
Towards Mobile Query Auto-Completion:
An Efficient Mobile Application-Aware Approach

Aston Zhang∗1, Amit Goyal2, Ricardo Baeza-Yates2

Yi Chang2, Jiawei Han1, Carl A. Gunter1, Hongbo Deng2

1University of Illinois at Urbana-Champaign, IL, USA, 2Yahoo Labs, CA, USA
{lzhang74, hanj, cgunter}@illinois.edu, rbaeza@acm.org,

{goyal, yichang, hbdeng}@yahoo-inc.com

ABSTRACT
We study the new mobile query auto-completion (QAC) problem
to exploit mobile devices’ exclusive signals, such as those related
to mobile applications (apps). We propose AppAware, a novel
QAC model using installed app and recently opened app signals
to suggest queries for matching input prefixes on mobile devices.
To overcome the challenge of noisy and voluminous signals, Ap-
pAware optimizes composite objectives with a lighter processing
cost at a linear rate of convergence. We conduct experiments on a
large commercial data set of mobile queries and apps. Installed app
and recently opened app signals consistently and significantly boost
the accuracy of various baseline QAC models on mobile devices.

CCS Concepts
•Information systems→Query intent; Query suggestion; Query
reformulation;

Keywords
Query Auto-Completion; Mobile Application; Mobile Device

1. INTRODUCTION
Query auto-completion (QAC) facilitates user query composi-

tions by suggesting queries given prefixes. Figure 1(c) depicts an
example of QAC on mobile devices. Upon a user’s keystroke, QAC
displays a suggestion list (or list) below the current prefix. Queries
in a suggestion list are called suggested queries or query sugges-
tions. A user can select to submit a suggested query or type to
submit a query without selecting any suggestion.

Baeza-Yates et al. found that Japan Yahoo Search users gener-
ally typed longer queries on mobile devices than desktops to avoid
having to query again as mobile internet was slower in 2007 [1].
A report from Microsoft Bing also observed that English queries
are generally longer from mobile users than desktop users, and be-
lieved that “query auto-suggestion plays an important role” [36].
We further discover that in 2014, global users of Yahoo Search
on mobile devices saved more than 60% of the keystrokes when
submitting English queries by selecting QAC suggestions. In com-
parison with such keystroke saving on desktops (~50%) [43], users

∗Part of the work was completed at Yahoo Labs.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2882977.

(a) Installed apps. (b) Recently opened apps.

real housewives

real estate
realtor.com

real madrid

realPrefix

Suggestion
List

(c) Mobile query auto-completion.

Figure 1: A commercial mobile QAC. The Real Madrid app
is installed and recently opened. Given prefix “real”, popular
queries on real estate (“real estate” and “realtor.com”) are sug-
gested at higher positions than query “real madrid”.

tend to rely on mobile QAC more heavily. It is probably due to the
inconvenience of typing on mobile devices as revealed by Google
Search [21]. In fact, users can type 21 words per minute on mobile
devices but more than 60 words per minute on desktops [13]. Thus,
QAC is even more important to mobile users than desktop users.

Typically, a user favors and submits a query if it reflects the
user’s query intent in a query composition. Predicting query intents
is nontrivial. Most of the recently proposed QAC models rank a list
of suggested queries for each prefix according to relevance scores
based on various signals, such as popularity-based QAC (histori-
cal query frequency count signals) [3], time-based QAC (time sig-
nals) [35, 37], context-based QAC (user previous query signals) [3],
personalized QAC (user profile signals) [34], or time-and-context-
based QAC (both time and user previous query signals) [6]. Note
that the aforementioned signals are available on both desktops and
mobile devices. Are there any useful signals exclusively exploitable
on mobile devices for mobile QAC? Let us look at a few examples.

A mobile application is hereinafter referred to as a mobile app or
simply as an app. Consider a fan of the Real Madrid Football Club

who installs the Real Madrid app on the smart phone. The user
opens this app and after a while wants to query “real madrid” to
learn more of this club on the web with a popularity-based QAC [3].
When the user types “real”, real estate-related queries, such as “real
estate” and “realtor.com”, are ranked at the top in the suggestion
list because they are most popular in historical query logs. Fig-
ure 1 displays the user’s installed apps, recently opened apps, and
a commercial search engine QAC on the same mobile device. Here
the user may have implicitly provided the query preference via the
installed football club’s app. Besides, the user’s query intent may
also be implied by the recently opened app if the subsequent query
interest arises from the app opening. In a large commercial data set,
we observe that on mobile devices and matching certain prefixes,
users that install the NBA app may submit more queries related to
basketball teams, and users may query lyrics more often after open-
ing a music app (§2). Being aware of app installation and opening
on mobile devices, can QAC be more accurate on mobile devices?
Our work answers this question affirmatively.
New Problem, New Challenge. To the best of our knowledge, no
existing QAC employs mobile devices’ exclusive signals. Hence,
our goal is to study the new mobile QAC problem: QAC using
mobile devices’ exclusive signals. We refer to QAC that does not
employ any signal exclusive to mobile devices as Standard QAC,
such as QAC based on popularity and time. Mobile app-related sig-
nals are exclusive to mobile devices [2]. The sets of all available
applications on desktops and mobile devices are different; even for
desktop and mobile versions of the related applications, their con-
tents or interfaces generally differ [17]. Although whether desktop
applications can improve QAC is also an open question, we study
mobile QAC by exploiting mobile devices’ exclusive signals from
installed mobile apps and recently opened mobile apps. This is
motivated by the importance of mobile QAC.

We model the query–app relationships and the order of recently
opened apps before query submissions. It is challenging because
such signals are noisy and voluminous. In many cases, a certain in-
stalled app may not indicate a higher likelihood of a certain query
submission. Besides, even though a certain app opening (Real
Madrid app) may suggest a higher chance of a certain query (“real
madrid”), when another app such as Realtor.com is opened more
recently before a query, the less recently opened app (Real Madrid
app) may be less relevant to the query intent. Moreover, even for
1,000 queries and 100 apps, potentially there can be voluminously
100,000 query–app relationship pairs to process.
Our Approach. We go beyond Standard QAC by exploiting sig-
nals exclusive to mobile devices. To solve the mobile QAC prob-
lem, we propose AppAware, a novel model to employ installed app
and recently opened app signals. AppAware reuses the relevance
scores of queries from Standard QAC to pre-index top queries. In
a single query composition, AppAware re-ranks these top queries
based on installed app and recently opened app signals. For these
signals, AppAware captures relationships between different mobile
queries and apps, and the order of recency for opened apps before
query submissions.

To overcome the challenge of noisy and voluminous signals, Ap-
pAware optimizes a convex composite objective function by single-
stage random coordinate descent with mini-batches. The composite
objectives include filtering out noisy signals. When processing vo-
luminous signals, the algorithm has a lighter processing cost at each
iteration than either full proximal gradient descent or the gradient
update with respect to all coordinates. Importantly, while enjoy-
ing a lighter processing cost for voluminous signals and capable of
noisy signal filtering, our algorithm converges to the global opti-
mum at a linear rate with a theoretical guarantee.

We make the following contributions:
• We jointly study mobile queries and apps from commercial prod-

ucts (§2). Specifically, we find that going beyond Standard QAC
by exploiting installed app and recently opened app signals for
mobile QAC is useful. For example, recently opened app signals
abound on mobile devices before query submissions.

• We propose a novel AppAware model that exploits installed app
and recently opened app signals to solve the mobile QAC prob-
lem (§3). To overcome the challenge of noisy and voluminous
signals, AppAware optimizes composite objectives by an algo-
rithm using single-stage random coordinate descent with mini-
batches. We prove that our algorithm converges to the global
optimum at a linear rate with a theoretical guarantee.

• We conduct comprehensive experiments (§4). Among many find-
ings, we show that installed app and recently opened app signals
consistently and significantly boost the accuracy of various in-
vestigated Standard QAC models on mobile devices.

2. MOBILE QUERY AND APPLICATION
We jointly study mobile query logs and mobile app logs from

commercial products at a large scale and discuss our observations.
Terminology. In general, mobile devices (devices) are handheld
computing devices with an operating system where various types
of mobile apps can run. Below are other used terms.

Query composition (Composition): The duration of composing
and submitting a single query. It starts from the keystroke of a
new query’s first character, or from the keystroke starting to edit
a previous query. It ends when a query is submitted. A compo-
sition contains information on all keystrokes (with the timestamp
of the first keystroke), submitted query, installed apps at the first
keystroke time, and recently opened apps with timestamps.

Before query: Before the first keystroke of a query composition.
Mobile log data set: Our jointly collected data set of mobile

query logs and mobile app logs from Yahoo. It contains 823,421
compositions sampled from 5 months in 2015. In one composition,
all keystrokes (with the timestamp of the first keystroke), the sub-
mitted query, installed apps at the first keystroke time, and recently
opened apps with timestamps are collected.
Example 1 (Mobile Query and Installed App). Users install apps
on mobile devices. Some apps may reflect users’ interests or prefer-
ences in sports, business, and other fields. Users’ interests or pref-
erences exhibited from their installed apps may be relevant to their
query intents. Table 1 compares top queries (with percentage) pre-
fixed by “chicago” from all users’ mobile devices in the mobile log
data set where the NBA app is installed (left) or not (right). Among
all the mobile queries prefixed by “chicago” submitted from de-
vices installing the NBA app, 24% are “chicago bulls” followed
by “chicago bears” with a sharp fall in its percentage. However,
“chicago bulls” is not among the top 5 mobile queries prefixed by
“chicago” on devices without installing the NBA app. So, installing
the NBA app may exhibit users’ interests in NBA basketball teams,
such as Chicago Bulls (not Chicago Bears). Since the top 4 queries
on the left column of Table 1 are sport teams, an NBA fan may
generally submit more sports-related queries.
Example 2 (Mobile Query and Recently Opened App). Users
open apps to perform activities, such as listening to music. Af-
ter users open apps, the subsequent query intents may arise from
the performed activities through those apps. Table 2 compares top
queries (with percentage) prefixed by “sugar” from all users’ mo-
bile devices in the mobile log data set where the Spotify Music app
is opened within 30 minutes before queries (left) or not (right).
Four of five top queries on the left column of Table 2 are related

Table 1: Top queries (with percentage) prefixed by “chicago”
from all users’ mobile devices where the NBA app is installed
(left) or not (right).

chicago bulls 24% chicago tribune 11%
chicago bears 12% chicago weather 10%
chicago cubs 10% chicago bears 9%
chicago blackhawks 9% chicago craiglist 9%
chicago tribune 7% chicago cubs 8%

Table 2: Top queries (with percentage) prefixed by “sugar”
from all users’ mobile devices where the Spotify Music app is
opened within 30 minutes before queries (left) or not (right).

sugar maroon 5 lyrics 22% sugar cookie recipe 13%
sugar lyrics maroon 5 18% sugar glider 11%
sugar lyrics 14% sugar bowl 10%
sugar maroon 5 13% sugar maroon 5 lyrics 10%
sugar daddy 9% sugar sugar 9%

to the song Sugar by the pop rock band Maroon 5. So, users may
tend to search for music-related items, such as lyrics, after opening
music apps on mobile devices.
Abundance of Signals. From the two examples above, signals of
installed apps and recently opened apps may be useful for boosting
the accuracy of mobile QAC. We proceed to study the existence of
such app-related signals. The Yahoo Aviate team reported mobile
app installation and opening statistics in Table 3. On average, there
are 95 installed apps on each mobile device and they are opened
100 times every day. Some apps are opened more than once in a
day and on average 35 unique apps are opened per day.

To further investigate opened app signals, there are two inter-
esting open questions: do users open apps before query submis-
sions within a short time? If so, how many unique apps do they
open? To answer these questions, we jointly study mobile queries
and apps. Figure 2(a) shows the percentage of mobile queries that
have non-zero recently opened apps (at least one app is opened
within a given time before queries). Specifically, 84.9% of mobile
queries belong to the cases where at least one app is opened within
30 minutes before queries. Figure 2(b) shows the average count
of unique recently opened apps within a given time before queries
(compositions that have no recently opened apps within the time
are excluded). Among those 84.9% queries, on average 4.0 unique
apps are opened within 30 minutes before queries. Recently opened
app signals abound on mobile devices before query submissions.

Recall §1 that mobile QAC is important. Given the observa-
tions that app-related signals may imply users’ query intents and
the abundance of such signals, it is appealing to exploit them for
mobile QAC. We propose and discuss an app-aware approach to
exploit such signals for mobile QAC in §3.

3. APPLICATION-AWARE APPROACH
For mobile QAC, we propose the AppAware model to exploit

installed app and recently opened app signals on mobile devices.

3.1 Design Overview
Before detailing the problem and method, we describe the high-

level design of AppAware to rank suggested queries for a given
prefix on mobile devices. AppAware has two stages: pre-indexing
and re-ranking. A toy example of two suggestions “real estate” and
“real madrid” matching prefix “real” is used to describe the idea.

In the pre-indexing stage, given an input prefix, topN query sug-
gestions with the highest relevance scores of Standard QAC are pre-

Table 3: Mobile app installation and opening statistics accord-
ing to the Yahoo Aviate team.

Description Average count
Installed apps per mobile device 95
App opening per day 100
Unique apps that are opened per day 35

Time before queries (minutes)
5 10 20 30 40 50 60

P
er

ce
nt

ag
e

55%

65%

75%

85%

95%

(a) Mobile queries
Time before queries (minutes)
5 10 20 30 40 50 60

A
ve

ra
ge

 C
ou

nt

2.0

3.0

4.0

5.0
5.5

(b) Recently opened apps

Figure 2: Recently opened app signals abound on mobile de-
vices before queries. The left figure shows the percentage of mo-
bile queries that have non-zero recently opened apps (at least
one app is opened within a given time before queries). The right
figure shows the average count of unique recently opened apps
within a given time before queries (compositions that have no
recently opened apps within the given time are not counted).

indexed: a higher score gives a higher position. For prefix “real”,
the top 2 queries “real estate” and “real madrid” are pre-indexed by
Standard QAC based on the historical query frequency counts. In
the re-ranking stage, AppAware re-ranks these topN queries based
on installed app and recently opened app signals in the same query
composition. To illustrate, given prefix “real”, the pre-indexed
queries “real estate” and “real madrid” are instantly fetched. If a
user’s preference for “real madrid” to “real estate” is inferred from
signals of the installed and recently opened Real Madrid app, Ap-
pAware updates the ranking scores of the two queries. The top
2 queries “real estate” and “real madrid” are re-ranked. With re-
ranking, “real madrid” is now at Position 1, higher than the more
popular query “real estate”.

The number of the pre-indexed top queries N can be set to a
small positive integer in a production. Given various display sizes
of mobile devices, a smaller number of top queries may be sug-
gested. For a small constant value N , sorting N queries based on
the updated ranking scores can be achieved in a constant time [8].

AppAware is designed to reuse existing Standard QAC research
in computing the relevance score of a query. It can be available via
an existing Standard QAC model, such as a popularity-based QAC.
However, AppAware is not constrained to use any certain relevance
score: in §4 we evaluate several different relevance scores with
different parameter settings in these scores.

3.2 Problem Formulation
Recall §2 that a query composition contains information on all

keystrokes (with the timestamp of the first keystroke), the submit-
ted query, installed apps at the first keystroke time, and recently
opened apps with timestamps. We assume that signals are the same
at all the keystrokes of the same composition. To keep notations
unclogged, an AppAware output depends on signals of a certain
composition rather than an explicit keystroke of this composition.
During composition c, AppAware suggests a ranked list of queries
matching a given prefix in query setQ according to ranking scores
determined by a probabilistic model. The probabilistic model is

Table 4: Main notations

Symbol Description
a ∈ A App and app set.
q ∈ Q Query and query set
c ∈ C Composition and composition set
q(c) Submitted query in composition c
A(c) Set of installed apps on the device of composition c
Ã(c) Set of recently opened apps in composition c
ã
(c)
k kth most recently opened app in composition c

s(q, c)
Relevance score of query q that matches

a given prefix in composition c
p(q, c) Preference for query q in composition c
Q(c) Set of top N queries ranked by s(q, c)
w Signal parameter vector
x, y Signals of installed apps and recently opened apps

based on a combination of the relevance score and app-related sig-
nal score on mobile devices. For query q that matches a prefix in
composition c, the relevance score of q is denoted as s(q, c). In
a composition, installed app and recently opened app signals are
represented by x and y. The app-related signal score is based on
x and y, and their associated signal parameters β. A collection of
β form the signal parameter vector w. This is for indexing conve-
nience in our technical discussions: subscripts of β correspond to
queries, apps, and recency orders (§3.3), while subscripts of w lo-
cate elements in vector w (§3.4 and §3.5). The goal is to compute
w by an optimization algorithm. Table 4 briefly summarizes the
main notations. Some of them are described in §3.3.

3.3 Likelihood Function
To compute the signal parameter vector w, we need a likelihood

function integrating signals and w.
As discussed in §2, installed apps may reflect users’ interests or

preferences. However, even if two different users both install the
same app, their interests or preferences related to that app may still
be at different levels. For example, one may like the app, while
the other may dislike it but forget to remove it. We cannot directly
observe these and we resort to the opening frequency of apps. In-
tuitively, more frequently opened apps may be more likely related
to users’ interests or preferences. For example, consider one user
who opens the Real Madrid app every day and the other who almost
never opens it after installation. The former user is more likely in-
terested in the Real Madrid football club than the latter. Besides,
suppose that different users install the same app of the same level
of interests at different time. A user more likely has a higher app
opening frequency aggregated from a longer app installation his-
tory. In light of this, daily opening frequency can be used for com-
parison. An installed app signal x(a, c) with respect to app a in
composition c is the average daily opening frequency of app a on
the mobile device of composition c.

Note that recently opened apps in a composition are already
opened by users. Recall the assumption that app openings may
reflect users’ interests or preferences related to the apps, signals
of recently opened apps are directly built in relation to submitted
queries in the same composition. So, a recently opened app signal
y(q, a) with respect to query q and app a is computed based on the
training data set. It is the proportion of the count of q to the count
of all queries for all compositions where a is a recently opened app.

LetA(c) be the set of installed apps on the device of composition
c, and Ã(c) = {ã(c)1 , ã

(c)
2 , . . .} of size |Ã(c)| be the set of unique

recently opened apps in composition c, where ã(c)k is the kth most

recently opened app in c. If an app is opened more than once in the
same composition, only the most recent one is included in Ã(c).
We model preference p(q, c) for query q in composition c by a
generalized additive model [14]:

p(q, c) = s(q, c) +
∑

a∈A(c)

βq,a log
[
1 + x(a, c)

]
+

|Ã(c)|∑
k=1

βky(q, ã
(c)
k),

(3.1)

where βq,a and βk are signal parameters. Note that every βq,a cor-
responds to a query–app pair for all q ∈ Q and a ∈ A, where Q
and A are the sets of queries and apps in the training data set. Sig-
nal parameter βk is only related to recency order k for app opening
in any composition. Values of signals x and y are pre-computed in
parallel and stored distributively in a Hadoop MapReduce frame-
work. Such values are directly fetched in training and testing with-
out re-computing. The logarithm transformation of daily opening
frequency in (3.1) is to dampen the effect of a higher frequency.

In general, the preference model p(q, c) in (3.1) reflects a user’s
preference for query q in composition c in conjunction with in-
stalled app signals and recently opened app signals. The signal
parameters βq,a and βk are to be inferred based on maximizing the
likelihood of submitted queries, together with those integrated app-
related signals observed from the training data set. In order to infer
such parameters, we define a likelihood function for a submitted
query q(c) in c with a softmax function that represents a smoothed
version of the “max” function [5, 41]:

P(q(c) | c) =
exp

[
p(q(c), c)

]∑
q∈Q(c)

⋃
{q(c)}

exp
[
p(q, c)

] , (3.2)

where Q(c) represents the set of top N queries ranked by rele-
vance score s(q, c). Its union with q(c) ensures proper normal-
ization. Likewise, AppAware predicts the likelihood that any query
q′ ∈ Q(c) to be submitted in composition c by

P
(
q′ | c

)
=

exp
[
p(q′, c)

]∑
q∈Q(c)

exp
[
p(q, c)

] . (3.3)

After signal parameters are inferred, in practice, the simpler term
p(q′, c) in (3.3) is used for re-ranking the pre-indexed query sug-
gestions as described in §3.1. Since query suggestions are pre-
indexed by relevance score s, the re-ranking stage of AppAware
is determined by app-related signals in composition c, which are
captured by the last two terms of (3.1). We emphasize that, the
preference model p(q, c) in (3.1) is not constrained to employ any
certain relevance score s. We evaluate different settings of s in §4.
Challenges. App-related signals are noisy. On one hand, for many
query–app pairs, a certain installed app may not indicate a higher
likelihood of a certain query submission. On the other hand, a less
recently opened app may be less relevant to the query intent at the
time of a query submission. To overcome the challenge of noisy
signals, AppAware optimizes composite objectives with filtering
out noisy signals. We describe such composite objectives in §3.4.

Besides, app signals are voluminous. Recall that signal param-
eter βq,a captures relationships between every query and installed
app in the training data set. The number of such parameters can
be as large as the product of unique query count and unique app
count (20 million in our experiments) plus the maximum count of
unique recently opened apps (48 in our experiments within 30 min-
utes before queries). Hence, processing with respect to all these pa-
rameters simultaneously consumes computational resources heav-

ily. To overcome the challenge of voluminous signals, we describe
an algorithm to compute lightly with respect to a random signal
parameter at each step in §3.5.

3.4 Composite Objectives
As mentioned in §3.2, for indexing convenience all the signal

parameters βq,a and βk from (3.1) in any fixed order constitute the
signal parameter vector w. Let wj be the jth element of vector
w of dimension d. We denote the `1 and `2 norms of vector w as
‖w‖1 =

∑d
k=1 |wk| and ‖w‖2 =

(∑d
k=1 w

2
k

)1/2.
Signal parameter vector w is to be inferred based on maximum

likelihood. To begin with, we want to maximize the following log-
likelihood for the set of compositions C in the training data set with
respect to signal parameters:

1

|C|
∑
c∈C

log P(q(c) | c), (3.4)

where |C| is the size of C and P(q(c) | c) is defined in (3.2). By (3.2)
and (3.4), an unconstrained optimization problem out of minimiz-
ing negative log-likelihood with the `1 and `2 norms is obtained:

minimize
w

1

|C|
∑
c∈C

[
log

∑
q∈Q(c)

⋃
{q(c)}

exp
[
p(q, c)

]
− p(q(c), c)

]
+
λ2

2
‖w‖22 + λ1‖w‖1, (3.5)

where λ2 and λ1 are regularizer weights of `2 and `1 norms. Recall
that βq,a and βk of p(q, c) in (3.1) correspond to w. In (3.5), the
main purpose of introducing the `2 norm with λ2 > 0 is to guaran-
tee the strong convexity of the objective function in (3.5) excluding
the last term. We denote the convexity parameter by µ. The `1
norm is for filtering out noisy signals, which is discussed in detail
in §3.5.1 (Remark 3.1). Rewriting (3.5) in the form of a sum of a
finite number of functions gives the composite objective problem:

w∗ = argmin
w

F (w) +R(w), (3.6)

where F (w) = (1/|C|)
∑
c∈C fc(w) and R(w) =

∑d
j=1 rj(w),

where fc(w) = log
∑
q∈Q(c)

⋃
{q(c)} exp

[
p(q, c)

]
− p(q(c), c) +

(λ2/2)‖w‖22 and rj(w) = rj(wj) = λ1 |wj |. Gradient ∇F (w)
is Lipschitz continuous and we denote the Lipschitz constant by L.
Same as F (w), which is the objective function in (3.5) excluding
the last term, each function fc(w) is strongly convex with con-
vexity parameter µ. Note that F (w) is a sum of a finite number
of strongly convex and smooth functions and R(w) is a general
convex function that is non-differentiable. Each element function
fc(w) is a negative log-likelihood function with the `2 norm for
composition c, which is a single element of set C.

3.5 Optimization
There are a few issues with optimizing the composite objectives

in (3.6). Due to the large size of the training data set, an algorithm
based on proximal stochastic gradient descent is preferred. How-
ever, this has a slower sublinear rate of convergence. Recently,
Schmidt et al. trained conditional random fields using the stochas-
tic average gradient with a faster linear rate of convergence [32].
In fact, there is another linearly-convergent stochastic variance re-
duced gradient that has multiple stages with two nested for-loops
per iteration [20]. Such a multi-stage algorithm requires a pass
through the entire data set per iteration, which is computationally
expensive especially when the data set is large. In sharp contrast,
the gradient update method by Schmidt et al. has a simpler single-

stage iteration with only one for-loop and avoids the aforemen-
tioned computational complexity from a multi-stage algorithm.

We propose an optimization algorithm in §3.5.1 employing the
single-stage stochastic average gradient from Schmidt et al. [32].
We highlight that their algorithm cannot be directly applied to solve
(3.6), and our algorithm is distinct from theirs in two main aspects.
First, the noisy signal challenge is addressed by optimizing com-
posite objectives with non-differentiable R(w) (details are in Re-
mark 3.1), which can be solved by our algorithm but not their algo-
rithm. Second, to overcome the voluminous signal challenge, our
algorithm updates the gradient with respect to only one coordinate
per iteration while their algorithm updates the gradient with respect
to all coordinates at each iteration. We theoretically guarantee the
linear rate of convergence for our algorithm with different proof
techniques from those of Schmidt et al.

3.5.1 Algorithm
First, initialize signal parameter vector w(0) at random. Then,

for iteration t = 1, 2, . . ., repeat the following:

I Sample mini-batch B from {1, . . . , |C|} uniformly at random
with replacement.

II Set element signal parameter vector φ(t)
c to common signal

parameter vector w(t−1) for all c ∈ B.

III Sample coordinate index j from {1, . . . , d} uniformly at ran-
dom with replacement.

IV Compute the updated gradient based on the sampled mini-
batch with respect to the sampled coordinate

g
(t)
B,j = ∇jfB(φ

(t)
B)−∇jfB(φ

(t−1)
B) +

1

|C|
∑
k∈C
∇jfk(φ

(t−1)
k),

(3.7)

where by defining |B| as the size of mini-batch B, for all φ,
fB(φB) = (1/|B|)

∑
c∈B fc(φc) and∇jf(φ) = [∇f(φ)]j

= ∂f(φ)/∂φj .

V Set w(t)
j to proxη,j(w

(t−1)
j −ηg(t)B,j), where for all w, u ∈ R,

proxη,j(w) = argmin
u

1

2η
‖w − u‖22 + rj(u). (3.8)

VI Set w(t)

\j to w
(t−1)

\j , where any subvector of w excluding wj
is denoted by w\j .

REMARK 3.1 (FILTERING OUT NOISY SIGNALS). The prox-
imal operator in (3.8) facilitates proof of linear convergence. With-
out it, a subgradient method only gives a sublinear rate of con-
vergence. There is a closed-form solution to (3.8). We empha-
size that this solution may clear certain signal parameter values
to 0: if |w(t−1)

j − ηg
(t)
B,j | ≤ ηλ1, w(t)

j = 0; otherwise w(t)
j =

w
(t−1)
j − ηg(t)B,j − ηλ1(w

(t−1)
j − ηg(t)B,j)/|w

(t−1)
j − ηg(t)B,j |. Sig-

nal parameters of value 0 indicate that their corresponding noisy
signals are filtered out in (3.1).

REMARK 3.2 (LIGHTER COST FOR VOLUMINOUS SIGNALS).
Given the voluminous app-related signals in the training data set
(about 20 million in our experiments), updating the gradient of the
signal parameter vector with respect to all coordinates consumes
computational resources heavily per iteration, such as exceeding
the memory budget. Our algorithm enjoys a lighter processing cost
than either batch-style proximal gradient descent or any gradient
update with respect to all coordinates per iteration. The update at
each iteration of the algorithm is based on a mini-batch of element
functions with only one coordinate. With a lighter processing cost,
this algorithm converges to the global optimum at a linear rate.

3.5.2 Computational Complexity
Multi-stage algorithms with multiple loops for each iteration re-

quires a pass through the entire data set per iteration [20]. To avoid
this high computational complexity, our algorithm is based on a
single-stage update with only one loop through t = 1, 2, . . . [32].
To compare these two techniques for updating the gradient, sup-
pose that both algorithms update the gradient with respect to the
same number of element functions and coordinates. At each itera-
tion, the inner loop of the multi-stage algorithm involves a repeti-
tive computation of O(|C|) time, where |C| is the size of the data
set (number of element functions). In contrast, the single-stage al-
gorithm requires a computation of O(1) time per iteration: the last
term in (3.7) is a distributive function and its update takes a con-
stant time without a need for re-computation at each iteration. For
the same problem setting, the iteration complexity of the single-
stage algorithm is lower than that of the multi-stage algorithm [32,
20].

In addition, it is notable that at each single-stage iteration, the
update in (3.7) reduces the variance of the gradient estimator at
each iteration with the stochastic average gradient. This results in a
faster linear rate of convergence than a sublinear rate of the classic
proximal stochastic gradient descent. We theoretically guarantee
the linear rate of convergence in §3.5.3. Our empirical results in
§4.3.2 reinforce that with 15 entire data passes, the objective gap
value is close to 10−4. Here an entire data pass is a standard mea-
sure representing the least possible iterations for passing through
the entire data instances with respect to all coordinates [32, 20].
Given |C| compositions with d coordinates, one entire data pass of
the algorithm in §3.5.1 is equivalent to (|C|d)/|B| iterations, where
|B| is the mini-batch size in the algorithm.

3.5.3 Optimum and Convergence
It is easy to conclude that, the global optimum w∗ exists for the

composite objective optimization problem in (3.6) because F (w)
is strongly convex and R(w) is convex.

However, the theoretical analysis for the rate of convergence of
the algorithm is nontrivial. In this subsection and Appendix A,
all the expectations are taken conditional on w(t−1) and φ

(t−1)
c

unless otherwise stated. For the convenience of our analysis, based
on (3.7), after removal of the coordinate index we define

h
(t)
B = ∇fB(φ(t)

B)−∇fB(φ(t−1)
B) +

1

|C|
∑
k∈C

∇fk(φ(t−1)
k),

(3.9)

h(t)
c = ∇fc(φ(t)

c)−∇fc(φ(t−1)
c) +

1

|C|
∑
k∈C

∇fk(φ(t−1)
k),

(3.10)

where B is a mini-batch uniformly sampled from {1, . . . , |C|} at
random with replacement and c ∈ C. Before we prove the rate of
convergence, we introduce two important lemmas.

LEMMA 3.3. For the algorithm in §3.5.1, with definitions in
(3.9) and (3.10) we have

EB[h(t)
B] = Ec[h(t)

c] = ∇F (w(t−1)).

The proof is in Appendix A.1. Lemma 3.3 guarantees that h(t)
B

is an unbiased gradient estimator of F .
Recall that the algorithm in §3.5.1 samples a mini-batch of com-

positions uniformly at random with replacement at every iteration.
To facilitate evaluation of expectation terms with respect to ran-
domly sampled mini-batches of compositions, we introduce the fol-
lowing lemma.

LEMMA 3.4. For the algorithm in §3.5.1 and for all x and y,

EB
[
‖∇fB(x)−∇fB(y)‖2

]
=
|B| · |C| − |C|
|B| · |C| − |B|‖∇F (x)−∇F (y)‖2

+
|C| − |B|
|B| · |C| − |B|Ec

[
‖∇fc(x)−∇fc(y)‖2

]
.

Lemma 3.4 is proved in Appendix A.2. Now we present the main
theory for bounding the rate of convergence.

THEOREM 3.5. The algorithm in §3.5.1 is able to converge to
the optimal solution at a linear rate.

We give the detailed proof in Appendix A.3. The empirical re-
sults in §4.3.2 agree with our theory that the optimization algorithm
converges to the global optimum at a linear rate.

4. EVALUATION
We comprehensively evaluate the proposed mobile QAC model,

AppAware, on a large real-world commercial data set.

4.1 Data Description
We describe important details of our collected mobile log data

set. Due to the proprietary nature of the data, some details are omit-
ted. The mobile log data set is sampled among 5 months in 2015
and from mobile devices with the Android operating system. All
queries are submitted via the search bar of the Yahoo Aviate home-
screen in Figure 1(c). One million compositions are randomly sam-
pled, then tail queries and apps are filtered out: the most popular
10,000 unique queries and most installed 2,000 unique apps (ex-
cluding the Yahoo Aviate homescreen) remain. The final data set
contains 823,421 compositions. In one composition, all keystrokes
(with the timestamp of the first keystroke), the submitted query, in-
stalled apps at the first keystroke time, and recently opened apps
with timestamps are collected. The maximum count of unique re-
cently opened apps within 30 minutes before queries is 48.

The training and testing data sets are split in an ascending time
order: the first and second half of a user’s compositions are used
for training and testing respectively. All the app-related signals
and the relevance scores are standardized: the data standardization
procedure is transforming data to zero mean and unit variance.

4.2 Experimental Setting
Measures for Accuracy. Mean reciprocal rank (MRR) is a stan-
dard measure to evaluate the ranking accuracy of QAC [3, 24, 19,
34, 43]. It is calculated by the average reciprocal of the submitted
query’s ranking in a suggestion list. Success Rate@top k (SR@k)
is the average percentage of the submitted queries that can be found
in the top k suggestions during testing. SR@k is also used to eval-
uate the QAC ranking accuracy [19, 43]. In general, a higher MRR
or SR@k indicates a higher ranking accuracy of QAC [3, 24, 19,
34, 6, 43]. The statistical significance of the accuracy improve-
ments is validated by a paired-t test (p < 0.05).
Methods for Comparison. The relevance scores with parameter
settings in our experiments reuse the existing research as described
below. None of these baseline methods uses mobile devices’ exclu-
sive signals. Thus, they are referred to as Standard QAC.

• MPC: Given an input prefix, Most Popular Completion (MPC)
ranks suggested queries based on their historical query frequency
counts. A more popular query has a higher rank. It was found
competitive by various studies [3, 19, 24, 34].

Table 5: Accuracy comparison of Standard QAC and AppAware (in percentage). All the boldfaced results denote that the accuracy
improvements over Standard QAC are statistically significant (p < 0.05) for the same relevance score.

Relevance MRR SR@1 SR@2 SR@3
Std. AppAware Std. AppAware Std. AppAware Std. AppAware

MPC 35.13 41.55 (+18.27%) 27.36 34.08 (+24.56%) 37.09 44.50 (+19.98%) 41.69 48.61 (+16.60%)
Personal 39.06 43.57 (+11.55%) 31.32 37.16 (+18.65%) 40.52 46.36 (+14.41%) 46.21 50.15 (+8.53%)
Personal-S 40.48 44.62 (+10.23%) 32.70 38.69 (+18.32%) 42.53 47.54 (+11.78%) 47.53 50.62 (+6.50%)
TimeSense 39.91 43.94 (+10.10%) 32.79 38.48 (+17.35%) 42.10 46.91 (+11.43%) 46.83 49.45 (+5.59%)
TimeSense-S 40.88 44.93 (+9.91%) 34.01 39.98 (+17.55%) 43.76 47.58 (+8.73%) 47.66 50.12 (+5.16%)
*Std.: Standard QAC

• Personal: Personal QAC by distinguishing different users can
achieve a higher accuracy [3, 6, 34]. Here the Personal relevance
score is an equal-weighted linear combination of the MPC score
and the standardized personal historical query frequency counts
as suggested by a study [43].

• Personal-S: It is the Personal relevance score with an optimal
combination with different weights of the MPC score and the
standardized personal query frequency counts. Optimal weights
achieving the highest MRR makes Personal-S more competitive.

• TimeSense: Time signals are useful in QAC [6, 35, 37]. Time-
Sense is the same as Personal except that the personal historical
query frequency count is replaced by the frequency count of a
query from all users within 28 days before a composition [37].

• TimeSense-S: It is the same as Personal-S except that the Per-
sonal score is replaced by the TimeSense score.
We study the effect of varying parameter values in §4.3. Unless

otherwise stated, the time-window size for recently opened apps
before query submissions is 30 minutes, the mini-batch size is 100,
the pre-indexed query count is 10, the suggested query count is 5
(considering display sizes of mobile devices), and the number of
entire data passes is 15. Personal-S and TimeSense-S both linearly
combine a MPC score with the optimal weight θ and the other score
with the weight 1 − θ. The optimal weights in Personal-S and
TimeSense-S enable Standard QAC to achieve the highest MRR.

4.3 Experimental Results
We perform comprehensive experiments to evaluate the perfor-

mance of the proposed AppAware model. We first compare meth-
ods employing different relevance scores in §4.3.1. Then through-
out the remaining §4.3.2—4.3.7, we study different general proper-
ties of AppAware by fixing the relevance score to MPC; the results
with the other relevance scores are similar.

4.3.1 Boosting the Accuracy of Standard QAC with
App-related Signals on Mobile Devices

Table 5 presents the accuracy comparison of Standard QAC and
AppAware with different relevance scores as described in §4.2. All
the boldfaced results denote that the accuracy improvements over
Standard QAC are statistically significant (p < 0.05) for the same
relevance score. We highlight that, for each same relevance score,
mobile devices’ exclusive signals of installed apps and recently
opened apps significantly and consistently boost the accuracy of
these Standard QAC models that do not use exclusive signals of
mobile devices. For instance, for the same MPC relevance score,
signals of installed apps and recently opened apps significantly
boost Standard QAC by 18.27% in MRR. Such an improvement
is significant across all the different accuracy measures.

When relevance scores become more accurate, such as Personal
and TimeSense in comparison with MPC, AppAware also ranks
query suggestions more accurately. Given the relevance scores with

Number of Entire Data Pass
5 10 15

O
bj

ec
tiv

e
G

ap
 V

al
ue

10-4

10-3

10-2

10-1

100

Figure 3: Convergence study.

different parameter settings (Personal vs. Personal-S and Time-
Sense vs. TimeSense-S), AppAware has slightly varying accuracy.
Such variance depends on the accuracy of the relevance scores for
the chosen parameter values. We conclude that, installed app and
recently opened app signals are useful in boosting the accuracy of
such existing Standard QAC models on mobile devices.

4.3.2 Convergence Study
In §3.5.3 we theoretically prove that the rate of convergence for

AppAware is linear. Our theory is reinforced by the experimental
results averaged over 50 replications in Figure 3. The objective
gap value is [F (w) + R(w)] − [F (w∗) + R(w∗)] in log scale,
where F (w) + R(w) are the composite objectives and w∗ is the
global optimum in (3.6). Recall the definition of the entire data
pass in §3.5.2, AppAware converges fast by using the single-stage
randomized coordinate descent with mini-batches. With iterations
of 15 entire data passes, the objective gap value is close to 10−4.

4.3.3 Varying-Length Prefix Study
We study the performance of AppAware and Standard QAC for

prefixes with varying lengths. We group prefixes into five bins ac-
cording to their lengths in characters. The ranking accuracy of Ap-
pAware and Standard QAC is evaluated on prefixes from the same
bin. Figure 4 illustrates the ranking accuracy comparison of Ap-
pAware and Standard QAC for prefixes of varying lengths. It is
interesting to observe that accuracy improvements by app-related
signals are not constant with respect to varying-length prefixes.

In general, when prefixes are shorter, the accuracy gap between
AppAware and Standard QAC is larger across different accuracy
measures. So, installed app and recently opened app signals take
better effect in boosting accuracy of Standard QAC when handling
more challenging scenarios of shorter input prefixes. This may be
explained by the declining challenges for longer prefixes due to a
reduction of the matched queries: Standard QAC is more accurate
for such cases and it is harder to make further improvements.

4.3.4 App-Related Signal Study
AppAware makes use of two types of exclusive signals to mo-

bile devices: installed apps and recently opened apps. To more

Prefix Length in Characters
[1,3] [4,6] [7,9] [10,12] [13,∞)

M
R

R

20%

30%

40%

50%

60%

AppAware
Standard QAC

Prefix Length in Characters
[1,3] [4,6] [7,9] [10,12] [13,∞)

S
R

@
1

20%

30%

40%

50%

AppAware
Standard QAC

Prefix Length in Characters
[1,3] [4,6] [7,9] [10,12] [13,∞)

S
R

@
2

20%

30%

40%

50%

60%

AppAware
Standard QAC

Prefix Length in Characters
[1,3] [4,6] [7,9] [10,12] [13,∞)

S
R

@
3

20%

30%

40%

50%

60%

AppAware
Standard QAC

Figure 4: Accuracy comparison of AppAware and Standard QAC for prefixes with varying lengths.

Figure 5: AppAware achieves the highest accuracy in compar-
ison with its variants (S: Standard QAC; I: AppAware variant
using installed app signals only; O: AppAware variant using
recently opened app signals only; C: AppAware “case-by-case”
variant using recently opened app signals only when they exist,
otherwise using installed app signals only; A: AppAware).

comprehensively study such signals, we compare two variants of
AppAware using different subsets of such signals: installed app
signals only and recently opened app signals only. In addition, we
introduce another “case-by-case” variant: it uses recently opened
app signals only when they exist, otherwise uses installed app sig-
nals only. The results are compared in Figure 5.

Although both types of signals are able to improve the ranking
accuracy of Standard QAC alone, recently opened app signals are
slightly better at predicting query intents than installed app signals
on mobile devices. Since recently opened app signals do not always
exist, the “case-by-case” variant is slightly more accurate than the
variant using recently opened apps only. When recently opened
app signals exist, the “case-by-case” variant uses such signals only;
while AppAware integrates extra installed app signals. To illustrate,
even though some apps are recently opened before query submis-
sions, these queries may still be related to installed app signals only
or both types of signals. Being capable of modeling all such po-
tential scenarios, AppAware achieves the highest accuracy across
different measures in comparison with its variants.

4.3.5 Regularization Study
Figure 6 plots the accuracy measures of AppAware with varying

regularizer weights λ1 (left) and λ2 (right). We vary the value of
one regularizer weight while fixing that of the other at 10−4.

It is noteworthy from Figure 6 (left) that the accuracy is highest
when λ1 = 10−4 but degrades sharply when λ1 = 0. It empirically
corroborates the effect of the `1 norm in filtering out noisy signals.
When λ1 gets smaller than 10−4, the accuracy is lower due to a
lighter penalty applied to signal parameters associated with noisy
signals. However, when λ1 is greater than 10−4, a heavier penalty

Regularizer Weight λ1 (λ2=10-4)

0 10-6 10-5 10-4 10-3 10-2

A
cc

ur
ac

y

30%

35%

40%

45%

50%

MRR SR@1 SR@2 SR@3

Regularizer Weight λ2 (λ1=10-4)
10-7 10-6 10-5 10-4 10-3 10-2

A
cc

ur
ac

y

35%

40%

45%

50%

Figure 6: Regularizer weight study.

may suppress useful signals and result in a slightly lower accuracy.
Recall §3.4 that λ2 must be positive to ensure the strong con-

vexity of F (w) in (3.6) to guarantee the linear convergence of the
optimization algorithm. In Figure 6 (right), the highest accuracy is
attained when λ2 = 10−4. Note that the accuracy for varying λ1

and λ2 is stable around the optimum 10−4, such as between 10−5

and 10−3. This eases parameter tuning.

4.3.6 Pre-Indexed Query Count Study
Figure 7 (left) illustrates the growing accuracy of AppAware

with more pre-indexed queries for re-ranking. This is because fewer
pre-indexed queries may exclude users’ potential submissions. How-
ever, re-ranking more queries is computationally more expensive.
Several studies showed that re-ranking 10 pre-indexed queries is
feasible in practice [34, 43] and the outperforming of AppAware is
obtained with the pre-indexed query count set to 10 in §4.3.1.

4.3.7 Opened App Recency Study
Figure 7 (right) plots the accuracy measures of AppAware when

recently opened apps come from time-windows of varying sizes
before query submissions. The regularizer weights are optimal for
achieving the highest MRR. On one hand, when the time-window
size is smaller, all the accuracy measures are consistently lower
because useful recently opened app signals are fewer. On the other
hand, when its size gets larger, such as larger than 30 minutes, some
measures rise slightly while some other ones start to fall. To ex-
plain, for those apps that are opened less recently, they may be less
relevant to the query intents at the time of query submissions.

5. RELATED WORK
QAC has received a growing attention in recent years, such as

popularity-based QAC using historical frequency count signals [3],
time-based QAC using time signals [35, 37], context-based QAC
using user previous query signals [3], and personalized QAC us-
ing user profile signals [34]. The relevance scores evaluated in this
work make use of the existing research, such as MPC [3, 19, 24,
34], Personal(-S) [3, 6, 34], and TimeSense(-S) [6, 35, 37, 29].

Pre-Indexed Query Count
5 10 15 20

A
cc

ur
ac

y

34%

38%

42%

46%

50%

Opened App Recency (Minutes)
10 20 30 40 50 60

A
cc

ur
ac

y

34%

38%

42%

46%

50%

MRR SR@1 SR@2 SR@3

Figure 7: Pre-indexed query count (left) and opened app re-
cency (right) studies.

More recent QAC methods also predicted the likelihood that sug-
gested queries would be selected by users based on keystroke be-
haviors during query compositions [24, 43, 23], determined sug-
gestion rankings based on query reformulation signals [19], ex-
ploited web content signals [22], or combined signals such as time
and previous queries from users [6]. Specifically, Zhang et al. pro-
posed adaQAC, an adaptive QAC model incorporating users’ im-
plicit negative feedback [43]. Other aspects of QAC have also been
studied, such as user interactions with QAC [28, 15], space efficient
indexing [16], and spelling error tolerance [7, 18, 12, 38]. However,
none of the aforementioned work aimed at specifically solving the
mobile QAC problem by exploiting mobile devices’ exclusive sig-
nals. We take the initiative to show that mobile QAC can be more
accurate by employing mobile app-related signals.

The idea of using mobile app-related signals for mobile QAC is
inspired by a recent mobile app usage prediction work of Baeza-
Yates et al. [2]. Their model used signals of relations between se-
quentially opened apps via the Android API. Our work answers an
important open question on whether sequentially submitted queries
and opened apps can boost the QAC accuracy on mobile devices.

Mobile app recommendation and usage were also studied with
respect to app replacement behaviors [42], security preferences [44,
27], version descriptions [26], personalized signal discovery [25],
implicit feedback [11], serendipitous apps [4], and many other as-
pects [9, 10, 33, 39, 40]. A joint research of both mobile queries
and mobile apps sets our work apart from these studies.

6. CONCLUSION AND DISCUSSION
Users tend to rely on QAC more heavily on mobile devices than

on desktops. Motivated by its importance, we studied the new mo-
bile QAC problem to exploit mobile devices’ exclusive signals. We
proposed a novel AppAware model employing installed app and re-
cently opened app signals. To overcome the challenge of such noisy
and voluminous signals, AppAware optimizes composite objectives
at a lighter processing cost. Our algorithm converges to the global
optimum at a linear rate with a theoretical guarantee. Experiments
demonstrated high efficiency and effectiveness of AppAware.

Our study has provided a number of new insights that we hope
will have general applicability to recommendation and search strate-
gies on mobile devices (e.g., mobile shopping and mobile search),
to future models of mobile QAC, and to efficient optimization.

Acknowledgements. Research was sponsored in part by NSF grants 09-
64392, 12-23967, 13-30491, IIS-1017362, IIS-1320617, IIS-1354329, and
HDTRA1-10-1-0120, U.S. Army Research Lab under Cooperative Agree-
ment No. W911NF-09-2-0053 (NSCTA), grant 1U54GM114838 awarded
by NIGMS through funds provided by the trans-NIH Big Data to Knowl-
edge (BD2K) initiative (www.bd2k.nih.gov), and MIAS, a DHS-IDS Center
for Multimodal Information Access and Synthesis at UIUC.

APPENDIX
A. THEORETICAL ANALYSIS

We provide the proof for all the lemmas and theorems (see Sec-
tion 3) in this appendix.

A.1 Proof of Lemma 3.3
PROOF. We start by analyzing the first two terms in (3.9). For

all w we have EB [∇fB(w)] = EB
[
(1/|B|)

∑
c∈B∇fc(w)

]
.

By switching the order of selection in formulating mini-batches,
we take expectation with respect to mini-batches and obtain

EB [∇fB(w)] =
1

|B|
(|C|
|B|
)
(|C|
|B|

)∑
i=1

∑
c∈Bi

∇fc(w)

=
1

|B|
(|C|
|B|
) ∑
c∈C

(|C|−1
|B|−1

)
∇fc(w)

=
1

|C|
∑
c∈C
∇fc(w).

For all w, it holds that EB [∇fB(w)] = Ec [∇fc(w)] = ∇F (w).
By the definition of h(t)

B and h
(t)
c in (3.9) and (3.10),

EB[h(t)
B] = Ec[h(t)

c]

= Ec
[
∇fc(φ(t)

c)−∇fc(φ(t−1)
c)

]
+

1

|C|
∑
k∈C
∇fk(φ(t−1)

k)

=
1

|C|
∑
c∈C
∇fc(w(t−1)

)−
1

|C|
∑
c∈C
∇fc(φ(t−1)

c)

+
1

|C|
∑
k∈C
∇fk(φ(t−1)

k)

= ∇F (w
(t−1)

).

A.2 Proof of Lemma 3.4
PROOF. Following the mini-batch definition in the algorithm in

§3.5.1 and for all x and y, we have

EB
[
‖∇fB(x)−∇fB(y)‖2

]
=

1

|B|2
EB
[∥∥∥∑

c∈B
∇fc(x)−∇fc(y)

∥∥∥2]

=
1

|B|2
EB
[∑
c6=c′∈B

〈∇fc(x)−∇fc(y),∇fc′ (x)−∇fc′ (y)〉
]

(A.1)

+
|B|
|B|2

Ec
[
‖∇fc(x)−∇fc(y)‖2

]
.

By switching the order of selection in formulating mini-batches,
we take expectation with respect to mini-batches and obtain

1

|B|2
EB
[∑
c6=c′∈B

〈∇fc(x)−∇fc(y),∇fc′ (x)−∇fc′ (y)〉
]

=
1

|B|2
(|C|
|B|
)
(|C|
|B|

)∑
i=1

∑
c6=c′∈Bi

〈∇fc(x)−∇fc(y),∇fc′ (x)−∇fc′ (y)〉

=
1

|B|2
(|C|
|B|
) ∑
c6=c′∈C

(|C|−2
|B|−2

)
〈∇fc(x)−∇fc(y),∇fc′ (x)−∇fc′ (y)〉

=
|B| − 1

|B| · |C|(|C| − 1)

∑
c6=c′∈C

〈∇fc(x)−∇fc(y),∇fc′ (x)−∇fc′ (y)〉.

(A.2)

Note that the right-hand size of (A.2) does not depend on expec-
tation with respect to randomly sampled mini-batches.

Now we go on to replace term (A.1) with the right-hand side of
the results in (A.2). Then we further obtain

EB
[
‖∇fB(x)−∇fB(y)‖2

]
=

|B| − 1

|B| · |C|(|C| − 1)

∑
c6=c′∈C

〈∇fc(x)−∇fc(y),∇fc′ (x)−∇fc′ (y)〉

+
1

|B|
Ec
[
‖∇fc(x)−∇fc(y)‖2

]
=

|B| − 1

|B| · |C|(|C| − 1)

∑
c,c′∈C

〈∇fc(x)−∇fc(y),∇fc′ (x)−∇fc′ (y)〉

−
(|B| − 1

|B|(|C| − 1)
−

1

|B|

)
Ec
[
‖∇fc(x)−∇fc(y)‖2

]
=
|B| · |C| − |C|
|B| · |C| − |B|

‖∇F (x)−∇F (y)‖2

+
|C| − |B|

|B| · |C| − |B|
Ec
[
‖∇fc(x)−∇fc(y)‖2

]
,

where the last equality is obtained by the relation
[
(|B|− 1)/[|B| ·

|C|(|C|−1)]
]
‖
∑
c∈C ∇fc(x)−∇fc(y)‖

2 =
[
(|B|·|C|−|C|)/(|B|·

|C|−|B|)
]
‖∇F (x)−∇F (y)‖2.

A.3 Proof of Theorem 3.5
PROOF. We refer to h

(t)
B and h

(t)
c defined in (3.9) and (3.10).

By the orthogonality property for non-overlapped coordinates, the
non-expansiveness of the proximal operator [31], and that w∗ is the
global optimum in (3.6), we have

Ej
[
‖w(t) −w

∗‖22
]

=
(d− 1)

d
‖w(t−1) −w

∗‖22

+
1

d

∥∥proxη(w(t−1) − ηh(t)
B)− proxη(w

∗ − η∇F (w
∗
))
∥∥2
2

≤
1

d

[
(d− 1)‖w(t−1) −w

∗‖22 + ‖w(t−1) − ηh(t)
B −w

∗
+ η∇F (w

∗
)‖22
]
.

After applying the results of Lemma 3.3, with a further simplifi-
cation of terms, we can get

EB,j
[
‖w(t) −w

∗‖22
]
= EB

[
Ej
[
‖w(t) −w

∗‖22
]]

≤
1

d
EB
[
(d− 1)‖w(t−1) −w

∗‖22

+ ‖w(t−1) − ηh(t)
B −w

∗
+ η∇F (w

∗
)‖22
]

=
1

d

[
(d− 1)‖w(t−1) −w

∗‖22 + ‖w(t−1) −w
∗‖22

− 2η〈∇F (w
(t−1)

)−∇F (w
∗
),w

(t−1) −w
∗〉

+ η
2EB

[
‖h(t)
B −∇F (w

∗
)‖22
]]
.

Now we use the property that E
[
‖x‖22

]
= E

[
‖x − E[x]‖22

]
+∥∥E[x]∥∥2 for all x and the property that ‖x+y‖22 ≤ (1+ζ)‖x‖22+

(1 + ζ−1)‖y‖22 for all x,y, and ζ > 0. It holds that EB
[
‖h(t)
B −

∇F (w∗)‖22
]
≤ (1 + ζ)EB

[
‖∇fB(w(t−1)) − ∇fB(w∗)‖22

]
−ζ‖∇F (w(t−1))−∇F (w∗)‖22+(1+ζ−1)EB

[
‖∇fB(φ(t−1)

B)−
∇fB(w∗)‖22

]
. Therefore, we have

EB,j
[
‖w(t) −w

∗‖22
]
≤

1

d

[
d‖w(t−1) −w

∗‖22

+ 2η〈∇F (w
∗
),w

(t−1) −w
∗〉 − 2η〈∇F (w

(t−1)
),w

(t−1) −w
∗〉

+ η
2
(1 + ζ)EB

[
‖∇fB(w(t−1)

)−∇fB(w∗)‖22
]

+ η
2
(1 + ζ

−1
)EB

[
‖∇fB(φ(t−1)

B)−∇fB(w∗)‖22
]

− η2ζ‖∇F (w
(t−1)

)−∇F (w
∗
)‖22
]
. (A.3)

Lemma 3.4 is used to replace the two expectation terms with
respect to mini-batches on the right-hand side of (A.3). By the
property of any function f that is convex and has a Lipschitz con-
tinuous gradient with constant L: f(y) ≥ f(x) + 〈∇f(x),y −
x〉 + ‖∇f(x) −∇f(y)‖22/(2L) for all x and y [30], we can fur-
ther simplify (A.3) and multiply it by a positive constant κ:

κEB,j
[
‖w(t) −w

∗‖22
]
≤
κ(d− ηµ)

d
‖w(t−1) −w

∗‖22

+

(
κη2(1 + ζ)(|B| · |C| − |C|)

d(|B| · |C| − |B|)
−
κη2ζ

d

)
‖∇F (w

(t−1)
)

−∇F (w
∗
)‖22 +

2κLη2(1 + ζ−1)

d

[
1

|C|
∑
c∈C

fc(φ
(t−1)
c)− F (w

∗
)

−
1

|C|
∑
c∈C
〈∇fc(w∗),φ(t−1)

c −w
∗〉
]
+

(
κη2(1 + ζ)(|C| − |B|)
d(|B| · |C| − |B|)

−
κη

dL

)
Ec
[
‖∇fc(w(t−1)

)−∇fc(w∗)‖22
]

−
2κ(L− µ)η

dL

[
F (w

(t−1)
)− F (w

∗
)− 〈∇F (w

∗
),w

(t−1) −w
∗〉
]
.

(A.4)

By the property of any strongly convex function f with the con-
vexity parameter µ that f(y) ≤ f(x)+〈∇f(x),y−x〉+‖∇f(x)−
∇f(y)‖22/(2µ) for all x and y [30], we have
−‖∇F (w(t−1)) − ∇F (w∗)‖22 ≤ −2µ

[
F (w(t−1)) − F (w∗) −

〈∇F (w∗),w(t−1) −w∗〉
]
.

With defining Y (t)
B = (1/|C|) ·

[∑
c∈B fc(φ

(t)
c) +

∑
c/∈B∧c∈C

fc(φ
(t)
c)
]
− F (w∗)− (1/|C|) ·

[∑
c∈B〈∇fc(w

∗),φ
(t)
c −w∗〉+∑

c/∈B∧c∈C〈∇fc(w
∗),φ

(t)
c − w∗〉

]
+ κ‖w(t) − w∗‖22, by (A.4)

and for all α > 0, we obtain EB,j [Y (t)
B]−αY (t−1)

B ≤
∑4
k=1 ρkτk,

where the four constants are ρ1 = (κ/d)·
[
η2(1+ζ)(|C|−|B|)/(|B|·

|C| − |B|) − η/L
]
, ρ2 = |B|/|C| +

[
2κη2µ(1 + ζ)(|B| · |C| −

|C|)
]
/
[
d(|B| · |C|− |B|)

]
− 2κη2µζ/d− 2κ(L−µ)η/(dL), ρ3 =

κ(1 − ηµ/d − α), and ρ4 = 2κLη2(1 + ζ−1)/d − α + (|C| −
|B|)/|C|; and their associated terms are τ1 = Ec

[
‖∇fc(w(t−1))−

∇fc(w∗)‖22
]
, τ2 = F (w(t−1))− F (w∗)− 〈∇F (w∗),w(t−1) −

w∗〉, τ3 = ‖w(t−1)−w∗‖22, and τ4 = (1/|C|)
∑
c∈C fc(φ

(t−1)
c)−

F (w∗)− (1/|C|)
∑
c∈C〈∇fc(w

∗),φ
(t−1)
c −w∗〉.

It is obvious that τ1 ≥ 0 and τ3 ≥ 0. By the convexity property
of F , τ2 ≥ 0 and τ4 ≥ 0. For the step size, we choose

η =
|B| · |C| − |B|

2(L+ |C|µ)(|C| − |B|)
.

To ensure 0 < ηµ < 1, we choose a mini-batch size satisfying

1 ≤ |B| <
2|C|(|C|µ+ L)

2(|C|µ+ L) + (|C|µ− µ)
.

By setting ρ1 = 0 with ζ = (L+ 2|C|µ) /L > 0, ρ2 = 0
with κ = (|B|d)/

[
2|C|η(1 − ηµ)

]
> 0, and ρ3 = 0 with α =

1 − (ηµ)/d, we have ρ4 ≤ 0. Thus, EB,j [Y (t)
B] − αY (t−1)

B ≤ 0,
where the expectation is conditional on information from the pre-
vious iteration t − 1. Taking expectation with this previous it-
eration gives EB,j [Y (t)

B] ≤ αEB,j [Y (t−1)
B]. By chaining over t,

EB,j [Y (t)
B] ≤ αtY (0)

B . Since κ‖w(t)−w∗‖22 ≤ Y
(t)
B (note that the

sum of the first three terms in Y (t)
B is non-negative by the convexity

property of F), given the parameter settings above, for the compos-
ite objectives in (3.6) and the optimization algorithm in §3.5.1, we
have EB,j

[
‖w(t) −w∗‖22

]
≤ αt(C1 + C2/κ), where C1 and C2

are constants determined by w(0). Note that 0 < α < 1. The algo-
rithm in §3.5.1 has a linear rate of convergence.

7. REFERENCES
[1] R. Baeza-Yates, G. Dupret, and J. Velasco. A study of mobile

search queries in japan. In Proceedings of the International
World Wide Web Conference (WWW), 2007.

[2] R. Baeza-Yates, D. Jiang, F. Silvestri, and B. Harrison.
Predicting the next app that you are going to use. In
Proceedings of the ACM International Conference on Web
Search and Data Mining (WSDM), 2015.

[3] Z. Bar-Yossef and N. Kraus. Context-sensitive query
auto-completion. In Proceedings of the International
Conference on World Wide Web (WWW), 2011.

[4] U. Bhandari, K. Sugiyama, A. Datta, and R. Jindal.
Serendipitous recommendation for mobile apps using
item-item similarity graph. In Information Retrieval
Technology. 2013.

[5] C. M. Bishop. Pattern recognition and machine learning,
volume 1. Springer-Verlag New York, 2006.

[6] F. Cai, S. Liang, and M. de Rijke. Time-sensitive
personalized query auto-completion. In Proceedings of the
ACM International Conference on Conference on
Information and Knowledge Management (CIKM), 2014.

[7] S. Chaudhuri and R. Kaushik. Extending autocompletion to
tolerate errors. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2009.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms, volume 2. MIT press, 2001.

[9] E. Costa-Montenegro, A. B. Barragáns-Martínez, and
M. Rey-López. Which app? A recommender system of
applications in markets: Implementation of the service for
monitoring users’ interaction. Expert systems with
applications, 39(10), 2012.

[10] Y. Cui and K. Liang. A probabilistic top-n algorithm for
mobile applications recommendation. In IEEE International
Conference on Broadband Network & Multimedia
Technology (IC-BNMT), 2013.

[11] C. Davidsson and S. Moritz. Utilizing implicit feedback and
context to recommend mobile applications from first use. In
Proceedings of the Workshop on Context-awareness in
Retrieval and Recommendation, 2011.

[12] H. Duan and B.-J. P. Hsu. Online spelling correction for
query completion. In Proceedings of the International
Conference on World Wide Web (WWW), 2011.

[13] S. Fu, B. Pi, M. Desmarais, Y. Zhou, W. Wang, and S. Han.
Query recommendation and its usefulness evaluation on
mobile search engine. In IEEE International Conference on
Systems, Man and Cybernetics (SMC), 2009.

[14] T. Hastie, R. Tibshirani, and J. Friedman. The elements of
statistical learning, volume 2. 2009.

[15] K. Hofmann, B. Mitra, F. Radlinski, and M. Shokouhi. An
eye-tracking study of user interactions with query auto
completion. In Proceedings of the ACM International
Conference on Conference on Information and Knowledge
Management (CIKM), 2014.

[16] B.-J. P. Hsu and G. Ottaviano. Space-efficient data structures
for top-k completion. In Proceedings of the International
Conference on World Wide Web (WWW), 2013.

[17] R. Islam, R. Islam, and T. Mazumder. Mobile application and
its global impact. International Journal of Engineering &
Technology (IJEST), 10(6), 2010.

[18] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy
keyword search. In Proceedings of the International
Conference on World Wide Web (WWW), 2009.

[19] J.-Y. Jiang, Y.-Y. Ke, P.-Y. Chien, and P.-J. Cheng. Learning
user reformulation behavior for query auto-completion. In
Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR),
2014.

[20] R. Johnson and T. Zhang. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances in
Neural Information Processing Systems (NIPS), 2013.

[21] M. Kamvar, M. Kellar, R. Patel, and Y. Xu. Computers and
iphones and mobile phones, oh my!: A logs-based
comparison of search users on different devices. In
Proceedings of the international conference on World Wide
Web (WWW), 2009.

[22] W. Kong, R. Li, J. Luo, A. Zhang, Y. Chang, and J. Allan.
Predicting search intent based on pre-search context. In
Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR),
2015.

[23] L. Li, H. Deng, A. Dong, Y. Chang, H. Zha, and
R. Baeza-Yates. Analyzing user’s sequential behavior in
query auto-completion via markov processes. In Proceedings
of the International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), 2015.

[24] Y. Li, A. Dong, H. Wang, H. Deng, Y. Chang, and C. Zhai. A
two-dimensional click model for query auto-completion. In
Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR),
2014.

[25] Z.-X. Liao, S.-C. Li, W.-C. Peng, P. S. Yu, and T.-C. Liu. On
the feature discovery for app usage prediction in
smartphones. In Proceedings of the IEEE International
Conference on Data Mining (ICDM), 2013.

[26] J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua. New and
improved: Modeling versions to improve app
recommendation. In Proceedings of the International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), 2014.

[27] B. Liu, D. Kong, L. Cen, N. Z. Gong, H. Jin, and H. Xiong.
Personalized mobile app recommendation: Reconciling app
functionality and user privacy preference. In Proceedings of
the ACM International Conference on Web Search and Data
Mining (WSDM), 2015.

[28] B. Mitra, M. Shokouhi, F. Radlinski, and K. Hofmann. On
user interactions with query auto-completion. In Proceedings
of the International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), 2014.

[29] T. Miyanishi and T. Sakai. Time-aware structured query
suggestion. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR), 2013.

[30] Y. Nesterov. Introductory lectures on convex optimization: A
Basic Course, volume 87. Springer Science & Business
Media, 2004.

[31] Y. Nesterov. Gradient methods for minimizing composite
objective function. Technical report, Center for Operations
Research and Econometrics, 2007.

[32] M. Schmidt, R. Babanezhad, M. O. Ahemd, A. Defazio,
A. Clifton, and A. Sarkar. Non-uniform stochastic average
gradient method for training conditional random fields. In
Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), 2015.

[33] W. Shi and A. Yin. Interoperability-enriched app
recommendation. In IEEE International Conference on Data
Mining Workshop (ICDMW), 2014.

[34] M. Shokouhi. Learning to personalize query
auto-completion. In Proceedings of the International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), 2013.

[35] M. Shokouhi and K. Radinsky. Time-sensitive query
auto-completion. In Proceedings of the International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), 2012.

[36] Y. Song, H. Ma, H. Wang, and K. Wang. Exploring and
exploiting user search behavior on mobile and tablet devices
to improve search relevance. In Proceedings of the
international conference on World Wide Web (WWW), 2013.

[37] S. Whiting and J. M. Jose. Recent and robust query
auto-completion. In Proceedings of the International
Conference on World Wide Web (WWW), 2014.

[38] C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and
K. Sadakane. Efficient error-tolerant query autocompletion.
Proceedings of the Very Large Data Base Endowment
(VLDB), 6(6), 2013.

[39] C. Yang, T. Wang, G. Yin, H. Wang, M. Wu, and M. Xiao.
Personalized mobile application discovery. In Proceedings of
the International Workshop on Crowd-based Software
Development Methods and Technologies, 2014.

[40] S. Yang, H. Yu, W. Deng, and X. Lai. Mobile application
recommendations based on complex information. In Current
Approaches in Applied Artificial Intelligence. 2015.

[41] S.-H. Yang, B. Long, A. J. Smola, H. Zha, and Z. Zheng.
Collaborative competitive filtering: learning recommender
using context of user choice. In Proceedings of the
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), 2011.

[42] P. Yin, P. Luo, W.-C. Lee, and M. Wang. App
recommendation: a contest between satisfaction and
temptation. In Proceedings of the ACM international
conference on Web search and data mining (WSDM), 2013.

[43] A. Zhang, A. Goyal, W. Kong, H. Deng, A. Dong, Y. Chang,
C. A. Gunter, and J. Han. adaqac: Adaptive query
auto-completion via implicit negative feedback. In
Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR),
2015.

[44] H. Zhu, H. Xiong, Y. Ge, and E. Chen. Mobile app
recommendations with security and privacy awareness. In
Proceedings of the ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD), 2014.

