
°
e

LY |

=) 25 -2 2 24 27 707 5 ;13 I 59 27 25 23 27 2‘1 2‘3 2‘5 2
Cumulative Query Overhead (Log Scale) Cumulative Query Overhead (Log Scale)

o
e

o

— LC1-SSE — LC3-SSE — Baseline (Linear-LCO-SSE)

— LC1-SSE — LC3-SSE — Baseline (Linear-LC0-SSE)
— LC2-SSE — LC4-SSE (Naveed et al. SSE)

— LC2-SSE — LC4-SSE (Naveed et al. SSE)

(a) Enron Email Corpus (all 628,908 (b) English Wikipedia Corpus (all
keywords) 4,400, 034 keywords)

1. 1.

o
3

o
3

L

Fraction of keywords (CCDF)
o)
//

\ \
\

0. \\ X

2’ 2° 27 2t 2 2 2 2 2° 2° 2* 27 2 2? 2' 2° 2
Cumulative Query Overhead (Log Scale) Cumulative Query Overhead (Log Scale)

o

Fraction of keywords (CCDF)

°
°

— LC1-SSE — LC3-SSE — Baseline (Linear-LCO-SSE) — LC1-SSE — LC3-SSE — Baseline (Linear-LCO-SSE)
— LC2-SSE LC4-SSE (Naveed et al. SSE) — LC2-SSE LC4-SSE (Naveed et al. SSE)

(¢) Enron Email Corpus (most frequent (d) English Wikipedia Corpus (most
9,000 keywords) frequent 10, 000 keywords)

Figure 4.23: Cumulative Query Overhead using PathORAM for the document ORAM
and AVL tree based Oblivious Map [94] for the Index ODICT. Query overhead of a query
is the ratio of the amount of data retrieved in an SSE scheme to the total size of all the
outsourced documents. A point (x,y) in the plots indicates that the query overhead is at
least « for y fraction of the keywords.

¢ Query Pattern. The more frequent the keyword is the more frequently it
will be queried (we have removed all stopwords). As shown in fig. 4.25, a
small number of keywords have very high frequency, therefore, these small
number of keywords constitutes most of the queries. This fact is important
in understanding the query overhead; in addition to query overhead plots for
the all the keywords, we present query overhead plots zoomed in at the tail
to clearly show the overhead for the most frequent keywords that make up a
large fraction of the queries.

Datasets. We use two datasets: the complete English Wikipedia corpus and the
Enron email dataset. The English Wikipedia corpus contains 4,825,180 distinct

articles and is 9.8GB in size. Enron email dataset [89] contains emails from

93

I3
o
-

14
3

14
o

o

o
—
—

Fraction of keywords (CCDF)
°

Fraction of keywords (CCDF)
°
P

N

7 L \) \\
00— T i T o = 3 T g 0O —is 51T iz 00 55 50 37 37 56
2 2 2 2 2 2 2 2 2 2 2 T N Il pF oyt ot T 0 7 f)
Cumulative Query Overhead (Log Scale) Cumulative Query Overhead (Log Scale)

o
.
-
o

— LC1-SSE — LC3-SSE — Baseline (Linear-LCO-SSE)

— LC1-SSE — LC3-SSE — Baseline (Linear-LC0-SSE)
— LC2-SSE — LC4-SSE (Naveed et al. SSE)

— LC2-SSE — LC4-SSE (Naveed et al. SSE)

(a) Enron Email Corpus (all 628,908 (b) English Wikipedia Corpus (all
keywords) 4,400, 034 keywords)

1 - 1

o
3

o
3

L

L
"

o

o

Fraction of keywords (CCDF)
Fraction of keywords (CCDF)

°
°

0. L] — T = g d 0T 55 57 53 37 3T 30 3 2 5 37 o5
27 2 2 27 2 2 2 2 2 2 2 2 2 2 2 27 2 2 27 2 2 2 2 2 2 2 2 2° 2
Cumulative Query Overhead (Log Scale) Cumulative Query Overhead (Log Scale)

— LC1-SSE — LC3-SSE — Baseline (Linear-LCO-SSE) — LC1-SSE — LC3-SSE — Baseline (Linear-LCO-SSE)
— LC2-SSE LC4-SSE (Naveed et al. SSE) — LC2-SSE LC4-SSE (Naveed et al. SSE)

(¢) Enron Email Corpus (most frequent (d) English Wikipedia Corpus (most
9,000 keywords) frequent 10, 000 keywords)

Figure 4.24: Cumulative Query Overhead using an ideal ORAM overhead of log(NV),
where NV is the total number of blocks, for both the documents ORAM and index ODICT.
We assume that a single ODICT lookup requires a single ORAM access. Query overhead
of a query is the ratio of the amount of data retrieved in an SSE scheme to the total size of
all the outsourced documents. A point (x,y) in the plots indicates that the query overhead
is at least z for y fraction of the keywords.

150 Enron employees, mostly senior managers. The dataset was made public
by the Federal Energy Regulatory Commission during its investigation of Enron.
The dataset is 1.32GB in size and has 517,424 emails. Enron dataset has been
extensively used to evaluate searchable encryption schemes [90, 97, 2].

We removed all stopwards and non-alphabetical characters, and converted all
keywords to the lowercase. After this preprocessing, English Wikipedia corpus
had 4,400,034 keywords and Enron data had 628,908 keywords.

Realistic Experiments. As explained above we use PathORAM for the documents
and AVL tree based Oblivious Map for the index ODICT. LC3-SSE does not use
document ORAM and £C4-SSE does not use both document ORAM and index
ODICT.

94

s
g
S
04

:
:
-3 =
e e

0. 0.

it S T 5
Cumulative fraction of documents that contain a keyword (Log Scale) Cumulative fraction of documents that contain a keyword (Log Scale)

Fraction of keywords (CCDF)
o

Fraction of keywords (CCDF)
o

(a) Enron Email Corpus (b) English Wikipedia Corpus

Figure 4.25: Keyword Frequency. A point (z,y) in the plots indicates that the fraction of
the number of documents that contain a keyword is at least = for y fraction of the
keywords.

Fig. 4.23a shows the query overhead for all keywords in the Enron Email Corpus.
LC1-SSE and L£C2-SSE have the same query overhead and therefore their curves
are overlapping. £LC3-SSE query overhead is slightly more than that of LC4-SSE.
Moreover, LC1-SSE and LC2-SSE query overhead is more than 1 for a large
fraction of queries (a small number of keywords constitutes a large fraction of
queries). Fig. 4.23c shows zoomed in view of the tail of fig. 4.23a for 5, 000 most
frequent keywords, which shows that for all of the 5, 000 most frequent keywords
the query overhead is at least 1.75.

Fig. 4.23b and fig. 4.23d shows similar results for the English Wikipedia corpus.

Optimistic Experiments. Fig. 4.24 shows results for our optimistic experiments,
where we use ideal ORAM and ODICT, both with the communication overhead of
log(N), where N is the number of blocks. The results are better than our realistic
experiments, however, a large fraction of queries still has query overhead of more
than 1.

Leakage Analysis of LC3-SSE and LC4-SSE. Our experiments show that £LC3—
SSE query overhead is almost same as £LC4—SSE; therefore, we investigate whether
LC3-SSE provide meaningful reduction in leakage compared to LC4-SSE. As
explained in Section 4.6.3 LC3-SSE prevents explicit leakage of search pattern,
but leaks search pattern indirectly from the document access pattern. Specifically,
the only information that is not leaked about the search pattern from the document-
access pattern is whether the client is querying for two keywords that appear in
exactly the same set of documents. Fig. 4.26 shows the fraction of keywords for

which there are at least a fraction of other keywords appearing in the same set of

95

14
3

e

n of keywords (CCDF)

o
IS

Fr:

S
sLH
&

02

0.

0
0.0 0.2 0.4 0.6 08 1.0
Cumulative fraction of keywords appearing in the same set of documents

Figure 4.26: Leakage Advantage of LC3-SSE over £LC4-SSE for Enron Email Corpus. A
point (x, y) in the plots indicates that the fraction of keywords that appear in the same set
of documents is at least x for y fraction of the keywords.

documents. As it can been seen, a very small fraction of keywords have a very small
fraction of other keywords that appear in the same set of documents; therefore,
we conclude that £C3 leaks almost as much as £C4. This implies that oblivious
index accesses alone does not provide a meaningful reduction in leakage if the
documents are accessed in a non-oblivious fashion. Therefore, for any meaningful

reduction in leakage both the index and documents accesses need to be oblivious.

96

Chapter 5

A Practical Model for Computing on
Encrypted Data

In the previous chapter, we developed a novel model and constructions to search
over encrypted data. While search is useful in many applications, there are many
other applications that require much richer functionality than just searching over
the encrypted data. In this chapter we develop a new model to allow an authorized
party to learn plaintext result of computation on encyprted data. The propsed model,
called Controlled Functional Encryption, is a variant of Functional Encryption, but
allows for construction of very efficient and secure schemes.

Suppose volunteers would like to offer their genomic data for research, as
long as a strong privacy policy can be enforced without having to trust individual
researchers. We remark that beyond being an illustrative example for us, abuse of
sensitive data by researchers who ignore or are unaware of the limits set by the data
owner is in fact a real problem, as evidenced by the case of the Havasupai tribe
against the Arizona State University [98, 99]. In 1989, researchers from Arizona
State University partnered with the Havasupai Tribe, a community with high rates
of Type II Diabetes, to study links between genes and diabetes risk. When the
researchers were not successful in finding a genetic link, they used the DNA from
blood samples for other unrelated studies such as schizophrenia, migration, and
inbreeding, all of which are taboo topics for the Havasupai [98]. Such unfortunate
incidents can be avoided if researchers do not have direct access to this data, but can
only carry out computations on this data that are subject to restrictions specified
by the data owners. The restriction can include a limit on the total amount of
information (number of bits) revealed to the researchers by a contributed piece of
data over its life-time, a restriction on the kind of functions that can be computed
on the contributed data or a requirement that certain amount of noise be added to
any information computed from this data, a restriction on the number or class of
researchers who can access it, etc. On the other hand, the researchers are typically
not willing to publicly reveal the specific functions they are interested in. Solving

this problem satisfactorily for all parties calls for leveraging tools from modern

97

cryptography.

Where existing approaches fail. One approach to solving this problem would be
to use secure two-party computation, given the recent advances in practical imple-
mentations of this tool [20, 21, 22, 23, 24, 25, 26, 27]. While this would indeed
address all the privacy concerns, this solution is not suited for our scenario for a
couple of reasons: firstly, this requires each volunteer to interact separately with
each researcher interested in using their genomic data; secondly, the researchers
need to decide what all functions they need to compute by the time they interact
with each volunteer, which will prevent them from adapting their functions as
research progresses.

Another potential (albeit currently experimental) solution offered by modern
cryptography would be to use functional encryption or FE — first formalized in
[11], which covers popular cryptographic primitives like Identity Based Encryption
(IBE), Attribute Based Encryption (ABE), etc. as special cases [100, 101, 102, 103,
104, 67, 105, 106, 64]. An FE scheme would allow volunteers to encrypt their data
in such a way that for each function, a researcher can use a key issued by a trusted
authority to compute just that function of the data. This shifts the responsibility of
limiting the information revealed about each genome from individual volunteers to
an authority, without the need to trust the authority with the genomic data itself.
However, functional encryption does not provide a suitable solution to our problem
for a few reasons. Firstly, functional encryption schemes tend to be extremely
inefficient. Also, importantly, functional encryption currently relies on relatively
new and untested cryptographic assumptions. Further, to ensure that when the
authority issues a key for one ciphertext, it does not allow computing the function
on other ciphertexts (belonging to the same data-owner, or different data-owners),
one will need to employ additional mechanisms and also use functional encryption

for a more complex function family than is originally required.

Our Contribution: Controlled Functional Encryption. These limitations lead
us to formulating a new notion of functional encryption — called controlled func-
tional encryption (C-FE) — which addresses all the above privacy and usability
issues, as well as relies only on mature and efficient cryptographic tools (unlike the

standard notion of functional encryption). Our main contributions in this work are:

1. Definitions. We present carefully formulated security definitions for various
forms of C-FE. We use simulation-based security definitions, which give

comprehensive security guarantees against corrupt data users (clients).

98

2. Constructions. We design theoretical and practical constructions of C-FE
schemes achieving these definitions for specific and general classes of func-
tions. Our constructions, even for arbitrary functions, are practically efficient

and rely only on well-studied cryptographic primitives.

3. Applications and Performance Evaluation. We confirm that our proposed
constructions are indeed practical by evaluating their performance on large
scale data. We also discuss the applications of C-FE to personalized

medicine, patient similarity, paternity test and kinship test.

It is instructive to compare C-FE with FE: both rely on a central authority
to issue keys that have customized functionality. FE has the feature that one
key can be used on several ciphertexts, where as C-FE forbids this. C-FE has
several advantages over FE, in situations where it is applicable. Firstly, C-FE
avoids various impossibility results that affect FE. In particular, simulation-based
security definitions are typically impossible to achieve for functional encryption
(e.g., [107, 11, 108]), unless severe limitations are placed on the number of keys
that can be issued (e.g., [63, 64]). Secondly, as we show in this work, even for
arbitrary functions, C-FE admits more practical constructions than are known to be
possible for FE (e.g., [105, 106, 109]); also FE constructions often use relatively
untested assumptions (e.g., sub-exponential Learning With Errors assumption, or
assumptions related to multi-linear maps) which are hard to rely on given fast
improvements in cryptanalysis (e.g., [110]), whereas C-FE constructions can
be based on much more well understood cryptographic primitives like public-
key encryption and oblivious transfer. In short, we present C-FE as a practical
tool, with strong security guarantees and efficient constructions based on mature
cryptographic primitives, that has direct applications to several practical scenarios
for which concepts like secure multi-party computation and FE do not provide

satisfactory solutions.

5.1 Overview

Defining C-FE. In C-FE, the parties can be Data Owners, Clients or a Central
Authority. The clients wish to compute functions of the data belonging to individual
data owners. The data owners will contribute their data to the system once, with

attached policy parameters (e.g., number of times it can be used in a computation)

99

and go offline. They rely on the central authority to ensure that various policies are
enforced regarding what functions of their data can be computed by the clients.
Further, the (honest-but-curious) central authority itself should not learn any infor-
mation about the data (except policy parameters explicitly specified by the data
owner), and the data owners should not learn anything about how their data is being

used, except for the fact that their policies will be enforced.

public key
| Setup
function 3 secret
\L % key policy
dzta " [\ 4 params

policy b Enc

params

| ciphenexﬂ

Dec <€ I KeyGen I(—

tweak

Policy

output

(Okey

Data Owner Client Central Authority

Figure 5.1: Components of a C-FE scheme, described formally in Section 5.2.

Each time a client wishes to evaluate a function f of a piece of data = given to it
(as a ciphertext), it makes a “key-request” to the authority. From this key-request,
the authority can recover the policy parameter A attached to z, and decide (using
arbitrary logic extraneous to the C-FE scheme) whether to issue a key or not. If it
issues a key, the client can use it to extract f(z) (and nothing else).

We shall require security against clients who behave arbitrarily (i.e., not neces-
sarily following the scheme); but the central authority is considered to be honest-
but-curious (i.e., possibly monitored by a passive, eavesdropping adversary, but
otherwise, following the specified scheme). We require that a corrupt (honest-but-
curious) authority does not collude with any other parties. The other parties may
collude arbitrarily. On a technical note, our main security definition is essentially
Universally Composable (UC) security, except for the above restrictions on the
corruption of the authority.

There are several optional variations to this basic set of requirements that is

I'The policies themselves are extraneous to the C-FE scheme.

100

important in many applications, and can be accommodated in our constructions
(often with little overhead).

1. Tweaks. We may allow the authority to tweak the function, possibly using
randomness hidden from the client. For instance, the authority can add noise to
an outcome. More generally, tweaks can be used to restrict the class of functions
that can be computed (without the authority learning the exact function being
computed).

2. Function Hiding. We can consider the requirement that the authority should
not learn the specific function computed by the client on the data owner’s data, or
that it learns only partial information about the function.?

3. Pattern Hiding. Another optional security requirement would be to allow a
client to hide from the authority whether or not, in two separate computations, it is
computing with the same piece of data from a data owner. Instead, if we require
that the authority is told when the same piece of data is computed on again, we say
the C-FE scheme is pattern revealing.

We remark that if a scheme is indeed pattern hiding, then certain policies like
‘allow researchers to compute only 10 functions on my data’ cannot be enforced.
This is just the price one has to pay in order to provide more security to the clients.

We also remark that the various design choices above are made to not only
allow practically efficient constructions, but also to suit the security and usability
requirements of the applications that motivated this work. In particular, the non-
interactive nature (encryptions instead of protocols) and the offline nature of data
owners make a C-FE scheme much easier to deploy in these applications than a

solution relying on, say, secure multi-party computation.

Constructing C-FE. We present a collection of constructions meeting different
levels of security, efficiency and generality.

1. First, we present a construction for the inner product function, wherein the
data owner’s input is a vector of integers and the function to be computed by the
client is also specified by a similar vector; the output of the function is the inner

product of these two vectors.® This construction is extremely efficient, and is

ZNote that allowing the authority to learn more information about the function would make it
easier to enforce more complex policies, at some privacy cost to the clients. In settings like research
on genomic data, the data from the data owners are considered much more sensitive than the inputs
from the clients (researchers), and the latter may be trusted with a central authority.

3The inner product is defined over the ring of integers modulo some integer N. In typical
applications, like set-intersection cardinality or set-union cardinality, IV is chosen to be large relative
to the individual entries in the vectors and the dimension of the vectors, so that the outcome is the

101

based solely on (CCAZ2 secure) public-key encryption (instantiated using a hybrid
encryption scheme involving RSA-OAEP for key encapsulation and AES for data
encapsulation). This construction allows for an additive tweak, but does not allow
function hiding or pattern hiding.

This is a primitive with numerous applications, as various other functions can be
reduced to the secure computation of the inner product function, possibly with
tweaks. For instance, set-intersection cardinality (size of the intersection of two
sets) can be modeled as the inner product of binary vectors representing the two
sets, modulo a number N that is no less than the dimension of the vectors.

2. Next we present a general construction relying on the powerful garbled
circuit construction due to Yao (or more generally, using any decomposable ran-
domized encoding [111]). This construction admits any arbitrary function family,
with arbitrary tweaks. More precisely, for any (efficiently computable) function
F, the client obtains the outcome F'(f, x,w), where x is the data, f is the function
specification from the client, and w is the tweak specification from the authority
(with pre-determined bounds on the size of z, f and w). Prior to this, the authority
obtains the policy parameter A attached to x, and can use this to determine whether
to issue a key to the client or not, and if so what value of w to use.

There are three variants of this construction, with different levels of efficiency.

(a) Without Function Hiding or Pattern Hiding. This variant relies solely on
CCAZ2 secure public-key encryption and a block-cipher (for implementing
the garbled circuits).

(b) With Function Hiding but not Pattern Hiding. This variant additionally re-
quires an oblivious transfer (OT) primitive. Several practical OT schemes are
known, and are used along with garbled circuits in practical implementations

of secure 2-party computation.

(c) With Function Hiding and Pattern Hiding. This variant is similar to the above
construction, but the CCA?2 secure encryption is replaced by Rerandomizable
Replayable CCA encryption. This is a relatively recent primitive, currently
with only one construction in the literature [112], which achieves provable
security based on the well-studied Decisional Diffie Hellman (DDH) assump-
tion. Its efficiency is comparable to that of (unoptimized) OT schemes, but it

is likely that further (possibly heuristic) efficiency improvements are possible.

inner product over integers (not modulo any integer). We point out that this function is different
from the inner product predicate considered in the functional encryption literature, which only
computes whether the inner product is zero or not: the two functions are incomparable.

102

An important extension that naturally applies to all the above variants is that of
multi-input C-FE: this allows the client to compute a function not just on a single
piece of data obtained from a data owner, but also a function that takes as input
multiple such pieces of data. One can also obtain straightforward extensions that
employ digital signatures to authenticate the information provided by the data
owners (when there is a public-key infrastructure). For simplicity, we do not
discuss these extensions in detail as they are relatively straightforward.

We point out that many recent advances in cryptography like Functional Encryp-
tion currently rely on new and largely untested hardness assumptions (related to
bilinear pairings and lattices). Given the fast improvements in cryptanalysis (e.g.,
[110]), these should still be considered at an experimental stage, and several years
from practical adoption. Unlike these tools, the above constructions of C-FE use
only mature cryptographic tools and assumptions (public-key and symmetric-key
encryption, DDH assumption, OT), that can be readily deployed today.

Applications and Performance Evaluation. Firstly, we revisit the example
considered at the beginning of this section. Suppose that each volunteer wishes to
enforce a limit on the total number of one-bit functions that can be computed on
their genome. Given a (pattern revealing) C-F'E scheme for the family of functions
that the researchers are interested in (with or without function hiding depending on
the requirements of the researchers, and with or without tweaks depending on the
privacy requirements of the data owners), we let each volunteer play the role of a
data owner, each researcher a client, along with a central authority that enforces
the policy; the policy parameter A attached to each genome will include a bound
on number of times that genome can be used by a researcher. When a researcher
wants to evaluate a one-bit function on an input, she makes a key-request. The
authority recovers the policy parameter specified by the genome owner, and using
the pattern information so far, determines if the key-request should be honored
or not. If it decides to respond, it uses the C-FE scheme to send the key to the
researcher.

We point out that this solution simultaneously resolves all the competing privacy
and usability requirements in our scenario.

Other applications that motivated this work include personalized medicine,
patient-similarity, and paternity and kinship testing. The function families that
need to be supported in these applications are varied: examples include inner

product between the input vector and a vector given by the client (over integers),

103

Hamming or Levenshtein distance of the input vector with a given vector, Smith-
Waterman algorithm for aligning a sequence with a given sequence, etc.* We
evaluate the performance of our general construction when instantiated for each
of these function families. We use recent off-the-shelf implementations of Yao’s
garbled circuit protocol (along with OTs used in these implementations) and
standard public-key and symmetric-key encryption algorithms (RSA-OAEP and
AES). Our evaluations confirm that the schemes are highly practical.

We also evaluate the performance of our Superfast inner product C-FE scheme,
which proves remarkably efficient (at the cost of not being function hiding) given

that it involves only standard encryption and decryption operations.

Adversary model. The two most widely studied corruption models in literature
are honest-but-curious and malicious®. Honest-but-curious parties follow their
designated protocol diligently but try to learn the secrets of other parties from the
interactions they have with them. On the other hand, malicious parties behave the
way they like: not only they try to learn more information, but also execute any
protocol of their choice in order to do so. In this work, our constructions provide

security against honest-but-curious authorities and malicious clients.

Notation. We use « to denote the security parameter. A function is negligible in x
(denoted negl(k)) if it is smaller than the inverse of any polynomial, for all large
enough values of x. A probabilistic polynomial time algorithm, denoted in short
by PPT , is an algorithm whose running time is bounded by some polynomial in s
on all inputs. This algorithm may use random coin tosses during its execution.

We use Zy to denote the ring of integers modulo N (consisting of 0 and first
N — 1 positive integers with addition and multiplication defined modulo V). A
vector of ¢ elements in this ring is denoted by 7 = (x1, o, . .., z;), where every
x; € Zy. Encryption of a vector & means encryption of the concatenation of the
elements of 7.

We use [1,n] to denote the set {1,2,...,n}. For two strings a and b, a o b
denotes their concatenation and a & b denotes their bit-wise XOR. We denote the

inner-product of two vectors & and 7/ as (Z, ¥/)

On using honest-but-curious third party. We assume the existence of an honest-

but-curious third party (central authority) that is trusted not to collude with the

“In the multi-input variant, we can also support these functions when both arguments to the
function are inputs from data owners; the performance will be essentially identical in the two cases.

SHonest-but-curious adversaries are also referred to as semi-honest or passive. Malicious
adversaries are sometimes called active.

104

party computing a function (client). In general, the whole public key infrastructure
(PKI) depends upon trusted third parties called certificate authorities (CAs). PKI
is widely used for securing communication on Internet. CAs are trusted not to
collude with the adversary, but still be secure enough against attacks. This type
of non-collusion assumption is widely used in literature. Indeed, primitives like
Identity-Based Encryption, Attribute-Based Encryption, etc., all involve a central
authority trusted to not collude with other parties in the system. Nikolaenko et
al. [113, 114] use similar non-collusion assumption where they trust the third
party (garbled circuit generator) not to collude with the garbled circuit evaluator.
Protocols for outsourcing multi-party computation [115, 116, 117, 118] use similar

non-collusion assumptions to outsource evaluation of the garbled circuits.

5.2 Controlled Functional Encryption

In this section, we formally define controlled functional encryption (C-FE) and
the security models under which we study it.

Our definition of C-FE differs from the definition of FE [11] in a crucial way.
In FE, once a client receives a key for a function f from the authority, it can use
the key to decrypt any number of ciphertexts it wants. However, in our controlled
setting, every time a client wants to decrypt a ciphertext CT, with f, a key is
requested from the authority. The authority generates a one-time key which could
only be used to compute f(x). In order to decrypt a different ciphertext, a new
key request must be submitted. Consequently, we have an additional algorithm
KeyReq in our definition of C-FE below. Further, the authority will need to extract
the policy parameter attached to CT, from the key request, before it can decide

whether to honor the request; for this, an algorithm Extract is used.

Syntax. We start by defining the syntax and (perfect) correctness requirement
for the six algorithms that form a C-FE scheme. The role of these algorithms is

illustrated in Figure 5.1.

Definition 5.2.1. A controlled functional encryption (C-FE) scheme for a function
family F, defined over (F,, X, \.) consists of six PPT algorithms (Setup, Enc,
KeyReq, Extract, KeyGen, Dec) satisfying the following correctness condition for

105

allk e N, x € X, A € A and f € F,. Consider the following experiment:

(MPK, MSK) < Setup(1*)
CT « Enc(z, A, MPK)

(p,¢) = KeyReq(CT, f)
(X, &) + Extract(p, MSK)

7 < KeyGen(¢)

z + Dec(¢, 7)

Then we require \' = X (the authority receives the policy parameter correctly) and

z = F,.(f,) (the decryption yields the correct output) with probability 1.

Note that instead of writing f(z), we have denoted it as F,(f,z), where F,
could be considered a function family, and f specifies which function in the family
should be applied to .

The above syntax does not explicitly accommodate a function-revealing or
pattern-revealing C-FE scheme. In these variants, the output of Extract will
contain not just A, but also f and/or a unique identifier that can identify CT.
To accommodate tweaks, we modify the definition of KeyGen to take a tweak
w € W, as an additional input, and change the final correctness requirement to
z=F.(f,z,w).

Security Definition. To cleanly capture the security guarantees of C-FE, we use
an ideal functionality, in the spirit of Universally Composable (UC) security [119].
In UC security, ideal functionality is simply an ideal trusted party that captures
the security guarantees: the various parties in the system (data owners, clients,
authority) can learn only as much information as they can learn when interacting
with this trusted party, and can influence the system only as much as the trusted
party lets them. Our security definition is also along the lines of UC security,
except that we consider an adversarial model in which the authority can only be
corrupted passively (honest-but-curious) and only by itself (no collusion); while

clients can be actively corrupted and may collude with each other.

Ideal World. We define the C-FE ideal functionality F that interacts with several
“data owners,” several “clients,” and one “authority” as follows. (We omit routine
details like initializing a session and how parties can join a session.) JF can

come in four modes of security, depending on whether it is function-hiding or

106

function-revealing, and whether it is pattern-hiding or pattern-revealing.

1. A data-owner can upload a pair (z, A) to F. Then F picks a handle & (a k-bit
random string) and sends it to all the clients. Internally, F records (h, x, \)

in a table.

2. A client can send an evaluation request (f, k) to F. Then F proceeds as

follows:

(a) First, depending on its mode of security, F sends one of the following to

the authority.

e (f,h,\), if function and pattern-revealing.
e (h, \), if function-hiding and pattern-revealing.
e (f,\),if function-revealing and pattern-hiding.

e), if function and pattern-hiding.

(b) Then it awaits for a command from the authority, either denying or
allowing evaluation. In the former case, it sends a special symbol _L to the
client. In the latter case, it receives a tweak w from the authority and sends
F(f,z,w) to the client.

Real World. 1In the “real world” execution, interaction with F is replaced by calls
to a C-FE scheme, as follows. To initialize the system, the authority runs Setup
first and publishes M PK (for the data owners). Instead of uploading (x, \) to F,
a data owner would run Enc and privately communicate the resulting ciphertext CT
to all the clients (in an implementation, an access controlled bulletin-board could
be used to do this). Instead of sending an evaluation request to F, a client would
run KeyReq and send its output to the authority; the authority, instead of receiving
A (and possibly f and/or a handle for CT), uses Extract to obtain it. Then it can
use an external decision process to decide whether or not to honor the key-request,
and if it is to be honored, what the tweak value w should be. Then, instead of
sending w to JF, the authority runs KeyGen to obtain a key that it sends to the client.

Instead of receiving the output from F, the client would compute it using Dec.

Definition 5.2.2. A C-FE scheme is simulation secure if for every adversary Adv
in the real world who actively corrupts a subset of clients or only passively corrupts
the authority alone, there is a simulator Sim in the ideal world execution, which
also corrupts only the same set of parties, and produces an output identically

distributed to Adv’s output in the real world.

107

A more precise definition refers to “environments” in which the execution —
real or ideal — takes place; for more details, we refer the reader to [119] and

subsequent formulations of UC security.

5.3 Constructions

In this section, we describe two C-FE schemes secure under the definitions dis-
cussed above. The first one is a simple and extremely efficient scheme for the
inner-product functionality F'p. It provides practical solutions to common prob-
lems like weighted average, hamming distance, etc. The second one is a general
construction for any polynomial-time computable functionality. Though not as
efficient as the first one, this construction is still practical for many problems of

interest (as demonstrated by our experiments) and provides more security.

5.3.1 Inner Product

We first describe an efficient and simple way to compute inner-product between
two vectors in our controlled functional encryption setting. Our scheme is secure
against malicious clients and honest-but-curious authorities in the non-function
hiding security model. Once again, note that we are able to compute the actual
value of inner product, and not just whether it is zero or not.

Let Fip = {fs | ¥ € Z%} denote the inner-product function family, where
fa(@) = (U,%) = Zle v; - 7; mod N for all ¥ € Z%. Note that to specify a
function in this family, one only needs to provide the index v. (For simplicity we

have omitted the security parameter ~ in the description.)

Overview. We first provide an overview of the construction. To encode an input
vector Z, the data owner chooses a random vector 7 of the same dimension as ¥
over Zy. It then outputs (¢, o), where 0 = Encp (7) and Enc is a CCA2 secure
PKE, and ¢ = & + 7 (all operations over Zy). Note that ¢/ and 7 form an additive
secret sharing of Z, and neither by itself contains any information about . The
key-request computing (7, ¢) consists of (¢,). The authority will decrypt o to
obtain 7 and returns (¥, 7') to the client. The client locally computes (¢, /) and adds

it to the negative of the value obtained from the authority, to obtain

<177:J> - <277F> = <777 f)

108

Even if the client sends the same o to the authority several times, it is easy to show
that the client’s view can be simulated perfectly in an ideal world, where the client
only obtains (v, &) for the values of ¥’ it sent to the authority. As in the general
construction, using CCA2 secure encryption ensures that a malicious client obtains
no advantage by sending a o it did not obtain from a data owner.

Note that the authority’s computation here involves a decryption, and an inner
product computation, and the client’s computation involves merely an inner product
computation. Further, this scheme can exploit the sparsity of 7, i.e. the client’s
computation is proportional to the number of non-zero elements in ¢. In fact, even
if all vector elements are non-zero, our performance evaluations show that this

construction is extremely fast for genomic-scale inputs.

Construction. A (function and pattern revealing) C-FE scheme Iljp for the
function family F'p is presented in Figure 5.2 and a proof of security is described
below. Correctness of IIjp follows easily from construction and the linearity of dot

product:
(U,) — 7= (U, 24+ 7) — (U,7) = (U, 2).

Note that we can allow the authority to add noise to the outcome using a tweak:
KeyGen,p will take the noise w as an additional input and set 7 = (v, 7) — w, so

that the outcome obtained by the client is (¥, ¥) + w.

Protocol ITjp

e Setup;p(17): Run Setupccan (1) to obtain (PK, SK). Set MPK and MSK to
be PK and SK respectively.

e Encip(Z, \,MPK): Choose ¢ numbers ri,rs,...,r, uniformly at random

—

from Zy. Let ¥ = (ry1,r2,...,7r¢). Output the ciphertext CT = (& +
77, EnCCCA2(T7, A, MPK))

e KeyReqp(CT, ¥): Let CT = (%,). Output p = (0, 7) and ¢ = (¥, 7).

e Extractip(p, MSK): Let p = (0, 7). Run Decccaz(o, MSK) to obtain (7, A).
Output ((\, 0), &) where o is used to reveal the pattern, and £ = (¥, 7).

o KeyGenpp(€): Let £ = (¥, 7). Output 7 = (¥, 7).

e Decip(¢, 7): Let ¢ = (¥, 7). Output (U, ¢) — 7.

Figure 5.2: Superfast Construction for computing actual inner product.

Proof of Security. A simple simulator, combined with the CCA2 security of the

encryption scheme can be used to prove the security. The interesting case is when

109

a client is corrupt. To translate the ideal world view to the real world view of the
client, we consider the following simulator.

First, the simulator picks a pair of keys (MPK, MSK) to simulate the setup.
Then, when it receives a handle h, it creates a simulated ciphertext CT' = (v, c1),
where 7, is a random vector (which is identically distributed as & + 7 in the real
ciphertext), and ¢;, < Encccaz (0@ MPK) is a ciphertext encrypting a string of
zeros (which will be indistinguishable from the encryption of (x, \)). Later, if the
client sends out a key-request of the form (o, ¥), the simulator checks if o = ¢, for
some handle h. There are two cases:

1. o = ¢, for some h: Then the simulator forwards an evaluation request (h, ¥/)
to the ideal functionality, which will return z = (¥, Z). The simulator creates a
simulated value 7" = (¥, y;,) + z. In this case, 7' is identically distributed as the
value 7 the client receives in the real execution.

2. There is no h s.t. ¢ = ¢;: In this case the simulator acts like the authority.
i.e., It decrypts o and (if the decryption is valid) obtains some vector 7 then it
returns 7' = (U, 7).

In the second case above the ciphertext o sent by the client to the authority does
not correspond to any (simulated) ciphertext it received (from any simulated data
owner). However, the client could have created ¢ in an arbitrary fashion, without
necessarily encrypting a value r that it knows. To argue that the simulation is
indistinguishable from the real execution, we need to argue that the dummy cipher-
texts cj, created by the simulator remain indistinguishable from real ciphertexts,
even though the simulator carries out decryptions of arbitrary ciphertexts o that
the adversary presents (other than the dummy ciphertexts themselves). This is
possible, thanks to the CCA?2 security of the encryption scheme: a distinguisher
between the real execution and the simulation can be turned into an adversary that
distinguishes the encryptions of real messages and dummy messages, with the help

of a decryption oracle (to which it never sends challenge ciphertexts).

5.3.2 General construction

In this section, we construct a controlled FE scheme II for any polynomial-time
computable family of functions F, which take inputs from the domain X". Without
loss of generality, we assume that an element f € F can be represented by ¢ bits,

and an element x € X can be represented by k bits, where both ¢ and £ are some

110

polynomial in x.

Overview. We start by sketching an intuitive construction, which is neither secure
nor efficient enough, and then describe how to fix these issues. For simplicity,
we start with a function revealing, pattern revealing construction, with no tweaks,
for general function evaluation. That is, we are given an arbitrary (efficiently
computable) function F' so that the client should be able to compute F'(f,), if the
authority, after seeing A (and pattern information), allows the client to do so, where
(x; \) is a piece of data and associated policy parameter from a data owner, and f
is a function specification from the client.

First, the authority runs a Setup algorithm: it picks an encryption-decryption key
pair (MPK, MSK) for a public-key encryption scheme, and publishes the public
key. The encryption algorithm used by the data owner takes (z, \) and creates
two ciphertexts («, o), obtained by encrypting (x, A) respectively, under PK. The
client will receive («, o) and when it wants to evaluate f(x), it sends a key-request
to the authority consisting of (f,). The authority can recover A by decrypting
o; it can also update the pattern information, if necessary, by comparing A with
previous key requests it received. Then, if it decides to honor the key-request, it
engages in a one-round 2-party secure computation (using garbled circuits and a
one-round OT protocol, for instance) to compute the following function F’. F”
takes « as input from the client and (f, SK) as input from the authority, and
outputs F'(Decgy (), f) to the client. Note that Decgg () = z. This would fit
the syntax of C-FE, if the key-request includes the first message from the client to
the authority in the secure computation protocol. As for security, since a secure
computation protocol is used, the client should learn nothing other than F'(f, x).

There are two major problems with this solution:

1. Firstly, it is not secure against malicious clients. In particular, suppose the
client feeds not «, but a related ciphertext o to the secure computation pro-
tocol. Then the client can potentially learn F'(z’, f) where ' = Decgg (')

1s related to x.

2. Secondly, the above solution has a serious drawback in terms of efficiency.
Often F'is a very simple function (like inner product or Hamming distance),
and can be very efficiently implemented using a 2-party secure computation
protocol. However, the secure computation protocol used above is not for

evaluating F', but for evaluating F’. Note that F” involves a (public-key)

111

decryption operation. This decryption applies to a ciphertext of the entire

input x. This makes the scheme vastly inefficient and often impractical.

The first problem is easy to fix. To thwart all such malleability attacks we can
use a CCA2 secure public-key encryption scheme. (One should also bind o and o
together using a random nonce, so that the client cannot replace the policy of one
data owner with that of another; our final solution will not have this structure, and
hence will not need the use of a random nonce.)

To address the second problem, we need to ensure that the secure computation
is for I itself, and not a function like F”. To achieve this, we take a closer look at
how a garbled circuit based 2-party computation protocol proceeds. The client can
evaluate a garbled circuit only for an input for which it holds the requisite “labels’:
each bit position of input has two labels associated with it, corresponding to the
values 0 and 1, that are picked at random by the garbled circuit generator. To let a
client evaluate the circuit on a k-bit input x (belonging to the generator) that the
client does not know, the generator sends the & labels corresponding to =, without
revealing whether each label corresponds to value O or 1.

In our case, unfortunately, the garbled circuit is generated by the authority
who also does not know =z, and it will not be able to send just the relevant labels.
However, it can take the help of the data owner (who is offline), as follows.

Recall that the data owner encodes x as («, o) where « is given to the client and
o to the authority. o will contain a set of 2k keys for symmetric-key encryption
(SKE), encrypted under the authority’s public-key. The authority will encrypt all
the 2k labels (2 per bit position of =) under these keys. Further, the message inside
o will also specify a random order for the 2 encrypted labels for each bit position.
The authority will send all the encrypted labels to the client in this order. Note that
o contains no information about x itself. Now, the client needs to recover only
the £ labels corresponding to x from these 2k encrypted labels. For this, o will
include k£ SKE keys (in the clear), one out of the two keys for each bit position,
corresponding to the bit value of x at that position. e will also indicate, for each
bit position, whether the given key corresponds to the first or the second one in the
pair of encrypted labels that will be sent to the client by the authority. This allows
the client to decrypt exactly the & labels corresponding to the bit values of x. Note
that the client’s view too does not contain any information about x, since which
one in a pair of encrypted labels corresponds to the bit value 0 and which one to 1

is not known to the client.

112

We have another construction which is actually a slight optimization of the above
scheme, that avoids the 2k encryptions by the authority and the k£ decryptions by
the client, by having ¢ and « specify the labels themselves. The authority will pick
all other labels for the garbled circuit freshly, but the 2% labels corresponding to
the input wires for « remain the same.

Note that when f is known to the authority, the only labels that the authority
cannot send directly to the client are those for x. In this case, the entire scheme
is based only on public and symmetric-key encryption schemes. However, if
we require function hiding, the authority will need to transfer the correct labels
corresponding to f via oblivious-transfer.

The variants can be easily accommodated in this construction. Firstly, the
message in the ciphertext o can also contain the policy parameters \ associated
with a piece of data x. Tweaks are simply additional inputs to F' that the authority
can hard-wire into the circuit, while creating the garbled circuit. To allow pattern
hiding, we replace CCA2 secure encryption with Homomorphic Encryption with
CCA security [120].

Construction. For the sake of simplicity, we ignore the policy parameter \ in the
construction; this lets us merge the algorithms Extract and KeyGen (ignoring the
need to extract A). Let (Setupsye, Encske, Decske) be a symmetric key encryption
scheme which generates keys of length x and encrypts «-length messages. Also, let
[ToT be a one-round oblivious transfer protocol where the first message is sent from
chooser to sender and the second message from sender to chooser (for more details,
see the paragraph “oblivious transfer” in Chapter 2). Using these tools along with
others, we present a formal construction of II in Figure 5.3. The two messages
(from the client to the authority, and back) in the OT protocol are combined with
key-request and key-generation algorithms, so that the syntax of C-FE is respected.
A proof of security is given below. We also present an alternate construction, which

is slightly more efficient, in Appendix 5.4.

Proof of security. We provide a sketch of the proof of security of II. Once again,
the interesting case is when a client is malicious. Let Simgc be the simulator
S of the projective prv.sim secure garbling scheme® with circuit being the side
information i.e. PrvSimg , s where ¢(f) = f, as described in [19]. We construct a

simulator Sim which uses Simgc to simulate the view of a corrupt client Adv in the

The simulation based garbling schemes (prv.sim) and indistinguisbility based garbling scheme
(prv.ind) schemes of [19] are equivalent in our setting.

113

Protocol 11

e Setup(1”): Run Setupccar(17) to obtain (PK, SK). Set MPK and MSK to be
PK and SK respectively.

e Enc(z,MPK): Fori € [1,k] and b € {0, 1}, run Setupgkg(1*) to obtain a key
2. Let? =1 orlordori...or)orl. Choose a uniformly random k-bit
strmg v, and let u = = @ v. Now, let r, denote 7 "o 7"5‘2 .. .rzk, where u; is

the ith bit of u. Output the ciphertext CT,, ((ru, u), Encceaz (7 o v, MPK)).

o KeyReq(CT, f): Let CT = (o, 0) and f = (f1, fa, ..., fe). For j € [1, /], run
the first step of the oblivious transfer protocol IIoT with chooser’s input being
fj- Let M be the first message output by this protocol and R; be the coin
tosses used. Now, let M denote (M, ..., M;) and R denote (R, ..., Ry).
Output p = (0, M) and ¢ = (v, f, M, R).

o KeyGen(p = (0,M),MSK): Run Decccaz(c, MSK) to obtain
(r,r1),...,(rY,ri) and v. Consider the circuit C' which takes as in-
put a k-bit strmg z and an ¢-bit function g, and computes F'(g, z). Construct a
projective PrvSimg). garbled version of this circuit as described in [19]
and call it C, choosing keys at random for each and every wire of the circuit,
including input wires. Let the key pairs corresponding to the k-bit string z be

9, 1), ..., (t9,¢L). Fori € [1,k] and b € {0,1}, run Encskg(t?, 72%") to
bdv;

’L’Z

obtain a ciphertext ¢; ™, where v; is the ith bit of v.

Let the key pairs corresponding to the /¢-bit function input g be
(s9,81),...,(sY,s}). Parse M as (Mj,...,M;). For j € [1,4], run IloT
with sender s input being (s? S5, j) and message received from chooser being
M;. Let M]’ be the second message output by this protocol. Let M’ denote

(M],...,M}). Output 7 = (C, (el ... e, cr), M').

e Dec(¢,7): Parse 7 as (C,(,cl,..., % ct), (M],...,M})) and C as
((ru,w), f, (M, ..., M), (Ry,... ,Rg)) For j € [1,/], run Ilot with
chooser’s input f;, coin tosses R;, first round message M, and second round
message M J’ to obtain the key for the jth bit of g. Parse r, as ry1... 7.
To find the key for the ith bit of z, run Decske(c;", ry ;) to obtain ¢;*. Now,
evaluate ' to obtain the value of f(z).

Figure 5.3: General C-FE Construction

ideal world.
Sim runs Adv internally as a black-box. He first executes Setup(1*) to obtain
(MPK, MSK), and sends MPK to Adv. When he receives a handle / from the ideal

functionality, he chooses (r?,71), ..., (r%,r}) and v at random. Let 7 = ¥ o r{

orfort...ordorl anda = (rYory... 77, 0. Sim provides («, o) as ciphertext
to Adv, where o = Encccan(7 o v, MPK)).

When Adv initiates a key request p = (o/, M), Sim first extracts an f from M

114

(note that since [Iot is a UC-secure protocol, this can be done). He then checks
whether ¢’ = o for some h or not. If ¢/ # ¢ for any h, Sim simply runs KeyGen
with (o’, M, MSK), and returns the output to Adv. In case there is equality for
some h,, he sends f and h, to Eval, and obtains F'(f, z). He now invokes Simgc
with inputs (f, F(f,z)) to obtain a fake garbled circuit Cpye. Having obtained
the circuit, Sim runs the rest of KeyGen with (r{,7{),..., (r),r}) and v (decrypted
value of ¢) and returns (Crage, (2, ¢!, ..., ¢, L), M’) to Adv. This completes the
description of Sim.

Note that in the ideal world, when Sim receives a key request with o', he
generates a fake garbled circuit (GC) as opposed to a real circuit (if Sim creates a
real GC, Adv would evaluate it to recover f(01?!), and distinguish the two worlds).
However, a fake GC has the property that no matter what combination of keys
a party uses for the input wires of the bits of x, the circuit always evaluates to
F(f,x). Therefore, even if Adv uses keys corresponding to 0*l to evaluate C’Fake,
it will still recover F'(f, z). Hence, it cannot distinguish between a fake and a real
GC.

Correctness follows easily from construction.

5.4 Alternate General Construction

Before a formal description, we give some intuition about the construction. At
a high-level, our plan is to let the client use a garbled circuit generated by the
authority to evaluate the function on the input z. The circuit in question evaluates
the function F', which takes x and f as inputs (and optionally, a tweak w, which we
ignore for simplicity). f is known to the client, and in the function-revealing case,
to the authority as well. But note that neither the client nor the authority knows the
input 2 (which was generated by a data owner).” Thus, it is not clear how a garbled
circuit for F' can be used in our setting.

In our solution, the data owner will arrange for the client to have the labels
corresponding to the input z, without either the client or the authority knowing
x. The key idea is that the authority does not pick all the labels for all the wires

in the garbled circuit itself. Instead, the data owner would specify the labels used

"Further, as we consider malicious client which may attempt to alter the input on which the
garbled circuit is evaluated, which rules out a simple solution in which x is kept secret-shared
between the client and the authority (unless, cryptographic operations are incorporated into the
garbled circuit).

115

for the input wires corresponding to input x. More precisely, suppose x is k
bits long. Then the data owner picks 2k random labels {r, ri}le and encrypts
them (using a CCAZ2 secure public-key encryption scheme) for the authority. The
encryption is required because it is important that these labels are not all known
to the client. During the key-request, the client is expected to send this part of the
ciphertext to the authority. While a garbled circuit is generated, for each wire v in
the circuit, two freshly chosen random labels (R((]u), Rﬁ“)) are required; but for the
wires corresponding to the input z; (i.e., the i bit of z), the authority uses the pair
(ri, rt) instead. (Labels for all the other wires are picked freshly.) Now, the data
owner knows both = and the labels for the input wires used in the garbled circuit.
So it can simply provide the correct labels to the client as part of the encryption of
x. More precisely, the client will be given the £ labels 71", ..., r.*. On obtaining
the garbled circuit, it simply evaluates the garbled circuit using these labels for the
wires corresponding to .

We remark that typically, it is important that a garbled circuit is not reused — i.e.,
evaluated on different inputs. Our solution could be viewed as a safe way of reusing
parts of a garbled circuit. In particular, if different functions are evaluated on the
same input z, the same labels can be used for z. (In a standard 2-party computation,
this observation could be used to replace multiple OT protocol invocations, with
a single OT protocol; in our case, since the data owner is offline, this property is

crucial.)

5.5 Implementation and Evaluation

We implemented our C-FE constructions: general as well as Superfast construction.
Experiments were conducted on synthetic data, however, size of the data was
inspired by the applications discussed in Section 5.6. We evaluated our general
construction on a powerful machine but used a laptop to evaluate our Superfast

inner-product construction.

5.5.1 Superfast Inner-Product Construction

Our Superfast inner-product construction is implemented in Java. We use RSA-

OAEP [121] (RSA-Optimal Asymmetric Encryption Padding) implementation

116

Protocol IT’

Since IT' is a slight modification of IT, we only describe what changes need to be made
to the algorithms of II in order to obtain the ones for IT'.

e Setup’(1%): Stays the same as Setup.

e Enc/(x, MPK): Randomly pick 2k bit strings of length each. Let (), r})
denote the ith pair among them, where 1 < i < k. Letr, = r{* ory?,...orp*,
where z; denotes the ith bit of . Also, let 7 = r(l) o r% o rg o r% ...0 r,g o r,ﬁ
be the concatenation of all the randomly chosen strings (in the specified order).

Output the ciphertext CT, = (74, Encccaz (7, MPK)).
o KeyReq'(CT, f): Stays the same as KeyReq.

e KeyGen'(p = (0,M),MSK): Run Decccaz(o,MSK) to obtain
(r,r1),...,(r), 7). Consider a circuit C' which takes as input a k-bit
string z and an ¢-bit function g, and computes F'(g, z). Construct a garbled
circuit C for C, but with (19, 7}) as keys for the input bit z; (i € [1, k]). All the
other keys required for creating the garbled circuit are chosen at random. M’ is
computed in the same way as KeyGen. Output 7 = (C, M").

e Dec/(¢, 7): Key for the jth bit of g (j € [1, £]) is obtained in the same way as
described in Dec. On the other hand, key for the ith bit of z is part of . Now,
evaluate C' to obtain the value of f(x).

Figure 5.4: Alternate C-FE Construction

of the Java Cryptography Extension (JCE) and evaluated the construction with
1024-bit, 2048-bit and 4096-bit keys.

Experiments. Our Superfast inner-product construction is very light, so we used
a laptop — with Intel Core 17 3615QM processor, 8GB memory and Mac OS X

10.9 — for the experiments.

Vector sizes. We used data vector of size 4,000,000% integers (4-byte) and varied
the function vector size according to the different applications discussed in Sec-
tion 5.6. We also used data vectors of size 40,000,000° integers for the evaluation.

Encryption in Superfast scheme has two parts: additive secret sharing of plain-
text’s field elements and public key-encryption of one share of each plaintext
element. We concatenate several vector elements to be encrypted in one block
to avoid blow up in the ciphertext size. Ideally, size of ciphertext in our scheme

should be double the size of plaintext due to additive secret sharing. As, we use

8The number is based on the fact that each human has 4,000,000 variants.
%4 million variants in each individual can appear at 40 million different locations.

117

RSA-OAEP, padding makes size of the ciphertext little bit more than double. Per
block padding size is same for different key sizes, but, as larger keys have larger

block sizes, the ciphertext size decreases as the key size increases, as shown in
Table 5.1.

Plaintext size
(4-byto alphabet) 4,000,000 40,000,000
Plaintext
size(MB) 15.26 152.59
Key size 1024 | 2048 | 4096 1024
(bits)
Ciphertext
size(MB) 38.51 | 33.68 | 31.95 385.10
Encryption 12.86 | 1570 | 24.81 126.04
time(s)

Table 5.1: Encryption time and ciphertext size of Superfast C-FE scheme: As,
encryption time and ciphertext size in our scheme depend only on the plaintext size, we
present it separately from Table 5.2. Experiments were performed on a laptop with Intel
Core 17 3615QM processor, 8GB memory and Mac OS X 10.9. Each measurement is an
average of 10 runs. We evaluated 4,000,000 and 40,000,000

[Key size (bits) H Key generation Decryption]

Function vector size Time Data sent Data received Time

(4 byte alphabet) (s) (KBytes) (Bytes) (ms)

1024 1,000 1.21 132.46 8 0.07
20438 1,000 6.55 256.21 8 0.07
4096 1,000 42.52 501.26 8 0.07
1024 10,000 11.66 1295.96 8 0.04
2048 10,000 61.95 2422.85 8 0.04
4096 10,000 377.23 4414.68 8 0.04
1024 20,000 22.37 2529.26 8 0.07
20438 20,000 116.83 4551.33 8 0.08
4096 20,000 658.67 7732.90 8 0.17
1024 4,000,000 226.19 55059.63(=53.77MB) 8 20.58
20438 4,000,000 495.31 50118.00(=48.94MB) 8 22.81
4096 4,000,000 1512.44 483444.50(=47.21MB) 8 23.03
1024 40,000,000 1947.32 | 240209.11(=234.60MB) 8 19.90

Table 5.2: Performance evaluation of our Superfast inner-product construction:
Experiments were performed on a laptop with Intel Core i7 3615QM processor, 8GB
memory and Mac OS X 10.9. Each measurement is average of 10 runs.

We present the performance of Superfast scheme in Table 5.1 and Table 5.2.
Function vector is chosen randomly to account for worst case scenarios. As, we
pack several secret shares in each public key encryption by concatenating them
in a single block, sequential function vectors would result in a very small number
of public key decryptions at the authority for key generation. Our plaintext has
millions of elements, so, very small random function vectors (e.g., with 1000

elements) would result in number of public key decryptions same as the size of the

118

function vector. But, as the function vector size increases the number of public key
decryptions decreases. The maximum possible size of the function vector is when
it is equal to the size of plaintext. As, shown in Table 5.2, this case is much efficient
than small function vectors. Note that in practical scenarios function vectors are
not random and our scheme will perform much better than this analysis. The key
request message size depends upon the function vector size. Function key size is
constant in our scheme. Decryption stage is very efficient and constitutes simple

additions and multiplications and only depends upon the plaintext size.

5.5.2 General C-FE scheme

Our general construction is based on Yao’s garbled circuits. We use FastGC [122]
for Yao’s garbled circuits implementation. Our general C-FE construction also
requires hybrid encryption, which we implement using AES (with 128-bit key)
and RSA-OAEP (with 4096-bit key). To implement hybrid encryption we use Java
Cryptography Extension (JCE). For AES, we use AES counter-mode implementa-
tion of JCE, and for RSA we use RSA-OAEP implementation of JCE. RSA-OAEP
is a non-malleable encryption scheme secure against IND-CCA?2 attacks in the
random oracle model [121]. Moreover, our prototype is single-threaded. We imple-
ment the alternate construction (with function hiding) described in Appendix 5.4,
which is slightly more efficient. This construction requires minor modifications to
the garbled circuit implementation, so in principle it is very easy to reproduce our
results. We require extra code for (i) hybrid encryption, and (ii) partial reuse of the

wire labels.

Experiments. We tested our general C-FE construction on a Dell PowerEdge
R720 computer with dual Intel Xeon E5-2670 (2.60GHz) processors (computer
has 16 cores in total, but our implementation is sequential) and 128GB of memory.
Scientific Linux 6.3 (kernel version: 2.6.32) was installed on the computer. We
allocated 30GB heap memory for the garbled circuit generator and another 30GB
heap memory for the garbled circuit evaluator. We note that FastGC Java implemen-
tation is memory intensive and even with 30GB heap memory (maximum allowable
by JVM is less than 32GB), we ran out of memory. Kreuter et al. introduced PCF
(Portable Circuit Format) framework which is much better in terms of memory
consumption, partially because PCF is written in C++ [23]. Both generator and

evaluator programs were executed simultaneously on the same machine. Amount

119

*aseyd SuI[uO 9y} 210Jaq [[9M SUOP 9q UED I "UONOUNJ SWES Y} JO
uoneindwod A19A9 10§ peyeadar 9q 0} PaaU Jou SIOP PuUB W) ISIY AY) J0J PAIINOUT A[UO ST PUE JSOD WII}-IUO B ST 9[qe) 9Y) UL UMOYS }SOJ UIPJO Y],

‘uond£1oua pLIqQAY 10§ pasn (s)1q ur) sazis Aoy orqnd

I} SMOUS J[qe] Y} JO MOI PIIY} Y} UL 960f PUB 0] ‘I 9IBN[EA UBD I 9I0Joq PAIJAI[OP PUE PIBIAUAS 9q 01 3INOIIO [enaed ay) 10§ Surjrem ST I0jen[ead
‘ururjadid 01 anp asneoaq ‘awn swes aY) “xoidde Junye are 10jeIoUAS pue Jojen[eAd jog "uoneindwod s Jojerouas ayj Jo 5% Kquo st uonendwod
s Jojen[eAq "SI0 pa[qies urefd jo doj uo uondAious priqAy 03 anp peayloro oueurrojrad 9[qISI[Sou oY) 910N "SUNI ()] JO FBISAR ST JUSWAINSLIW
yorq "¢'9 XNUIT OYNUALIOS puk AIoWawW Jo gD ‘s10ss9001d (ZHD09) 0L9Z-SH V09X [o1U] [enp Pim 1ndwod Oz [[°d © uo pauriojiad

1om syuowradxy :uononnsuod gurpry-uonouny Pim (q4-0) uondLiouyg reuonoun, pI[[oHU0)) [BIUAT INO JO UOIBN[EAD QJUBWLIONI] :€°S d[qRL,

11T 127989 dM79°00LT 80'T ‘91’ 1€S SI'LS ay ¥T'e oL'1 (s12qeydie 319- % -8) 00STX00ST 3onpoid 10
€€°0 ‘15765 a39L’LT9 62°0 ‘6509 6095 ¥6'C Ly'T 6L°0 (s10qeydie 119-g 2 -8) 0001X0001 39npoid 10
0" LL ‘YOET a38L'19 08'IS ‘29T g¢'s¢ 9°C ¥0'1 €0 (s1eqeydye 119-g % -8) 0O IX00T 30npoid 10
0T°€61 ‘¥9°0 e 90¢ LT0 0S'T 16'9S eL'e SO'1 00 (sa4g 91) SAV

PS'L6T ‘8S°T dIN08S IS°L61 LY'T €0°9¢ §6'C SO'1 ge0 (2qeydie 119-z¢) 0S¥ UBULINEA YIS
SLVILT ‘080 dINCOP8 9LPILT ‘VT'1 1€°6¢ LT'T oIt ge0 (12qeydre 119-7) 00TX0000T UIRIYSUSA
SY'0S9 ‘0L°0 dIN860C €L°0S9 ‘¥9'1 08°SS 00T ' 9¢'0 (2qeydie 119-7) 0$X0000T UIRIYSUA]
0v'86¥ ‘¥9°0 JINPEST 8E€'86Y LS'1 L8'SS 96'¢ SL'1 06'0 (2qeydre 119-7) 000TX000T UIRIYSUSA]

0S°€ ‘650 dM9TSTLOT LVE ‘LV'] CTLS SL'E (43! ge0 (2qeydie 119-7) 001 X001 UIIYSUSAS'
9T ‘05 9T qINSET 18'Sv ‘8L°69v 6S°€SY | ¥6'80F LT6LE £Ev9¢ $11G000‘00S‘ | Suruuwey

Pr°0 ‘ve'88 aM66°S1SS STSIIL 6L 451! 99°¢1 88Vl $11Q000‘09 SurIue

TS0 0Ly aM9¥'8€81 §S°0°61°9 88'19 01’8 609 91°s $119000°0¢ Suruuey

SP'0 ‘0LT aM19°0Ly1 LY'0 ‘S6'¢ 6019 LTL SI's Sy 11900091 Surwurey

1€°0°61°C 360616 0€°0 ‘18°¢ 0€'6S 9¢°¢ YL’ L8T 11900001 Surwurey

dUIUQ* ,PUIHPO duIUQ ‘,PUIHPO 960¥ 201 960 201
(s)reag Do wwo)) (s)yuan DO (sun)uondA1oog (sw)awr], | (suw)awry wa[qoid
uondA1o9(q uaSAoy uondAioug

120

of data transfered between generator and evaluator was recorded to report network
bandwidth usage.

We evaluated performance of our system on very large problem instances. As
shown in Table 5.3 performance of our scheme is negligible over plain garbled
circuits. We evaluated the general scheme with function hiding capability. It is clear
from Table 5.3 that our scheme has negligible overhead on top of plain garbled
circuits. Note that Offline computation time is a one-time cost that’s incurred
first time the computation is done and there is no computation cost when the
same computation is repeated again. The offline computation includes generating

plaintext digital circuit from the code.

Hamming distance. We evaluated our schemes with Hamming distance problems
of size upto 1.5 million bits. Most of the commercial services such as 23andme
provides human SNP profile with 0.5 million SNPs (recently they started to provide
1 million SNPs). To compare two SNP profiles, direct Hamming distance doesn’t
work as each SNP is of two bits. We designed the following simple encoding after
which we can use Hamming distance to compute the similarity: SNP can have
value of either 0, 1 or 2, we represent 0 as 001, 1 as 010 and 2 as 100. After this
encoding, computing Hamming distance will give us number of common SNPs
between two SNP profiles. As, we represent each SNP with 3 bits, for a 0.5 million
SNP profile, we require 1.5 million bits. Therefore, we conducted experiments
with 1.5 million bits and our results shows that it requires less than 8 minutes and
135MB network communication to find similarity between two SNP profiles of 0.5
million SNPs each (using our encoding scheme). Note that our Superfast scheme
can also be used for computing Hamming distance, but it doesn’t provide function

hiding, the general scheme provides function hiding but takes more time.

Levenshtein Distance. Levenshtein distance is also a commonly used similarity
measure and is computationally much more involved than Hamming distance.
Levenshtein distance is computed using dynamic programming algorithm. We ran
relatively large problem instance; finding Levenshtein distance between 20,000 and
200 letters strings (from a 2-bit alphabet). Levenshtein distance requires a lot of

time and bandwidth but this is due the inefficiency of underlying garbled circuits.

Inner-product. We implemented inner-product functionality into FastGC family
to compare the performance of our Superfast C-FE scheme and general C-FE
scheme. We used simple modular multiplier circuit [123] to realize multipliers

for our inner-product implementation. Inner-product computation in our general

121

model incurs large one-time cost, but is efficient in the online stage. As, can be
seen in the last row of Table 5.3, inner-product have reasonable computation and

communication cost.

Other problems: We also tested our general function C-FE scheme on other
problems such as AES and SmithWaterman score. Results are shown in Table 5.3.

5.6 Applications

Personalized Medicine. Personalized medicine is a revolutionary concept in
healthcare. Different from a “one-size-fits-all” approach, it enables physicians
to prescribe medicine based on the patients’ genomic build-up. Several crypto-
graphic protocols have been proposed for personalized medicine [124, 125]. These
protocols are inefficient and incur very high computation and communication
costs. Recently, additive homomorphic encryption based protocols have been
proposed [126, 127, 128]. These schemes are relatively efficient, but they are very
interactive. They require the patient to be online and possess a computer that will
be used during a disease susceptibility test. This makes them more difficult to
deploy in practice. More seriously, patient computers could get compromised,
resulting in leaking their genomic data. We show that our Superfast C-FE schemes
can be used to achieve a much more practical scheme: it doesn’t require any direct

interaction with the patient!°

, 1s much more computationally and storage efficient,
and securer as we are using non-malleable public-key encryption as opposed to
homomorphic encryption which allows the ciphertext to be arbitrarily modified.
Using our technique, DNA is first digitized through sequencing or genotyping
by an external agency. This sequencing agency can encrypt the patient’s genome
under our Superfast C-FE scheme with a public key issued by the authority and
then publish the ciphertext. Later, when a medical unit wants to do some disease
susceptibility test, it obtains the encrypted genome and asks the authority for a
one-time function key corresponding to the required disease-susceptibility test. The
maximum number of disease markers for a disease susceptibility test are no more
than 50 Single Nucleotide Polymorphisms (single nucleotide variation between

two species) (SNPs) [129]. We conducted our experiments with 1000 SNPs disease

101f patient wishes, she can opt to be asked by the authority for permission to conduct test using
email, SMS, phone call or some other method; alternatively patient can decide beforehand which
parties are allowed to learn which functions.

122

test to show the efficiency of our scheme. As shown in Table 5.2, our scheme can

compute disease susceptibility tests very efficiently.

Patient Similarity. Suppose Alice is suffering from a cancer and her physician
wants to search (on a nation-wide scale) for another patient with similar symptoms
and genetic build-up treated for the same cancer, in a hope that if some therapy and
treatment worked or didn’t work, it would help to treat Alice’s cancer. Hospitals are
typically reluctant to share data with each other without proper security protection,
due to concerns about privacy and liability. Putting effective protection in place is
highly nontrivial, given the scale of the problem: there are 5723 registered hospitals
in United States [130] and more than 15 million patients suffering from cancer
in US alone [131]. It can be difficult for hospitals to even share the data such as
the total number of diabetic patients to form cohorts for medical studies. In this
situation, sharing genomic data is extremely far-fetched.

Many schemes [132, 133, 134, 135, 136, 137, 138] have been proposed for
measuring similarity between genomes but they are designed for comparing two
genomes and none of them can actually gracefully scale to handle the complete
human SNP profile similarity comparison (i.e. 4 million letters of 2-bit alphabet).
Comparing one SNP profile to potentially thousands or hundred of thousands is out
of question for current schemes. We show that our Superfast C-FE scheme can
efficiently support complete human SNP profile comparison and is highly scalable
to be used for comparison with a very large population.

Each human has 4 million SNPs. Comparing similarity of the complete 4 million
SNP profile requires 226 seconds in our scheme and is highly parallelizable. As-
suming that the pricing model of the authority is similar to Amazon EC2, similarity
comparison of the complete genome would cost only $0.014 per single 4 million
SNPs profile comparison. Most of the time complete SNP profile comparison is
not required and that’s why we also conducted experiments with small function
vector size (10,000 and 20,000). Comparison with function vector of size 20,000
can be done in 22.37 seconds and it would cost $0.0014 per comparison. Finding a
similar genome in a collection of 100,000 genomes would cost only $1414 when
comparing all 4 million SNPs, while it would cost only $140 when comparing any
random 20,000 SNPs.

Paternity and Kinship. For privacy-preserving paternity and kinship tests, Baldi
et al. make use of both cryptographic tools (i.e., private set intersection) and

biological tools (e.g., emulating the Restriction Fragment Length Polymorphism

123

chemical test in software) [124]. Furthermore, their subsequent work demonstrates
a framework for conducing such tests on a Android smartphone [125]. Baldi et
al. have a very elegant idea of exploiting domain knowledge to bring privacy-
preserving genomic computation to the world of plausibility. Their scheme is
based on private-set intersection protocol and is not general enough to be used for
other types of genomic computation. Moreover, they assume that user is storing her
own genome which is not a very practical assumption. Also, their scheme requires
access to the complete genome (i.e. 3 billion letters), which is very expensive.
Moreover, they only show how they can find paternity test, we can also support
other relations such as sibling, uncle, cousin, etc. Our approach can support
paternity and kinship inference using human SNP profile that can be obtained for
less than $100 (e.g., from 23andme). Our constructions can be used to implement

kinship inference algorithms described in [139].

124

Chapter 6

Conclusion

Secure and efficient computation on encrypted data could protect data against
powerful adversaries, however, state-of-the-art schemes are either secure or efficient
but not both. In this thesis, we first analyzed the security of the practical encryption
schemes used in encrypted database systems that allow computation on encrypted
data and found that these schemes are not secure enough for real applications.
Second, we developed a new model for searching on encrypted data and designed
a more secure and efficient symmetric searchable encryption scheme. Finally,
we developed a new model that allows more general computation, including any
polynomial-time computable function, on encrypted data, and developed very
efficient schemes using this model.

Many encrypted database (EDB) systems have been proposed in the last few
years as cloud computing has grown in popularity and data breaches have increased.
The state-of-the-art EDB systems for relational databases can handle SQL queries
over encrypted data and are competitive with commercial database systems. These
systems, most of which are based on the design of CryptDB (SOSP 2011), achieve
these properties by making use of property-preserving encryption schemes such
as deterministic (DTE) and order-preserving encryption (OPE). In Chapter 3, we
study the concrete security provided by such systems. We present a series of
attacks that recover the plaintext from DTE- and OPE-encrypted database columns
using only the encrypted column and publicly-available auxiliary information. We
consider well-known attacks, including frequency analysis and sorting, as well
as new attacks based on combinatorial optimization. We evaluate these attacks
empirically in an electronic medical records (EMR) scenario using real patient data
from 200 U.S. hospitals. When the encrypted database is operating in a steady-state
where enough encryption layers have been peeled to permit the application to run
its queries, our experimental results show that an alarming amount of sensitive
information can be recovered. In particular, our attacks correctly recovered certain

OPE-encrypted attributes (e.g., age and disease severity) for more than 80% of the

125

patient records from 95% of the hospitals; and certain DTE-encrypted attributes
(e.g., sex, race, and mortality risk) for more than 60% of the patient records from
more than 60% of the hospitals.

In Chapter 4, we developed a new model to search on encrypted data, which
is much more secure than property-preserving encryption. Dynamic Searchable
Symmetric Encryption allows a client to store a dynamic collection of encrypted
documents with a server, and later quickly carry out keyword searches on these
encrypted documents, while revealing minimal information to the server. In this
paper we present a new dynamic SSE scheme that is simpler and more efficient
than existing schemes while revealing less information to the server than prior
schemes, achieving fully adaptive security against honest-but-curious servers. We
implemented a prototype of our scheme and demonstrated its efficiency on datasets
from prior work. Apart from its concrete efficiency, our scheme is also simpler: in
particular, it does not require the server to support any operation other than upload
and download of data. Thus the server in our scheme can be based solely on a
cloud storage service, rather than a cloud computation service as well, as in prior
work. In building our dynamic SSE scheme, we introduce a new primitive called
Blind Storage, which allows a client to store a set of files on a remote server in
such a way that the server does not learn how many files are stored, or the lengths
of the individual files; as each file is retrieved, the server learns about its existence
(and can notice the same file being downloaded subsequently), but the file’s name
and contents are not revealed. This is a primitive with several applications other
than SSE, and is of independent interest.

Oblivious RAM (ORAM) is a tool proposed to hide access pattern leakage, and
there has been a lot of progress in the efficiency of ORAM schemes; however, less
attention has been paid to study the applicability of ORAM for cloud applications
such as symmetric searchable encryption (SSE). Although, searchable encryption
1s one of the motivations for ORAM research, no in-depth study of the applicability
of ORAM to searchable encryption exists. We initiate the formal study of using
ORAM to reduce the access pattern leakage in searchable encryption. We propose
four new leakage classes and develop a systematic methodology to study the ap-
plicability of ORAM to SSE. We develop a worst-case communication baseline
for SSE. We show that completely eliminating leakage in SSE is impossible. We
propose single keyword schemes for our leakage classes and show that either they
perform worse than streaming the entire outsourced data (for a large fraction of

queries) or they do not provide meaningful reduction in leakage. We present de-

126

tailed evaluation using the Enron email corpus and the complete English Wikipedia
corpus. Our results suggest that we need new tools to reduce the access pattern
leakage in searchable encryption.

In Chapter 5, we developed a new model for computing on encrypted data that
enables construction of very efficient protocols. Motivated by privacy and usability
requirements in various scenarios where existing cryptographic tools (like secure
multi-party computation and functional encryption) are not adequate, we introduce
a new cryptographic tool called Controlled Functional Encryption (C-FE). As in
functional encryption, C-FE allows a user (client) to learn only certain functions
of encrypted data, using keys obtained from an authority. However, we allow
(and require) the client to send a fresh key request to the authority every time
it wants to evaluate a function on a ciphertext. We obtain efficient solutions
by carefully combining CCA2 secure public-key encryption (or Homomorphic
Encryption with CCA security, depending on the nature of security desired) with
Yao’s garbled circuit. Our main contributions in Chapter 5 include developing
and formally defining the notion of C-FE; designing theoretical and practical
constructions of C-FE schemes achieving these definitions for specific and general
classes of functions; and evaluating the performance of our constructions on various

application scenarios.

Future Research

Application Informed Cryptographic Models for Computing on Encrypted
Data.

The purpose of scientific modeling is to capture the real world as realistically as
possible. On the one hand, most cryptographic primitives model extremely hard
scenarios of the problems, leading to inefficient schemes. On the other, most real
applications can be modeled more simply, exploiting unique opportunities offered
by these applications. This gap in modeling prevents cryptographic schemes from
being used in real applications. I plan to bridge this gap by developing models that
capture real applications faithfully and allow for efficient constructions. Controlled
Functional Encryption, discussed in Chapter 5 is one example of a practical model
for computing on encrypted data. We plan to investigate an adaptation of a fully
homomorphic encryption model where the client can do a small amount of work

and interact with the server but outsource the majority of the computation to

127

the server. This model can support many applications, including secure cloud
computation. We envision developing a complier that would take legacy programs
and generate code for the client and server automatically, so the potential adopters
do not have to port their applications. We are also developing a secure data
outsourcing solution for sensitive applications, such as electronic medical records,
where access patterns, data sizes, and timing information leaks sensitive patient
information such as patients’ diseases and hospital quality measurements, such as
the number of patients died in the hospital. Based on existing techniques, such as
Oblivious RAM, which only hide access patterns, an efficient solution that hides
length and timing information as well seems formidable, but by developing novel
techniques that exploit application domain information, we have quite promising
preliminary results. We believe that application informed models for computing on

encrypted data will lead to faster translation into practice.

Making Cryptography Efficient through Principled Security Relaxations.
The traditional goal of cryptography is to develop perfectly secure schemes;
however, recently there has been a lot of progress on cryptographic schemes with
weaker security guarantees, such as property-preserving encryption and symmetric
searchable encryption, which intentionally leak information for efficiency. Due
to their efficiency, such schemes are gaining tremendous interest from industry,
government, and research community. The fundamental question that arises is,
what are the security implications of such leakage for real applications? Little
has been done to explore this question. We plan to conduct an in-depth study of
the implications of information leaked by such schemes. We are still far from
developing practical leakage-free schemes for problems such as encrypted search;
for example, we show that even the most efficient Oblivious RAM scheme cannot
reduce leakage in symmetric searchable encryption with performance better than
streaming all outsourced data [140]. Therefore, we plan to develop reasonable
leakage notions and a framework to understand the implications of such leakage
for real applications. Finally, we plan to develop efficient cryptographic schemes
for such reasonable leakage notions. We are currently working on understanding
leakage of property-preserving and searchable encryption. We are also developing

more expressive, secure, and efficient searchable encryption schemes.

128

References

[1] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in ACM Conference on Computer and
Communications Security (CCS), 2015, pp. 644-655.

[2] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable en-
cryption via blind storage,” in S&P, 2014, pp. 639-654.

[3] M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J.-P. Hubaux,
and C. Gunter, “Controlled functional encryption,” in ACM Conference on
Computer and Communications Security (CCS), 2014, pp. 1280-1291.

[4] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” in CRYPTO, 2007, pp. 535-552.

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving encryption
for numeric data,” in SIGMOD, 2004, pp. 563-574.

[6] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill, “Order-preserving sym-
metric encryption,” in EUROCRYPT, 2009, pp. 224-241.

[7] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for boolean
queries,” in CRYPTO, 2013.

[8] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
“Rich queries on encrypted data: Beyond exact matches,” in Computer
Security—-ESORICS 2015. Springer, 2015, pp. 123-145.

[9] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on
searchable encryption: ramification, attack and mitigation,” in NDSS, 2012.

[10] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in STOC,
2009, pp. 169-169.

[11] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions and
challenges,” TCC, Tech. Rep., 2011.

[12] A. C.-C. Yao, “How to generate and exchange secrets,” in FOCS, 1986, pp.
162-167.

129

[13] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman &
Hall/CRC, 2008.

[14] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, “RSA-OAEP is
secure under the RSA assumption,” in CRYPTO, Jan. 2001, no. 2139, pp.
260-274. [Online]. Available: http://link.springer.com/chapter/10.1007/
3-540-44647-8_16

[15] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, ‘“Relations
among notions of security for public-key encryption schemes,” in
CRYPTO 98, no. 1462, pp. 26-45. [Online]. Available: http:
/Nink.springer.com/chapter/10.1007/BFb0055718

[16] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searching on
encrypted data,” in S&P, 2000, pp. 44-55.

[17] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:
Protecting confidentiality with encrypted query processing,” in SOSP, 2011,
pp- 85-100.

[18] C. Peikert, V. Vaikuntanathan, and B. Waters, “A framework for efficient
and composable oblivious transfer,” in CRYPTO 2008, 2008, no. 5157,
pp- 554-571. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-540-85174-5_31

2

[19] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled circuits,
in CCS, 2012, pp. 784-796.

[20] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay-secure two-party
computation system.” in USENIX Security, 2004, pp. 287-302.

[21] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party compu-
tation using garbled circuits.” in USENIX Security, vol. 201, no. 1, 2011.

[22] B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-gate secure computation
with malicious adversaries,” in USENIX Security, 2012, pp. 14-14.

[23] B. Kreuter, B. Mood, A. Shelat, and K. Butler, “Pcf: A portable circuit
format for scalable two-party secure computation,” USENIX Security, 2013.

[24] Y. Huang, J. Katz, and D. Evans, “Efficient secure two-party computation
using symmetric cut-and-choose,” in CRYPTO, 2013, pp. 18-35.

[25] Y. Lindell, “Fast cut-and-choose based protocols for malicious and covert
adversaries,” in CRYPTO, 2013, pp. 1-17.

[26] Y. Huang, J. Katz, and D. Evans, “Quid-pro-quo-tocols: Strengthening semi-
honest protocols with dual execution,” in I[EEE S&P, 2012, pp. 272-284.

130

http://link.springer.com/chapter/10.1007/3-540-44647-8_16
http://link.springer.com/chapter/10.1007/3-540-44647-8_16
http://link.springer.com/chapter/10.1007/BFb0055718
http://link.springer.com/chapter/10.1007/BFb0055718
http://link.springer.com/chapter/10.1007/978-3-540-85174-5_31
http://link.springer.com/chapter/10.1007/978-3-540-85174-5_31

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

S. Zahur and D. Evans, “Circuit structures for improving efficiency of
security and privacy tools,” in IEEE S&P, 2013, pp. 493-507.

A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy,
and R. Venkatesan, “Orthogonal security with cipherbase.” in CIDR, 2013.

I. H. Akin and B. Sunar, “On the difficulty of securing web applications
using CryptDB,” in PriSec, 2014.

I. A. Al-Kadit, “Origins of cryptology: The Arab contributions,” Cryptolo-
gia, vol. 16, no. 2, pp. 97-126, 1992.

A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryp-
tography. CRC Press, 1996.

T. Brekne, A. Arnes, and A. @slebg, “Anonymization of ip traffic monitoring
data: Attacks on two prefix-preserving anonymization schemes and some
proposed remedies,” in PETs, 2006, pp. 179-196.

J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “Prefix-preserving ip ad-
dress anonymization: Measurement-based security evaluation and a new
cryptography-based scheme,” in ICNP, 2002, pp. 280-289.

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks

against searchable encryption,” in To appear at the ACM Conference on
Communications and Computer Security (CCS ’15). ACM, 2015.

T. Sanamrad, L. Braun, D. Kossmann, and R. Venkatesan, “Randomly
partitioned encryption for cloud databases,” in DBSec XXVIII, 2014, pp.
307-323.

Y. Elovici, R. Waisenberg, E. Shmueli, and E. Gudes, “A structure preserving
database encryption scheme,” in Secure Data Management, 2004, pp. 28—40.

H. Kadhem, T. Amagasa, and H. Kitagawa, “Mv-opes: Multivalued-order
preserving encryption scheme: A novel scheme for encrypting integer value
to many different values,” IEICE TRANSACTIONS on Information and
Systems, vol. 93, no. 9, pp. 2520-2533, 2010.

Z. Yang, S. Zhong, and R. N. Wright, “Privacy-preserving queries on en-
crypted data,” in ESORICS, 2006, pp. 479-495.

H. Kadhem, T. Amagasa, and H. Kitagawa, “A secure and efficient order
preserving encryption scheme for relational databases.” in KMIS, 2010, pp.
25-35.

S. Lee, T. Park, D. Lee, T. Nam, and S. Kim, “Chaotic order preserving
encryption for efficient and secure queries on databases,” IEICE transactions
on information and systems, vol. 92, no. 11, pp. 2207-2217, 2009.

131

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

N. Chenette, A. O’Neill, G. Kollios, and R. Canetti, “Modular order-
preserving encryption, revisited,” 2015.

W. Jansen and T. Grance, “Guidelines on security and privacy in public
cloud computing,” NIST special publication, pp. 800-144, 2011.

S. Paquette, P. T. Jaeger, and S. C. Wilson, “Identifying the security risks
associated with governmental use of cloud computing,” Government Infor-
mation Quarterly, vol. 27, no. 3, pp. 245 — 253, 2010.

P. Brudenall, B. Treacy, and P. Castle, “Outsourcing to the cloud: data
security and privacy risks,” Financier Worldwide and Hunton & Williams,
2010.

R. Ostrovsky, “Efficient computation on oblivious RAMs,” in STOC, 1990,
pp. 514-523.

O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431473, 1996.

B. Pinkas and T. Reinman, “Oblivious RAM revisited,” in CRYPTO, 2010,
pp- 502-519.

E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious RAM,” in
NDSS, 2012.

E. Stefanov and E. Shi, “Oblivistore: High performance oblivious cloud
storage,” in IEEE S&P, 2013, pp. 253-267.

D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on
encrypted data.” in IEEE S&P, 2000, pp. 44-55.

E.-J. Goh, “Secure indexes,” IACR ePrint Cryptography Archive, Tech. Rep.
2003/216, 2003.

Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data.” in ACNS, 2005, pp. 442-455.

R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable sym-
metric encryption: improved definitions and efficient constructions,” in CCS,
2006, pp. 79-88.

P. van Liesdonk, S. Sedghi, J. Doumen, P. H. Hartel, and W. Jonker, “Com-
putationally efficient searchable symmetric encryption,” in Workshop on
Secure Data Management (SDM), 2010, pp. 87-100.

M. Chase and S. Kamara, “Structured encryption and controlled disclosure,”
in ASIACRYPT, 2010, pp. 577-594.

132

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

b

K. Kurosawa and Y. Ohtaki, “UC-secure searchable symmetric encryption,
in Financial Cryptography and Data Security (FC), 2012.

S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmet-
ric encryption,” in CCS, 2012, pp. 965-976.

S. Kamara and C. Papamanthou, “Parallel and dynamic searchable symmet-
ric encryption,” in Financial Cryptography and Data Security, FC (2013),
2013.

E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” 2014.

D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rocsu, and
M. Steiner, “Dynamic searchable encryption in very large databases: Data
structures and implementation,” 2014.

P. Golle, J. Staddon, and B. R. Waters, “Secure conjunctive keyword search
over encrypted data.” in ACNS, 2004, pp. 31-45.

S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Outsourced
symmetric private information retrieval,” in CCS. ACM, 2013, pp. 875-888.

S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Functional encryption with
bounded collusions via multi-party computation,” in CRYPTO, 2012, pp.
162-179.

S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich,
“Reusable garbled circuits and succinct functional encryption,” in STOC,
2013, pp. 555-564.

K.-M. Chung, J. Katz, and H.-S. Zhou, “Functional encryption from (small)
hardware tokens,” in ASTACRYPT, 2013, pp. 120-139.

A. Sahai and H. Seyalioglu, “Worry-free encryption: functional encryption
with public keys,” in CCS, 2010, pp. 463-472.

S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Functional encryption with
bounded collusions from multiparty computation,” in CRYPTO, 2012.

“Tpm reset attack,” http://www.cs.dartmouth.edu/~pkilab/sparks/.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric
encryption: Improved definitions and efficient constructions,” in CCS, 2006,
pp- 79-88.

O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” JACM, vol. 43, no. 3, pp. 431473, 1996.

133

http://www.cs.dartmouth.edu/~pkilab/sparks/

[71] “Google Encrytped Big Query,” https://github.com/google/
encrypted-bigquery-client.

[72] “Always Encrypted,” https://msdn.microsoft.com/en-us/library/
mt163865(v=sql.130).aspx.

[73] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in TCC, 2006, pp. 265-284.

[74] R.Burkard, M. Dell’ Amico, and S. Martello, Assignment Problems. Society
for Industrial and Applied Mathematics, 2012.

[75] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, 1955.

[76] J. Munkres, “Algorithms for the assignment and transportation problems,”
Journal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1,
1957.

[77] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman,
“Semantically secure order-revealing encryption: Multi-input functional
encryption without obfuscation,” in EUROCRYPT, 2015, pp. 563-594.

[78] R. A. Popa, FE. H. Li, and N. Zeldovich, “An ideal-security protocol for
order-preserving encoding,” in S&P, 2013, pp. 463-477.

[79] F. Kerschbaum and A. Schroepfer, “Optimal average-complexity ideal-
security order-preserving encryption,” in CCS, 2014, pp. 275-286.

[80] “Fifth Annual Benchmark Study on Privacy and Secu-
rity of Healthcare Data,” http://www.ponemon.org/blog/

criminal-attacks-the-new-leading-cause-of-data-breach-in-healthcare,
accessed: 2015-05-15.

[81] “HCUP Databases. Healthcare Cost and Utilization Project (HCUP). 2008-
2009. Agency for Healthcare Research and Quality, Rockville, MD.” www.
hcup-us.ahrq.gov/databases.jsp.

[82] “OpenEMR,” http://www.open-emr.org/, accessed: 2015-05-15.

[83] “Hospital Discharge Data Public Use Data File,” http://www.dshs.state.tx.
us/THCIC/Hospitals/Download.shtm.

[84] “Hospital Inpatient Discharges (SPARCS De-
Identified): 2012, https://health.data.ny.gov/Health/
Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t.

134

https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client
https://msdn.microsoft.com/en-us/library/mt163865(v=sql.130).aspx
https://msdn.microsoft.com/en-us/library/mt163865(v=sql.130).aspx
http://www.ponemon.org/blog/criminal-attacks-the-new-leading-cause-of-data-breach-in-healthcare
http://www.ponemon.org/blog/criminal-attacks-the-new-leading-cause-of-data-breach-in-healthcare
 www.hcup-us.ahrq.gov/databases.jsp
 www.hcup-us.ahrq.gov/databases.jsp
http://www.open-emr.org/
http://www.dshs.state.tx.us/THCIC/Hospitals/Download.shtm
http://www.dshs.state.tx.us/THCIC/Hospitals/Download.shtm
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t

[85]

[86]

[87]

[88]
[89]
[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric
encryption: Improved definitions and efficient constructions,” Journal of
Computer Security, vol. 19, no. 5, pp. 895-934, 2011.

R. Canetti, “Universally composable security: A new paradigm for crypto-
graphic protocols,” Electronic Colloquium on Computational Complexity
(ECCC) TRO1-016, 2001, previous version “A unified framework for an-
alyzing security of protocols” available at the ECCC archive TRO1-016.
Extended abstract in FOCS 2001.

O. Goldreich, Foundations of Cryptography: Basic Applications. Cam-
bridge University Press, 2004.

“Crypto++,” http://www.cryptopp.conm/.
“Enron dataset,” https://www.cs.cmu.edu/~enron/.

S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmet-
ric encryption,” in CCS, 2012, pp. 965-976.

T. Mayberry, E.-O. Blass, and A. H. Chan, “Efficient private file retrieval by
combining oram and pir,” in NDSS, 2014, pp. 1-11.

S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs,
“Onion oram: A constant bandwidth blowup oblivious ram,” Cryptology
ePrint Archive, 2015. http://eprint. iacr. org/2015/005, Tech. Rep.

T. Moataz, T. Mayberry, and E.-O. Blass, “Constant communication oram
with small blocksize,” in CCS, 2015.

X. Wang, K. Nayak, C. Liu, E. Shi, E. Stefanov, and Y. Huang, “Oblivious
data structures.” in CCS, 2014, p. 185.

E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas,
“Path oram: An extremely simple oblivious ram protocol,” in CCS, 2013, pp.
299-310.

O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” JACM, vol. 43, no. 3, pp. 431473, 1996.

D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rocsu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for boolean
queries,” in CRYPTO 2013, 2013, pp. 353-373.

“Havasupai tribe and the lawsuit settlement aftermath,” http://genetics.ncai.
org/case-study/havasupai-Tribe.cfm.

“Indian tribe wins fight to limit research of its dna,” http://www.nytimes.
com/2010/04/22/us/22dna.html?pagewanted=all&_r=1&.

135

https://www.cs.cmu.edu/~enron/
http://genetics.ncai.org/case-study/havasupai-Tribe.cfm
http://genetics.ncai.org/case-study/havasupai-Tribe.cfm
http://www.nytimes.com/2010/04/22/us/22dna.html?pagewanted=all&_r=1&
http://www.nytimes.com/2010/04/22/us/22dna.html?pagewanted=all&_r=1&

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in EUROCRYPT,
2005, pp. 457-473.

V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption
for fine-grained access control of encrypted data,” in CCS, 2006, pp. 89-98.

J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based
encryption,” in [EEE S&P, 2007, pp. 321-334.

J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products,” in EUROCRYPT, 2008,
pp. 146—162.

T. Okamoto and K. Takashima, “Fully secure functional encryption
with general relations from the decisional linear assumption,” in
CRYPTO 2010, 2010, no. 6223, pp. 191-208. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-642-14623-7_11

S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Attribute-based encryption
for circuits,” in STOC, 2013, pp. 545-554.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, “Can-
didate indistinguishability obfuscation and functional encryption for all
circuits,” STOC, pp. 4049, 2013.

A. O’Neill, “Definitional issues in functional encryption,” Cryptology ePrint
Archive, Report 2010/556, 2010.

S. Agrawal, S. Gurbanov, V. Vaikuntanathan, and H. Wee, “Functional
encryption: New perspectives and lower bounds,” in Crypto, 2013.

S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters, “Attribute-based
encryption for circuits from multilinear maps,” in CRYPTO 2013, 2013, no.
8043, pp. 479-499.

A. Joux, “Faster index calculus for the medium prime case application to
1175-bit and 1425-bit finite fields,” in EUROCRYPT, 2013, pp. 177-193.

Y. Ishai, “Randomization techniques for secure computation,” Secure Multi-
Party Computation, vol. 10, pp. 222-248, 2013.

M. Prabhakaran and M. Rosulek, “Rerandomizable rcca encryption,” in
CRYPTO, 2007, pp. 517-534.

V. Nikolaenko, U. Weinsberg, S. loannidis, M. Joye, D. Boneh, and N. Taft,
“Privacy-preserving ridge regression on hundreds of millions of records,” in
IEEE S&P, 2013, pp. 334-348.

136

http://link.springer.com/chapter/10.1007/978-3-642-14623-7_11

[114] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh,
“Privacy-preserving matrix factorization,” in CCS, 2013, pp. 801-812.

[115] H. Carter, B. Mood, P. Traynor, and K. Butler, “Secure outsourced
garbled circuit evaluation for mobile devices,” in USENIX Security, 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2534766.2534792 pp.
289-304.

[116] H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor, “For your phone only:

2

custom protocols for efficient secure function evaluation on mobile devices,
SCN, 2013.

[117] S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-party compu-
tation.” IJACR Cryptology ePrint Archive, vol. 2011, p. 272, 2011.

[118] S. Kamara, P. Mohassel, and B. Riva, “Salus: a system for server-aided
secure function evaluation,” in CCS, 2012, pp. 797-808.

[119] R. Canetti, “Universally composable security: A new paradigm for crypto-
graphic protocols,” in FOCS, 2001, pp. 136-145.

[120] M. Prabhakaran and M. Rosulek, “Homomorphic encryption with cca secu-
rity,” in Automata, Languages and Programming, 2008, pp. 667-678.

[121] M. Bellare and P. Rogaway, “Optimal asymmetric encryption,” in EURO-
CRYPT, 1995, pp. 92-111.

[122] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols,” in NDSS, 2012.

[123] “A combinational multiplier using the xilinx spartan ii fpga,” http://ecen3233.
okstate.edu/PDF/Labs/Combinational %20Multiplier.pdf.

[124] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik, “Countering
gattaca: efficient and secure testing of fully-sequenced human genomes,” in
CCS, 2011, pp. 691-702.

[125] E. De Cristofaro, S. Faber, P. Gasti, and G. Tsudik, “Genodroid: are privacy-
preserving genomic tests ready for prime time?” in WPES, 2012, pp. 97-108.

[126] E. Ayday, J. L. Raisaro, and J.-P. Hubaux, ‘“Privacy-enhancing technologies
for medical tests using genomic data,” in NDSS, 2013.

[127] E. Ayday, J. L. Raisaro, P. J. McLaren, J. Fellay, and J.-P. Hubaux, “Privacy-
preserving computation of disease risk by using genomic, clinical, and
environmental data,” in HealthTech, 2013.

137

http://dl.acm.org/citation.cfm?id=2534766.2534792
http://ecen3233.okstate.edu/PDF/Labs/Combinational%20Multiplier.pdf
http://ecen3233.okstate.edu/PDF/Labs/Combinational%20Multiplier.pdf

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

E. Ayday, J. L. Raisaro, J. Rougemont, and J.-P. Hubaux, “Protecting and
evaluating genomic privacy in medical tests and personalized medicine,” in
WPES, 2013.

“List of genetic diseases with associated genes and snp’s,” http://www.
eupedia.com/genetics/genetic_diseases.shtml.

“Fast facts on US hospitals,” http://www.aha.org/research/rc/stat-studies/
fast-facts.shtml.

“Cancer facts and statistics,” http://www.cancer.org/research/
cancerfactsstatistics/.

S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for genomic
computation,” in [EEE S&P, 2008, pp. 216-230.

F. Bruekers, S. Katzenbeisser, K. Kursawe, and P. Tuyls, “Privacy-preserving
matching of DNA profiles,” IACR Cryptology ePrint Archive, vol. 2008, p.
203, 2008.

D. Eppstein, M. T. Goodrich, and P. Baldi, “Privacy-enhanced methods for

comparing compressed DNA sequences,” arXiv preprint arXiv:1107.3593,
2011.

D. Szajda, M. Pohl, J. Owen, B. G. Lawson, and V. Richmond, “Toward
a practical data privacy scheme for a distributed implementation of the
smith-waterman genome sequence comparison algorithm.” in NDSS, 2006.

M. Blanton, M. J. Atallah, K. B. Frikken, and Q. Malluhi, “Secure and
efficient outsourcing of sequence comparisons,” in ESORICS, 2012, pp.
505-522.

M. J. Atallah and J. Li, “Secure outsourcing of sequence comparisons,’
International Journal of Information Security, vol. 4, no. 4, pp. 277-287,
2005.

R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong, “Privacy-
preserving genomic computation through program specialization,” in CCS,
2009, pp. 338-347.

A. Manichaikul, J. C. Mychaleckyj, S. S. Rich, K. Daly, M. Sale, and W.-M.
Chen, “Robust relationship inference in genome-wide association studies,”
Bioinformatics, vol. 26, no. 22, pp. 2867-2873, 2010.

M. Naveed, “The fallacy of composition of oblivious ram and searchable
encryption,” Cryptology ePrint Archive, Report 2015/668, 2015.

138

http://www.eupedia.com/genetics/genetic_diseases.shtml
http://www.eupedia.com/genetics/genetic_diseases.shtml
http://www.aha.org/research/rc/stat-studies/fast-facts.shtml
http://www.aha.org/research/rc/stat-studies/fast-facts.shtml
http://www.cancer.org/research/cancerfactsstatistics/
http://www.cancer.org/research/cancerfactsstatistics/

	Chapter 1 Introduction
	Chapter 2 Background
	Chapter 3 A Critical Analysis of Property-Preserving Encryption
	Threat Model
	Adversarial Goals
	Adversarial Information
	Attack Accuracy

	Attacking DTE Columns
	Frequency Analysis
	p-Optimization

	Attacking OPE Columns
	Sorting Attack for Dense Columns
	Cumulative Attack for Low-Density Columns

	Simulating a Medical EDB
	Target Data
	Auxiliary Data

	Experimental Setup
	Experimental Results
	Attacks on DTE-Encrypted Columns
	Attacks on OPE-Encrypted Columns

	Chapter 4 A Practical Model for Searching on Encrypted Data
	Overview
	Blind Storage
	Definition
	Our Construction
	Security Analysis

	Searchable Symmetric Encryption
	Definitions
	Searchable Encryption from Blind Storage

	Implementation Details
	Searchable Encryption Evaluation
	Micro-benchmarks – File-keyword pair analysis
	Full evaluation
	Summary

	Efficacy of Oblivious RAM in Searchable Encryption
	The fallacy of Composition
	Overview
	Leakage Classes
	Communication Baseline
	Constructions
	LC 0–SSE
	LC 1–SSE
	LC 2–SSE
	Evaluation

	Chapter 5 A Practical Model for Computing on Encrypted Data
	Overview
	Controlled Functional Encryption
	Constructions
	Inner Product
	General construction

	Alternate General Construction
	Implementation and Evaluation
	Superfast Inner-Product Construction
	General C-FE scheme

	Applications

	Chapter 6 Conclusion
	References

