
Achieving Differential Privacy in Secure Multiparty
Data Aggregation Protocols on Star Networks

Vincent Bindschaedler
∗

University of Illinois at
Urbana-Champaign

bindsch2@illinois.edu

Shantanu Rane
Palo Alto Research Center

srane@parc.com

Alejandro Brito
Palo Alto Research Center

abrito@parc.com

Vanishree Rao
Palo Alto Research Center

vrao@parc.comt

Ersin Uzun
Palo Alto Research Center

euzun@parc.com

ABSTRACT
We consider the problem of privacy-preserving data aggregation in
a star network topology, i.e., several untrusting participants con-
nected to a single aggregator. We require that the participants do
not discover each other’s data, and the service provider remains
oblivious to each participant’s individual contribution. Further-
more, the final result is to be published in a differentially private
manner, i.e., the result should not reveal the contribution of any
single participant to a (possibly external) adversary who knows the
contributions of all other participants. In other words, we require
a secure multiparty computation protocol that also incorporates a
differentially private mechanism.

Previous solutions have resorted to caveats such as postulating a
trusted dealer to distribute keys to the participants, or introducing
additional entities to withhold the decryption key from the aggrega-
tor, or relaxing the star topology by allowing pairwise communica-
tion amongst the participants. In this paper, we show how to obtain
a noisy (differentially private) aggregation result using Shamir se-
cret sharing and additively homomorphic encryption without these
mitigating assumptions. More importantly, while we assume semi-
honest participants, we allow the aggregator to be stronger than
semi-honest, specifically in the sense that he can try to reduce the
noise in the differentially private result.

To respect the differential privacy requirement, collusions of mu-
tually untrusting entities need to be analyzed differently from tradi-
tional secure multiparty computation: It is not sufficient that such
collusions do not reveal the data of honest participants; we must
also ensure that the colluding entities cannot undermine differen-
tial privacy by reducing the amount of noise in the final result. Our
protocols avoid this by requiring that no entity – neither the ag-
gregator nor any participant – knows how much noise a participant
contributes to the final result. We also ensure that if a cheating ag-
gregator tries to influence the noise term in the differentially private
output, he can be detected with overwhelming probability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CODASPY’17, March 22-24, 2017, Scottsdale, AZ, USA

c© 2017 ACM. ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029829

Keywords
secret sharing, homomorphic encryption, differential privacy

1. INTRODUCTION
Aggregate computations are the among the most basic and widely

used primitives in today’s networked environments. These compu-
tation usually involve a server (aggregator) computing aggregate
measures, e.g., histograms, weighted summations, averages, etc.,
using data gathered from several devices (participants). In this
work we are concerned with application scenarios in which par-
ticipants and the aggregator form a star network, and the privacy of
the participants must be protected. The need for privacy-preserving
aggregate computations arises in several applications: telemetry
from Internet-of-Things (IoT) devices, analytics on medical data
furnished by wearables, smart grid power aggregation, histograms
of websites visited by users of a particular browser, to name a few.

As participants in the internet economy, we generally allow our
data to be used by service providers (aggregators), as a fair ex-
change for the services they provide. However, there is a growing
concern that our data may be used for purposes that we did not
sanction. For example, smart meter readings can reveal a home-
owner’s life patterns, fitness apps may reveal private medical con-
ditions, and browser activity and metadata reveal intimate details
of a person’s life and values. Furthermore, if the service provider is
affected by a data breach, sensitive data belonging to unsuspecting
individuals falls into the hands of an adversary.

Two kinds of privacy formulations may be used to express and
resolve the above concerns. The first formulation, based on se-
cure multiparty computation, is used to directly express which en-
tities can communicate and how entities withhold knowledge of
their data from other entities. In a star network, the main privacy
constraint is that the data held by any individual participant should
not be revealed to other participants, and also not to the aggrega-
tor. The aggregator should discover only the specified aggregate
measure such as the summation or the probability distribution and
nothing else. Additional constraints may be dictated by practical
deployment. One such constraint, in a star network, is that the par-
ticipants can communicate with the aggregator but may not be able
to communicate with one another. A second constraint is that the
participants cannot all be expected to remain online simultaneously
while the protocol is being executed. Thus, an aggregation proto-
col must enable the aggregator to compute the correct result, while

∗V. B. contributed to this work when he was an intern at PARC.

satisfying the privacy constraints and communication constraints,
even when users dynamically join and leave.

The second formulation, based on differential privacy, is used
to express how difficult it is for an adversary to observe the result
of a computation, and make inferences about the protocol’s par-
ticipants. Suppose that the aggregator publishes the final result of
the data aggregation protocol, e.g., the average power consump-
tion, and makes it available to an analyst. Then, differential pri-
vacy quantifies the degree of confidence with which the analyst can
claim that a particular participant, e.g., Alice, participated in the
protocol. Seen another way, if the analyst repeated the protocol af-
ter Alice moved out of the neighborhood, he would discover Alice’s
power consumption, even if the protocol didn’t directly reveal Al-
ice’s data to the analyst. A differentially private mechanism would
modify the result, i.e., the average power consumption in a way that
makes it hard for the analyst to discover Alice’s power consump-
tion. This is clearly a different notion of privacy compared to that
encountered in secure multiparty computation. In this paper, we are
concerned with situations where both kinds of privacy are desired.

2. OVERVIEW OF RELATED WORK
Addressing the privacy concerns related to multiparty computa-

tion is challenging predominantly because of the key management
problem. Concretely, each participant should obfuscate its input so
that all the obfuscated inputs can later be combined – for example,
by means of a homomorphic cryptosystem – by the aggregator to
reveal the aggregate function. However, this is not straightforward
for the star network topology because each participant encrypts us-
ing its own unique key. Below, we present a short overview of at-
tempts to solve this problem. For more details, we refer the reader
to a comprehensive review by Erkin et al. [8]

Shi et al. considered an aggregation protocol that assumes a
trusted dealer that distributes encryption keys to the participants,
and ensures that the keys vanish when the aggregator combines the
result in a prescribed way [4, 22]. A similar approach is followed
by Bilogrevic et al., to compute means, variances and higher mo-
ments of distributions [3]. Rather than assuming a trusted dealer,
Jawurek and Kerschbaum distribute the task of computation and
the decryption between an untrusted aggregator and an untrusted
key managing authority [11]. This is an efficient approach with a
single public key homomorphic cryptosystem, that has only O(m)
overhead, wherem is the number of participants. However, it intro-
duces an extra participant, and introduces the risk of catastrophic
privacy loss if the key managing authority colludes with the ag-
gregator. Leontiadis et al. proposed a different solution that allows
each participant to use a different encryption key, while distributing
the knowledge of the overall decryption key between the aggregator
and an extra entity called the collector [16]. Similar to the previous
approach, their scheme forbids collusions between the aggregator
and the collector.

Though additive secret sharing requires pairwise information ex-
change amongst the participants, this approach can still be consid-
ered in star networks, by allowing the participants to communicate
via the aggregator. Specifically, Kursawe et al. employed public-
key encryption to send encrypted shares of the participants’ data (or
keys) to a subset of participants (termed “leaders”) via the aggrega-
tor [15]. The leaders add their own shares such that their effect van-
ishes upon combination, revealing only the sum of the participants’
data. Garcia and Jacobs presented a protocol in which a participant
homomorphically encrypts each share by using the public-key of
each share’s intended recipient, but only sends it to the aggrega-
tor [10]. The aggregator then homomorphically combines the en-
crypted shares, requests the decryption of partial summations from

each participant, and combines the partial sum to reveal the final
sum, but nothing else. This approach has been generalized via the
use of Shamir secret sharing [21], which provides fault tolerance
in addition to collusion resistance [20]. In a strict star topology, all
these approaches incurO(m2) ciphertext communication overhead
at the aggregator.

We point to further efforts on this topic, which relax the strict star
network topology in exchange for a gain in efficiency. Erkin and
Tsudik allow the participants (smart meters) to communicate with
one another, exchanging random values before each smart meter
communicates with the aggregator [9]. This is a mode of secret
sharing, in which the randomized values are chosen to vanish when
the aggregator computes the sum. Ács and Castelluccia allow each
participant to communicate with a small number of other partici-
pants [1]. These works show that by allowing a limited amount of
communication amongst the participants, the ciphertext overhead
of the protocol immediately becomes manageable, i.e., O(m). On
the other hand, if any participant leaves before the shares are com-
bined, the final sum computed by the aggregator becomes error-
prone. Though we do not have a proof, the above two papers sug-
gest that a O(m) ciphertext overhead may not be achievable, in
general, for fault-tolerant aggregation with a star topology. In-
deed, we are not aware of any protocol that achieves this. An
improvement toward O(m) overhead, has nevertheless, been at-
tempted. Dividing the star-connected participants into a logical hi-
erarchy composed of several “cohorts” of participants, it is possible
to achieve a protocol complexity of O(m1+ρ) [20]. By an appro-
priate choice of the cohort size, ρ can be made small.

Some of the schemes discussed above, have also proposed mech-
anisms to achieve differential privacy [1, 3, 4, 11, 22]. Recogniz-
ing that the aggregator has an incentive to obtain the most accu-
rate aggregate value as possible, these studies have entrusted the
task of noise addition to entities other than the aggregator. This
is a departure from the differential privacy literature produced by
the machine learning community, in which the database curator is
trusted to add the correct amount of noise. For example, in Shi et
al. [22], Chan et al. [4] and Bilogrevic et al. [3], the participants
generate samples from the two-sided geometric distribution (a dis-
crete version of the Laplace distribution), which add up to provide
a differentially private summation of the participants’ inputs. Simi-
larly, in Acs and Castelluccia [1] the participants generate Gamma-
distributed noise samples, which add up to a Laplace-distributed
noise term at the aggregator.

Unfortunately, as we show later in the paper, this approach of
having the participants add noise samples, is not sufficient to pre-
serve differential privacy. In particular, we argue that collusions of
semi-honest participants can subtract out their noise terms from the
published result and reduce the differential privacy of honest par-
ticipants. We present a protocol in which the participants and the
aggregator must interact to determine the noise term. More impor-
tantly, our protocol is designed such that neither the participants
nor the aggregator know the noise terms that have contributed to
the differentially private output. Since the aggregator has an incen-
tive to cause less noise to be added than necessary, we describe a
protocol that can detect a cheating aggregator.

3. ADVERSARIAL MODEL
We consider a strict star topology, i.e., each of the participants

can communicate only with the aggregator, and never with any of
the other participants. Below, we explain several aspects of our
adversarial model. The explanation below is intended to convey
the broad requirements, thus notation is kept at a minimum. Later
on, following the description of our protocols, we will explain in

Work Approach Network
Topology

Correctness
under Node

Failures

Differential
Privacy

(DP)

Who knows the noise terms
used for Differential Privacy?

Shi et al. [22],
Bilogrevic et
al. [3]

Differentially private aggregation
with geometric distribution

Star network +
trusted key

dealer.
No Yes Each participant knows its own

contribution.

Chan et al. [4], Differentially private aggregation
with fault tolerance

Star network +
trusted key

dealer.
Yes Yes Each participant knows its own

contribution.

Joye and
Libert [12]

Private aggregation with a large
plaintext space using discrete
logarithms

Star network +
trusted key

dealer.
No No N/A

Jawurek and
Kerschbaum
[11]

Practical scheme with a single
additively homomorphic key-pair

Star network +
key managing

authority
Yes Yes Key managing authority knows

the noise term in the final sum.

Leontiadis et
al. [16]

Private Aggregation with
Dynamic Group Management

Star network +
untrusted

“collector”
Yes No N/A

Erkin and
Tsudik [9]

Efficient homomorphic
aggregation with inter-participant
communication

Fully connected
network to share
random values

No No N/A

Ács and
Castelluccia [1]

Differentially private aggregation
with additive secret sharing

Fully connected
network to share

secrets
Yes Yes Each participant knows its own

contribution.

Kursawe et
al. [15]

Private aggregation using
additive secret sharing

Star network + L
“leaders”. No No N/A

Garcia and
Jacobs [10]

Additive secret sharing with
homomorphic encryption Star network No No N/A

Rane et al. [20] Shamir secret sharing and
homomorphic encryption Star network Yes No N/A

This paper

Shamir secret sharing and
homomorphic encryption,
zero-knowledge proof to detect
cheating aggregator

Star network Yes Yes
Neither participants nor

aggregator know individual or
final noise terms.

Table 1: Methods and Adversarial Models in the Privacy-preserving Aggregation Literature.

detail how these requirements are satisfied.

3.1 Participant & Aggregator Obliviousness
Consider that the participants’ data elements di are collected in

a vector denoted by d. We require Participant Obliviousness, i.e.,
the input data, di, of a participant should not be revealed to the
other participants. Further, we require Aggregator Obliviousness,
which means that the aggregator discovers only the aggregate func-
tion being computed and nothing else about the inputs of individual
participants. In our protocols, we first consider the simplest aggre-
gate function, namely the sum of the participants’ data. Later, we
describe how to extend the summation protocols to the computation
of other aggregate measures such as counts and histograms.

A typical assumption in studies of this kind is that the aggregator
and all the participants are semi-honest (honest but curious). For
our purposes, a semi-honest entity is one which follows the rules
of the protocol, but based on the information it sees during each
step of the protocol, it can attempt to discover the data held by
other entities. In particular, the participants and aggregator do not
provide false or spurious inputs to the protocol. During privacy
analysis, it then becomes necessary to consider the view of semi-
honest participants, and collusions of semi-honest participants.

We remark that, many published works assume semi-honest enti-
ties but do not allow certain collusions. For example, in the scheme
of Jawurek et al. [11] , the aggregator may not collude with a key
authority. In the scheme of Leontiadis et al. [16], the aggregator
may not collude with the collector. While these caveats are made
in the interest of practical realizability, they present potentially se-
rious concerns, because the forbidden collusion results in catas-

trophic privacy loss for all honest participants. Our goal, therefore,
is to design aggregation protocols that protect against privacy loss
under collusions of all kinds. We go a step further than this by as-
suming that while the participants are semi-honest, the aggregator
is “strictly stronger than semi-honest” in a particular sense, that we
will clarify in Section 3.3.

3.2 Differential Privacy (DP)
Recent work on Differential Privacy [6] has shown that aggre-

gator obliviousness is not enough when the aggregator (or an ad-
versary that corrupts the aggregator) has side information about the
participants. For example, if this side information consists of the
sum of the inputs of m − 1 out of m participants, then running
a privacy-preserving aggregation protocol with m participants triv-
ially reveals the remaining participant’s input. Therefore, to protect
attacks against adversaries armed with background information, we
require a differentially private aggregation mechanism.

Let d′ denote a vector that differs from d in only a single entry.
This can be achieved by adding an element to d, or removing a sin-
gle element from d, or by modifying the value of a single element
in d. In this case, d and d′ are referred to as adjacent data sets.
Then, (ε, δ)−Differential Privacy is defined as follows:

DEFINITION 1. (ε, δ)-Differential Privacy [7]: An algorithm
or protocol or mechanism M is said to satisfy (ε, δ)-Differential
Privacy if, for all adjacent data sets d and d′, and for all sets
S ⊆ Range(M),

P (M(d) ∈ S) ≤ eε · P (M(d′) ∈ S) + δ

As a consequence of this definition, a differentially private proto-
col produces nearly indistinguishable outputs for adjacent data sets,
thus preserving the privacy of the element that is different in d and
d′. The amount of indistinguishability is controlled by the parame-
ters ε and δ with lower values implying greater privacy. Differential
privacy can be achieved in many ways: One approach is output per-
turbation, which involves first computing a function of the data set
and then adding noise to the function result. Another approach is
input perturbation, which involves first adding noise to the data be-
fore evaluating the function result. In either case, a differentially
private mechanism will ensure that the function value revealed to
the aggregator at the end of the protocol, will contain some additive
noise which will protect the participants against attackers equipped
with background information. The amount of noise that needs to
be added the final aggregate function f depends on the parameters
ε, δ, and the “global sensitivity” of the function f , denoted by ∆
and defined as

∆ = max
d,d′
‖f(d)− f(d′)‖1

for all adjacent data sets d and d′.
For example, (ε, 0)-Differential Privacy can be achieved by eval-

uating the function f and adding noise sampled from a Laplace
distribution with scale parameter ∆/ε. Also, (ε, δ)-Differential Pri-
vacy can be achieved by evaluating the function f and adding noise
sampled from a Gaussian distribution with zero mean and variance
∆
ε

ln(1/δ). Other mechanisms are possible in which the noise term
is sampled from a different distribution, and is based on the “local
sensitivity” rather than the “global sensitivity” [18]. In our scenario
of computing aggregate functions on star networks, adding noise to
a function value evaluated at the aggregator is not straightforward
owing to the competing incentives of the participants and the ag-
gregator which we now elaborate.

3.3 Secure Multiparty Differential Privacy
As we are interested in providing differential privacy to the par-

ticipants, there are interesting adversarial scenarios that are not cap-
tured in pure secure multiparty computation or pure differentially
private mechanisms. We now discuss these adversarial scenarios.
Before that, we describe precisely the sense in which the aggregator
is a more powerful adversary than a traditional semi-honest entity.

Aggregator can influence the noise term: The aggregator wants the
revealed aggregate result to be as accurate as possible. Thus, he
has an incentive to add a small amount of noise (even no noise at
all), which would result in insufficient differential privacy for the
participants. In most of the prior literature on differentially private
machine learning, the database curator is the entity that adds noise
to the data. We contend that when the curator (or analyst, or aggre-
gator) himself has the incentive to obtain accurate measurements,
he cannot be trusted to add the correct amount of noise to ensure
differential privacy for the participants. In our model, the aggre-
gator can try to influence (e.g., reduce) the level of noise that is
added to the aggregate before it is published. By doing this, he can
try to force a higher value of ε, thus resulting in lower differential
privacy. In this respect, he is stronger than the semi-honest entity
encountered in traditional secure multiparty computation1.

Collusions of semi-honest participants: We assume that each par-
ticipant is semi-honest. It may seem that the way to prevent the ag-
gregator from influencing the noise term is to ask the participants,
not the aggregator, to generate noise values for differential privacy.
Since the participants are semi-honest, they do not present spurious
data or wrongly distributed noise samples to the protocol. However,
their curiosity has consequences beyond those normally observed

…
" A …
" A

(a) t colluding participants (b) t colluding participants
+ aggregator

Figure 1: Our adversarial model permits a collusion between a
subset of the semi-honest participants (a), or between a subset
of the participants and a corrupted aggregator (b).

in secure multiparty computation, where the goal of semi-honest
entities is to discover the data of honest entities. In our adversarial
model, the goal of semi-honest entities is, additionally, to make sta-
tistical inferences about the honest entities that are more accurate
than what the specified differential privacy parameter allows.

Consider, for example, the case in Fig. 1(a), in which the aggre-
gator is following the protocol and t participants are honest, but all
the remaining m − t participants form a collusion. The colluding
participants will now discover the noisy summation output by the
aggregator, from which they can subtract their own inputs and their
own noise contributions. This leaves the noisy contribution of the
t honest participants, which may not guarantee sufficient differen-
tial privacy, i.e., a low enough value of ε. Thus, it is not sufficient
to trust the semi-honest participants to generate noise values. Of
course, the adversarial model also allows for the more serious col-
lusion between a corrupted aggregator and a subset of the partici-
pants, as shown in Fig. 1(b).

In earlier work, e.g. [3, 22], the above situation is avoided by re-
quiring that some fraction of the participants must remain honest,
and that these honest participants must add enough noise to ensure
differential privacy. Other earlier work, e.g. [20], does not consider
differential privacy, hence a collusion ofm−1 out ofm participants
trivially reveals the data of the remaining honest participant even if
the aggregator remains honest. We claim that, with a differentially
private aggregation protocol, it is possible to protect the lone hon-
est participant even when all other participants collude (provided
the aggregator stays honest). Intuitively, the way to achieve this is
to have the participants generate noise samples, and make the ag-
gregator blindly pick only a subset of those samples, unbeknownst
to the participants. Our protocols will make this notion clear. In
particular, we will ensure that an aggregator who tries to choose
fewer than the prescribed number of noise samples is caught with
overwhelming probability.

Our view is that the adversarial model described here is more
realistic than a semi-honest model, and can protect participants in
many real-world situations. For example, companies might want
to disaggregate power usage data gathered from a neighborhood.
Noising the power usage can provide some privacy against disag-
gregation. A ride-sharing service might want to extract ratings re-
ceived by individual drivers, in order to penalize low scorers. Nois-
ing the scores provides some protection for drivers, encouraging
them to participate.

1. We clarify that the aggregator is not as powerful as an “active” or “ma-
licious” adversary in traditional secure multiparty computation. Such an
adversary can arbitrarily deviate from the protocol. The corresponding de-
fense mechanisms are significantly more complicated, and possibly imprac-
tical to implement.

…
"

d1

d2

dm

A …
" A

C1

C2

Cm

…
" A

q(1) + r1

q(2) + r2

q(m
) + rm

mX

i=1

di

Steps 1, 2, 3 Step 4 Steps 5, 6

Evj

⇣
p
(m

) (j)
⌘

E
vj

⇣
p (1)

(j)
⌘

Figure 2: The protocol of Section 4 as described in [20]. Partic-
ipants send homomorphically encrypted shares to the aggrega-
tor A to indirectly implement Shamir secret sharing in a star
network.

4. SECRET SHARING FOR
PRIVATE AGGREGATION

We first describe the basic protocol that is used to perform privacy-
preserving aggregation in a star topology, without consideration of
differential privacy. For this, we leverage existing work in the lit-
erature [20], and in subsequent sections, show how to achieve the
desired level of differential privacy, even with an adversarial ag-
gregator. As the steps for achieving differential privacy crucially
depend on this basic protocol, we will describe it in some detail.
In this section, assume that all entities, including the aggregator
are semi-honest. Later on, when differentially private mechanisms
are considered, we will make the aggregator more powerful, in the
sense that he can influence the amount the noise added to the fi-
nal result output by the protocol. At this point, we are still in the
realm of traditional secure multiparty computation and there is no
noise being added by any entity. Thus, nothing is lost by assuming
a semi-honest aggregator, just for this section.

The protocol withm participants is based on Shamir Secret Shar-
ing [21] and additively homomorphic encryption. The high-level
idea is that each of the m participants generates a polynomial with
secret coefficients whose constant coefficient is their input data.
Each participant evaluates its polynomial atm distinct known points,
encrypts the resulting values using the public keys of relevant par-
ticipants, and sends them to the aggregator. The aggregator homo-
morphically combines the encrypted shares received from all par-
ticipants, to obtain encrypted evaluations of a “sum” polynomial at
those m points. Upon decrypting these evaluations, the aggregator
performs polynomial interpolation to obtain the coefficients of the
sum polynomial, evaluates the sum polynomial at x = 0 to dis-
cover the desired sum of inputs of all participants. A more precise
description of the protocol follows below.

Inputs: Denote the aggregator by A, and each participant by Pi,
i = 1, 2, . . . ,m. Let di be the input data held by each participant,
such that di is a non-negative integer and di < dmax. Associated
with each Pi is the public-private key pair of a semantically secure
additively homomorphic cryptosystem [5, 19]. Denoting the pub-
lic key for Pi by vi, the additive homomorphic property ensures
that Evi(a)Evi(b) = Evi(a + b). The semantic security property
implies that a given plaintext maps to a different ciphertext at ev-
ery encryption, thus providing protection against Chosen Plaintext
Attacks (CPA).

Output: The aggregator discovers
∑m
i=1 di. The participants dis-

cover nothing else.

Protocol: Consider the following steps, also shown in Fig. 2:

1. The aggregator broadcasts a large prime number β > mdmax

to all participants.

2. Each participant, Pi, i = 1, 2, ...,m generates a polynomial

of degree k < m given by:

p(i)(x) = di + p
(i)
1 x+ p

(i)
2 x2 + . . .+ p

(i)
k xk mod β

where the coefficients p(i)
s where s = 1, 2, ..., k, are chosen

uniformly at random from the interval [0, β). By construc-
tion, note also that p(i)(0) = di < β, i.e., evaluating the
polynomial at zero yields each participant’s input data.

3. Each participant Pi evaluates the polynomial at m known,
distinct points. Without loss of generality, let these points
be the integers j = 1, 2, . . . ,m. Then, each Pi encrypts
p(i)(j) using the public key vj of the participants Pj , j =

1, 2, ...,m, and sends the ciphertexts Evj (p(i)(j)) to the ag-
gregator, A.

4. For each i = 1, 2, . . . ,m, the aggregator computes

Evj (rj)

m∏
i=1

Evj (p(i)(j)) = Evj

(
rj +

m∑
i=1

p(i)(j)

)
= Evj (rj + q(j)) = Cj

The aggregator then sends each Cj , j = 1, 2, . . . ,m to par-
ticipant Pj for decryption. Here, the constant rj is chosen at
random to hide the summation term from Pj .

5. The participants Pj who are still online, decrypt the respec-
tive Cj and returns it to the aggregator. The aggregator sub-
tracts rj and obtains, for j ⊂ {1, 2, . . . ,m}, the values

q(j) =

m∑
i=1

p(i)(j) mod β

6. By construction, the above steps have enabled the aggregator
to evaluate the polynomial,

q(x) = q1x+ q2x
2 + . . .+ qkx

k +

m∑
i=1

di mod β

at some points in the set {1, 2, . . . ,m}. In order to recover
the coefficients q1, q2, . . . , qk and the desired summation,
the aggregator needs the polynomial q(x) to be evaluated
at k + 1 or more points, i.e., the aggregator needs at least
k+1 participants to be online. If this requirement is satisfied,
the aggregator can perform polynomial interpolation to ob-
tain q1, q2, . . . , qk, and recover the value of q0 =

∑m
i=1 di,

which is the quantity of interest.

Correctness: The use of additively homomorphic encryption with
the appropriate participant’s public keys distributes shares of the
desired summation to the participants who are still online. Func-
tionally, this is equivalent to distributing polynomial secret shares,
and performing additions in the BGW protocol [2]. Alternatively,
correctness follows from the realization that Shamir secret sharing
is additively homomorphic modulo β.

Fault-Tolerance: The degree of the “sum” polynomial is k < m.
Hence, the protocol is fault tolerant: The aggregator can compute
the summation even when up to m − k − 1 participants go offline
after Step 3, i.e., before polynomial interpolation is used to extract
the final sum from the shares.

Privacy: First, consider privacy against individual semi-honest en-
tities. Secret sharing ensures that no participant discovers the data
held by an honest participant. Furthermore, the homomorphic cryp-
tosystem ensures that the aggregator only discovers the coefficients

of the “sum” polynomial q(x), but does not discover the coeffi-
cients of the component polynomials p(i)(x). The privacy guar-
antee against individual semi-honest participants is information-
theoretic, while that against the aggregator is computational.

Next, consider privacy against collusions of semi-honest entities.
An adversary that corrupts m− 1 out of m participants, can exam-
ine the published summation and discover the data of the remain-
ing honest participant (We can protect the lone honest participant
using a differentially private mechanism that we will describe in
Section 5). Next, consider semi-honest coalitions that also contain
the aggregator. In order to discover the data di of an honest par-
ticipant Pi, the coalition needs to access at least k + 1 decrypted
polynomial secret shares p(i)(j) for j ∈ {1, 2, ...,m} and perform
polynomial interpolation. To achieve this, the coalition must com-
prise the aggregator and at least k + 1 other semi-honest partici-
pants. In other words, the protocol preserves privacy of an honest
participant against coalitions consisting of the aggregator and up to
k other participants.

Complexity: The ciphertext communication complexity of the pro-
tocol is O(m2) as determined by Step 3. Similarly, the ciphertext
computation complexity is also O(m2) as determined by Step 4.
Note that, the aggregator has to perform polynomial interpolation
in Step 5. This can be accomplished using Lagrange interpolation,
which has O(m2) complexity [13].

5. DIFFERENTIALLY PRIVATE
AGGREGATION PROTOCOLS

Our approach is to make the participants and the aggregator gen-
erate and add noise to the aggregate function through interaction.
This becomes challenging under the adversarial model described
earlier. The aggregator has an incentive to add as little noise as
possible. Furthermore, even if the aggregator is honest, it is very
difficult to ensure differential privacy of a participant when all other
participants are colluding. Our approach is to design protocols in
which neither the aggregator nor any participant finds out the noise
value that has been added to the final summation. In fact, we have
a slightly stronger requirement: No single participant can discover
how much noise she herself contributed to the final summation.

Broadly, the protocol has two phases: (1) Cheating-proof noise
generation, and (2) Secure aggregation. In the first phase, the noise
term is generated via interactions between the entities, in such a
way that cheating attempts can be detected. The second phase ex-
ecutes the secure aggregation protocol of Section 4 such that the
aggregated result will incorporate the noise term to guarantee dif-
ferential privacy. We assume the following setup for all of the pro-
tocols (and sub-protocols) of this section.

Setup & Public Parameters: As before, denote the aggregator by
A, and each participant by Pi, i = 1, 2, . . . ,m. The aggregator
has a public-private key pair of a semantically secure additively
homomorphic cryptosystem. The public key of the aggregator is
denoted by vA. The plaintext domain of the aggregator is DA. Let
F , FS denote noise distributions over R. (For example, F is the
Laplacian distribution with parameter ∆

ε
, denoted by Lap(∆/ε).)

Inputs: Each Pi has input data di. The aggregator has no inputs.

Output: The aggregator discovers
∑m
i=1 di + ξ, where ξ ∼ F is

the noise term. The participants do not discover anything.

Protocol: Consider the following steps:

1. The participants and the aggregator jointly execute the cheating-
proof noise generation protocol, to be described in Section 5.2.

Participant i obtains blinding term ri. The aggregator obtains
(from Pi) a value ri+ ξi for every participant, and computes
the sum,

∑m
i=1(ri + ξi).

2. The participants and the aggregator jointly execute the pri-
vate aggregation protocol of Section 4, with every Pi’s input
set to di−ri. The aggregator obtains the value

∑m
i=1(di−ri)

via interactions with the participants who are still online dur-
ing Step 5 of the protocol in Section 4. It then calculates:

m∑
i=1

(di − ri) +

m∑
i=1

(ri + ξi) =

m∑
i=1

di + ξ

which is the desired noised sum with ξ =
∑m
i=1 ξi.

In the subsections that follow, we describe the protocol in more
detail. We first explain how the noise term needed for differential
privacy can be computed by aggregating noise samples generated
by the participants. Then, we describe the protocol to achieve dif-
ferential privacy and analyze it with respect to correctness, fault-
tolerance, and privacy under the threat model described in Sec-
tion 3. 2

5.1 Sampling Noise for Differential Privacy
There are several ways to sample noise in order to satisfy differ-

ential privacy. The popular Laplacian mechanism adds noise from
the Laplace distribution, but other distributions (e.g., Gaussian) can
be used as well [7]. In our setting, it is not sufficient to sample a sin-
gle noise term from an appropriate distribution. Indeed, neither the
participants nor the aggregator should find out the sampled noise
value, and so no entity should perform the sampling on its own.
Instead, we propose to sample the noise as the sum of several noise
terms generated by the participants. Formally, we model the noise
term ξ as a random variable X ∼ F . The idea is to generate X as
the sum of some i.i.d. random variables Xi.

Consider first the case where F is the Gaussian distribution.
Write Sn = 1

n

∑n
i=1 Xi, where Xi are i.i.d. random variables

from some distribution FS with finite variance σ2. We know by
the Central Limit Theorem (CLT) that

√
n(Sn−E[Sn]) converges

in distribution to N (0, σ2). This observation allows us to gener-
ate noise that approximately follows a Gaussian distribution with a
given variance. Note that (ε, δ)-differential privacy can be achieved
using Gaussian noise (see Section 3.2).

What if, instead, we want to achieve ε-differential privacy (i.e.,
δ = 0)? This requires F to be a Laplace distribution, specifically
F = Lap(∆/ε). This can be accomplished using a similar idea for
generating X by exploiting the infinite divisibility of the Laplace
distribution [14]. Concretely, if X is a Laplace random variable
with mean zero and scale parameter b, then for any n ≥ 1, there
exist i.i.d. random variables Xi such that X =

∑n
i=1 Xi. For

example, this holds ifXi = Y1,i−Y2,i, where the random variables
Y1,i, Y2,i are distributed as Gamma(1/n, b).

More generally, we consider generating noise from any distri-
bution F which can satisfy differential privacy, as long as we can
sample X ∼ F by sampling i.i.d. Xi’s for some distribution FS
such that X = an

∑n
i=1 Xi, for some constant an. It may also be

2. In addition to the adversarial actions described in Section 3, other de-
viations are possible. For example, a participant can be online but could
refuse to provide the decryption key in Step 5 in the protocol of Section 4.
In our construction, such deviations fall into the category of failures, from
which recovery is possible owing to the fault tolerance provided by Shamir
Secret Sharing. We also remark that the aggregator has no incentive to de-
viate in a way that would result in a failure to complete the protocol because
that implies a failure to obtain the aggregate sum.

...

...

...

...

ci noise samples per participant

P
ar

ti
ci

p
an

ts

𝜉𝑚,𝑐𝑚

𝜉1,𝑐1𝜉1,1 𝜉1,2 𝜉1,3 𝜉1,4

𝜉𝑚,1

𝜉2,1 𝜉2,2 𝜉2,3

𝜉3,1 𝜉3,2

𝜉4,1

Figure 3: Every participant i generates ci noise terms of the
form ξi,j . The noise generation protocol ensures that, for the
purpose of providing differential privacy, n out of these terms
are aggregated into the final noise term ξ, without the partici-
pants discovering which n terms were included.

possible to exploit the geometric stability of the Laplace distribu-
tion, although we do not consider this explicitly here.

To deal with collusions, we will further set the parameters such
that if only n′ < n terms are added to the sum, the noise is suffi-
cient to ensure differential privacy. That is, if FS is the distribution
of the Xi’s, we will choose the parameters such that

∑n′

i=1 Xi =
X ∼ F . This satisfies differential privacy since the final noise term
will beX+ X̂ , where X̂ is a sum of up to n−n′ random variables
distributed according to FS independent ofX . Clearly, if addingX
is sufficient to satisfy differential privacy, then so is addingX+X̂ .

As discussed in the related work section, we are not the first
to propose the idea of having participants generate noise samples
that are eventually accumulated into a noise term from a desired
distribution. The novel aspect of our treatment is, rather, in the
adversarial incentives of the participants and the aggregator, and
in the measures taken to detect such adversarial actions. These
adversarial incentives, and detection measures are not considered
in the prior art.

5.2 Noise Generation Phase
We present a double-blind noise addition protocol in which the

participants generate noise components and the aggregator obliv-
iously computes an overall noise term. This is achieved without
the aggregator learning the noise term or being able to influence it
(without being detected). To ensure that the aggregator does not
cheat and influence the noise sampled, we use a lightweight ver-
ifiable computation subprotocol. In general, there are two chal-
lenges in such proofs of computation: (a) the proof must not re-
veal information (e.g., amount of noise), and (b) the protocol must
be efficient. While the first concern could be addressed by using
generic zero-knowledge proof techniques, the second concern (i.e.,
efficiency) remains. Therefore, we design a custom solution that
exploits the structure and statistical properties of the computation.
We first explain the protocol used to derive the overall noise term.
The sub-protocol used to detect a cheating aggregator is explained
immediately afterward in this section.

Setup: Let t, l be positive integers (security parameters). Let n
be a positive integer (n ≥ m), and FS be a distribution such that
(
∑n
i=1 Xi) ∼ F , where Xi ∼ FS .

Inputs: The participants and the aggregator have no inputs.

Output: The aggregator obtains ξ + r, where ξ is a noise term

distributed according to F . The participants have no output.

Protocol: Consider the following steps:

1. Each participant Pi chooses values ri,j ∈ DA, and samples
values ξi,j from FS , for j = 1, 2, . . . , t · d n

m
e. This is de-

picted in Fig. 3.

2. For i = 1, 2, . . . ,m, the aggregator sets ci = t · si, where
si = b n

m
c+1{i≤n (mod m)}. The aggregator then generates

the binary sequence bi,j ∈ {0, 1}, for i = 1, 2, . . . ,m, and
j = 1, 2, . . . , ci, such that:

•
∑
i,j bi,j = n

•
∑t
t′=1 bi,t·s+t′ = 1, for s = 0, 1, . . . , si − 1:

That is, the binary sequence bi,j has n ones (and tn− n ze-
ros), and for each i, bi,j consists of si sub-sequences each
containing a single 1. An example of the binary sequence is
depicted in Fig. 4. For i = 1, 2, . . . ,m, A sends EvA(bi,j)
toPi, for j = 1, 2, . . . , ci. In this step, a cheating aggregator
can attempt to reduce the number of 1’s in the selector vec-
tor of one or more participants. As we shall see, the fewer
the number of 1’s, the lower the amount of noise in the final
computed aggregate. To detect such cheating, we require that
the aggregator prove to every participant Pi, that the above
conditions on the bi,j are satisfied. However, the participants
must not know the binary values bi,j , so this proof should be
carried out in zero knowledge. In Section 5.4, we describe
an efficient method to accomplish this.

3. Each participant Pi computes for j = 1, 2, . . . , ci:

ei,j = EvA (bi,j)
ξi,j · EvA (ri,j) = EvA (bi,jξi,j + ri,j) .

Pi then sends the values ei,j to the aggregator.

4. For i = 1, 2, . . . ,m, the aggregator computes
∏ci
j=1 ei,j =

EvA(ξi+ri), where ξi =
∑
j:bi,j=1 ξi,j and ri =

∑ci
j=1 ri,j .

Note that ξi is sum of only those ξi,j’s such that bi,j = 1.
A decrypts each term ξi + ri and computes its output as:∑m
i=1(ξi + ri) = ξ + r.

Correctness: We show that the protocol correctly computes the
sum ξ + r, where ξ =

∑n
s=1 ξs, and r =

∑m
i=1 ri. Notice that,

for j such that bi,j = 1, participant i homomorphically computes
the encryption of ξi,j + ri,j . Thus, as there are n pairs (i, j)
such that bi,j = 1, the output that the aggregator computes is:∑

(i,j):bi,j=1 ξi,j+
∑
i(
∑
j ri,j). This quantity is

∑n
s=1 ξs+r, for

some random r. The result follows by noting that each summand
of
∑n
s=1 ξs contains only one noise sample and is distributed ac-

cording to FS .

5.3 Secure Aggregation Phase
Once the noise term has been generated, the participants run

the private aggregation protocol of Section 4 with the aggregator.
Specifically, each online participant i sets his input to be di − ri,
where ri =

∑
j ri,j generated in the first phase.

Correctness: This follows from the fact that
m∑
i=1

(di − ri) +

m∑
i=1

(ri + ξi) =

m∑
i=1

di + ξ.

Fault-tolerance: We require that the participants send all their val-
ues ei,j (step 3 of the noise generation phase) and their evaluated

P
ar

ti
ci

p
an

ts
......

t

...
t

ci bits for participant i

...

...

...

...

1

1

1

1

1

1

1

1

0 0

0 0

0

0 0

0 0

0

0

0 0

0

0

0

... ...

...

0 01

Figure 4: The aggregator generates a ci-length selector vector
for each participant i. The binary values, bi,j , are encrypted
and used to select which of the noise samples ξi,j generated by
the participants (See Fig. 3) will be added up to generate the
final noise term ξ.

polynomial points (step 3 of the private aggregation protocol of
Section 4) in a single message (i.e., an atomic operation) to the ag-
gregator. This ensures that, for each participant i, the aggregator
gets all the ei,j’s and the Evj (p(i)(j))’s in one step. If he does
not (e.g., if Pi fails) then participant i’s values are ignored from
the protocol. This is sufficient to ensure that fault-tolerance fol-
lows from the private aggregation protocol of Section 4. Indeed,
if a participant Pi fails (or goes offline) before delivering its ei,j’s
and the Evj (p(i)(j))’s, then none of ri, ξi, or di will be included
in the sum

∑
j(dj − rj) +

∑
j(rj + ξj) =

∑
j dj + ξ, which only

includes the participants who are online until that step. If Pi fails
after that step, then the blinded noise term ri + ξi will be known
to the aggregator, and the fault-tolerance property of the private ag-
gregation protocol ensures that his input (i.e., di − ri) is included
in the final result.

We emphasize that while di − ri is blinded (i.e., independent of
di if ri is not known), it cannot directly be sent to the aggregator.
Indeed, given ri + ξi (obtained after the first phase) and di − ri,
the aggregator can compute di + ξi, but ξi is not enough noise
(in general) to satisfy differential privacy. This is why the private
aggregation protocol of Section 4 is used.

5.4 Detecting a Cheating Aggregator
As described above, the aggregator has no control over the noise

terms generated by the participants. However, the aggregator gen-
erates the bit selector vector, i.e., the bi,j’s. Thus the participants
need to ensure that the bi,j’s were correctly generated such that
enough noise may be added. To do this, we use a protocol proposed
by Stern [23], for proving in zero-knowledge that an encrypted vec-
tor includes only a single 1 and that the other elements are all 0s.
We reproduce this protocol here for convenience.

Inputs: The prover P has a t bit vector b1, b2, . . . , bt, and an index
x ∈ {1, 2, . . . , t} such that bx = 1, but bx′ = 0, for x′ 6= x.
There is a public-private key pair of semantically secure additively
homomorphic cryptosystem associated with P . The public key is
known to the verifier and is denoted by vP . The verifier V has no
inputs.

Output: The verifier determines that the prover’s bit vector con-
tains exactly t − 1 zeros and a single one, with probability 1 −
(4/5)l, for some positive integer l.

Protocol (from [23]):

1. P computes EvP (bi), for i = 1, 2, . . . , t, and sends the re-
sults to V .

2. P and V repeat l times the following steps:

(a) P computes e0 = EvP (0) and e1 = EvP (1), and
sends the results to V

(b) V picks r ∈R {1, 2, 3, 4, 5}.
(c) If r = 1, then V asks P to reveal the plaintexts of e0

and e1.

(d) Otherwise, V randomly partitions {1, 2, . . . , t} into (dis-
joint) subsets A and B, and calculates:

• ea =
∏
i∈AEvP (bi) = EvP (

∑
i∈A bi), and

• eb =
∏
i∈B EvP (bi) = EvP (

∑
i∈B bi).

V then sends A and B to P .

(e) P proves that ea and eb represent ciphertexts of the
same numbers as those of e0 and e1.

Using this protocol, we describe below, the sub-protocol to de-
tect a cheating aggregator. As before, the steps in the protocol be-
low are numbered according to the stage at which they occur in the
protocol described in Section 5.2.

Inputs: There are no inputs.

Output: The participants determine if the aggregator is cheating.

(Sub)-Protocol:

2b Each participant Pi runs step 2 of the Stern protocol for s =
0, 1, . . . , si to verify thatEvA(bi,t·s+t′), for t′ = 1, 2, . . . , t,
is the encryption of t − 1 zeros, and 1 one. The participant
plays the role of the verifier and the aggregator plays the role
of the prover.

IfPi detects cheating fromA, it aborts and attempts to notify
the other participants.

Security: Follows directly from [23]. Note that this protocol can
also detect whether the aggregator has chosen non-binary values
for any of the bi,j’s.

5.5 Privacy Analysis
For non-colluding entities we evaluate the privacy against a sin-

gle semi-honest participant and against the aggregator. For collud-
ing entities, we evaluate privacy when semi-honest participants col-
lude among themselves and when some participants collude with
the cheating aggregator as shown in Fig. 1.

Privacy against a non-colluding semi-honest participant: Each
Pi observes only semantically secure encryptions of the bi,j’s. Be-
cause Pi does not know which of the bi,j’s are encryptions of 1s,
all he knows is that ξi will be one of the tsi possible combinations
of the ξi,j . Any other participant Pi′ , i′ 6= i cannot discover the
data di′ or the noise term ξi′ .

Privacy against colluding semi-honest participants: Though the
participants cannot directly communicate with each other, one can
consider an attack in which a single entity compromises several
participants (e.g., readings from several sensors are sent to a re-
mote server engaging in industrial espionage). Once the protocol
is completed, and the aggregator publishes the noisy summation,
this entity can subtract the data di held by the participants in the
colluding set. However, in the protocol of Section 5.2, none of the
participants can tell which of their generated noise samples were

aggregated into the final summation. This is because, the bits bi,j
that determine which samples are chosen and which are discarded,
are encrypted under the aggregator’s key.

Let S be the colluding set and S̃ be the non-colluding set, where
|S
⋃
S̃| = m, and |S

⋂
S̃| = φ. Participants in S can recover:

m∑
i=1

(di + ξi)−
∑
j∈S

dj =
∑
i∈S̃

di +

m∑
i=1

ξi

Thus, the colluders cannot cancel out their own noise samples from
the published aggregate, so the term on the right hand side contains
more noise than is needed to ensure differential privacy of the hon-
est participants. For 1 ≤ |S| ≤ m − 1, the colluding participants
cannot reduce the differential privacy of the honest participants.

Privacy against the aggregator: Since participants follow the pro-
tocol honestly, the noise added will be of the correct distribution F .
The aggregator observes

∑
i di − ri, and for every participant i, he

observes the ei,j’s. By itself, the summation
∑
i di − ri conveys

no information about the participants’ inputs di owing to the blind-
ing terms ri. Recall that whenever bi,j = 1, ei,j is an encryption of
ξi,j + ri,j , which conveys no information about ξi,j , because ri,j
is chosen uniformly at random within its domain. (In other words,
ξi,j + ri,j is statistically independent of ξi,j). When bi,j = 0,
then ei,j is an encryption of ri,j , and ξi,j will not be included in ξi.
Finally, from ξi+ri =

∑
j:bi,j=1 ξi,j+ri, and

∑
i di − ri, the ag-

gregator learns no information about di or ξi, other than what it can
learn from

∑
i di + ξi. Thus, the aggregator learns neither the in-

dividual noise terms ξi, nor the amount of noise added,
∑
i ξi, nor

the participant’s private inputs di, nor their noise-free sum
∑
i di.

As we have argued in Section 5.4, the aggregator cannot convinc-
ingly cheat by preparing a bit vector bi,j which is not of the proper
form. A cheating aggregator might also want to exclude some par-
ticipants in an effort to learn more about the remaining participants
inputs. To see why he cannot exclude too many participants, recall
that he needs at least k+ 1 out of m participants to obtain the sum-
mation, where k is the degree of the polynomial used for Shamir
Secret Sharing.

Privacy against aggregator colluding with (some) participants:
Unfortunately, the above favorable situation is lost if the aggrega-
tor is part of the colluding set. Suppose the aggregator colludes
with some number k′ of participants. Through such a coalition, the
aggregator is able to subtract the noise generated by the colluding
participants and also their private inputs. Thus, it is as if onlym−k′
participants participated in the protocol, since the noise terms (and
the inputs) of the honest participants are independent of those of
the colluding participants. Furthermore, by exploiting the fault tol-
erance property, the aggregator can exclude up to m − (k + 1)
participants from the protocol and still be able to get a noised sum
over the inputs of the non-excluded participants. This means that,
at least k+ 1−k′ honest participants will take part in the protocol.
In principle, differential privacy can be guaranteed in this situation
if the variance of the noise terms ξi contributed by those honest
participants is large enough. For example, if k + 1 = 2m

3
, and

k′ = m
3

, then we need to choose the individual noise contributions
such that the k+1−k′ = m

3
honest (and non-failing) participants’

noise terms add up to a sample from the distribution F . In practice,
however, this defensive strategy is hard to implement because an
honest participant does not know how many participants are col-
luding with the aggregator, and thus might not be able to choose
his noise terms ξi,j correctly.

Limitation: The star topology implies that honest participants can
only communicate through (i.e., with the help of) the aggregator.

Parameter Set t s t · s l pcheat ts

Resource Bound 2 48 96 62 ≈ 2−20 248

High Security 2 80 160 125 ≈ 2−40 280

Table 2: Suggested security parameters. The probability pcheat

is the probability that the aggregator successfully fools a partic-
ipant when running the cheating detection protocol. The quan-
tity ts is the number of possible noise terms.

Thus, a participant unfairly excluded from the protocol or one who
detects the aggregator cheating is not guaranteed to be able to in-
form other participants. We remark that this is not a problem for
this participant’s privacy since he may simply abort the protocol
thereby not revealing anything about his private input.

5.6 Choosing Security Parameters
We now discuss how to set the security parameters t, l, and n.

In the noise generation protocol, Pi calculates ci encrypted values.
For simplicity, it is convenient to take s = si to be fixed for all i,
so that we have that ci = t · s for all participants. In such cases,
we have s = n

m
, as n is a multiple of m. Naturally, the larger the

values of t, l, and s, the higher the security. That said, both the
communication and computation costs of each participant depend
on these parameters. In fact, this cost is O(t · s · l), where O(t · s)
is the communication cost and computation cost for the ei,j’s, and
O(l ·s · t) is the cost of the protocol to detect a cheating aggregator.

Thus, parameter selection is a trade-off between the communi-
cation and computation costs and the level of security achieved. In
terms of security, we want to maximize: (1) the probability of de-
tecting a cheating aggregator, and (2) the number of possible final
noise terms ξi for each participant given his noise components ξi,j .
For (1) recall that the probability of detecting a cheating aggregator
is 1− (4/5)l using the protocol of Section 5.4.3 For (2) we want to
ensure that the space of all possible final noise terms ξi produced
by each participant given the components ξi,j cannot feasibly be
explored. (If a participant can explore a non-negligible fraction of
that space, he gets information about the distribution of his noise
term ξi.) Recall that there are ts possible such combinations.

Table 2 shows two sets of parameters: one for resource-constrained
devices which minimizes the communication and computation costs
given an acceptable security level, and one providing a higher level
of security but with increased communication and computation costs.

5.7 Implementation Considerations
Our noise adding technique (Section 5.1) consists in summing

i.i.d. random variables. It is easier to work with integers, since the
plaintext domain of additive homomorphic cryptosystems is typi-
cally the set of integers modulo some large positive integer. When
the noise term is a real number, we can encode it into the plain-
text domain using a fixed point representation. Concretely, we take
a large positive integer exponent a. We then encode the number
x ∈ R as the positive integer xa = bx · 2ac. If the maximum al-

3. For the noise of a participant Pi to be eliminated or significantly re-
duced, the number of cheating attempts made by the aggregator must be
comparable to the number of times the detection protocol is run, i.e., s. Oth-
erwise, only a small fraction of the noise components ξi,j will be affected.
This, and the fact that the aggregator’s cheating need only be detected once
(as any failure leads to the protocol being aborted), implies that the effective
probability that the aggregator fools participant i by cheating s′ ≤ s times
is the probability that the aggregator fools participant i all s′ times. There-
fore, we can drastically reduce the value of l (reducing the communication
and computation costs) while keeping (almost) the same security.

lowable number of bits in the plaintext domain is b, then we must
take a < b. This encodes exactly all numbers, x, whose decimal
part can be fully represented in a digits or less, and allows us to
represent numbers whose integer part is as large as 2b−a. We can
perform homomorphic additions as usual, provided all ciphertexts
involved have had their plaintext encoded in the same fashion (with
the same exponent a). To recover x after decryption, we simply di-
vide the integer by 2a and take the result as a real number.

Recall that multiplication of two numbers x and y can be per-
formed with an additively homomorphic cryptosystem provided
one number is encrypted, and the other number is available in plain
text. Here, two cases arise in our protocols: Either the encrypted
number (say x) is an integer and the plaintext number (say y) is a
real number, or vice versa. Let v be a public key. Then, if x is a real
number, we can simply perform Ev(xa)y = Ev((xy)a). On the
other hand, if x is an integer and y is a real number, then given the
ciphertext Ev(x), we need to perform: Ev(x)ya = Ev((xy)a).

Due to the fixed point representation, not all real numbers can
be exactly represented, but this is not a significant concern because
the plaintext domain used in practice is quite large (e.g., 21024 or
even 22048) as it is related to the key size in bits. Another con-
cern is that differential privacy might not be achieved due to the
approximate nature of the noise sampled, but this is not the case. In
fact, textbook floating point implementations are vulnerable to at-
tacks as demonstrated by Mironov [17] while integer or fixed-point
representations are not vulnerable to such attacks.

Negative integers can be represented by using the upper half of
the plaintext domain: i.e., if the plaintext domain is {0, 1, . . . ,M−
1}, then −x, for 1 ≤ x ≤ bM

2
c, is represented as the positive

integer M − x. When decrypting or decoding we interpret a result
as negative if it is greater than or equal dM

2
e.

6. RELATED PROTOCOLS
The privacy-preserving summation protocol extends to other queries

as we describe below. These extensions have also been considered
in [20], but without regard for differential privacy as we do here.

Count queries: The aggregator wants to count the number of par-
ticipants Pi, whose data xi falls in a set P . The aggregator broad-
casts P , and each participant sets their input to the protocol as
di = 1 if xi ∈ P , and di = 0 otherwise. Running the proposed
protocol then results in a count query on the set P . To determine
the distribution of the noise term for achieving differential privacy
in the final computed count, note that the global sensitivity of the
count query is ∆ = 1.

Histograms: The aggregator wants to compute a histogram based
on data xi held by the participants. It broadcasts a set of disjoint
bins B1,B2, ...,Bh to the participants. Each participant Pi con-
structs a binary vector di ∈ {0, 1}h where the j th element dij = 1
if xi ∈ Bj , otherwise dij = 0. Then the participants and the aggre-
gator run a count query for each of the h bins, at the end of which
the aggregator obtains the desired histogram without discovering
the individual vectors di. As a histogram is a generalization of a
count query, the distribution of the noise term for achieving differ-
ential privacy in the aggregator’s output histogram is again based
on global sensitivity of a count query, i.e., ∆ = 1.

Linear combinations: For i = 1, 2, ..., N , the aggregator wants to
run a classifier with non-negative weights ci < cmax on the partic-
ipants’ inputs di to determine whether cTd ≶ b. This is achieved
by using a slightly modified version of the protocol in Section 4.
Concretely, in Step 4, the aggregator computes the ciphertexts Cj

using:

Evj (rj)

m∏
i=1

Evj (p(i)(j))ci = Evj

(
rj +

m∑
i=1

cip
(i)(j)

)
Consequently, in Step 5, the aggregator gets q(j) =

∑m
i=1 cip

(i)(j)
mod β. Here, the large prime number is chosen as β > mcmaxdmax.
Then, in Step 6, it evaluates the polynomial,

q(x) = q1x+ q2x
2 + . . .+ qkx

k +

m∑
i=1

cidi mod β

at k+ 1 or more points. While participant privacy is maintained as
before, this process leaks more information than just the compari-
son cTd ≶ b, as the aggregator discovers the value of cTd.

One salient feature though, is that the aggregator does not need to
reveal the classifier weights ci to any of the participants. Multiple
linear combinations (hence classifiers) can thus be realized, with-
out repeating the polynomial secret sharing step in Section 4. This
is an advantage over the prior art. Specifically, although the prior
art could also be extended to compute linear combinations, in most
cases ([1, 3, 4, 9, 12, 15, 16, 22]), the protocols have to reveal the
weights ci to the participants. Moreover, they have to repeat the se-
cret sharing step whenever a new linear combination is computed.

In a differentially private realization, the classifier boundaries will
be perturbed because of the noise term that is added to the inner
product cTd. The privacy/utility tradeoff is then based on the ε
and δ values, and the classification error that occurs as a conse-
quence of adding noise. Recall that, the distribution of the noise
term ξ to be added to cTd is based on the global sensitivity of the
linear combination, which is ∆ = cmaxdmax. In this case, the ag-
gregator has to multiply not just the perturbed data terms di − ri,
but also the perturbed noise terms ri+ ξi of participant Pi with the
constant ci, to ensure that:

m∑
i=1

ci(di − ri) +

m∑
i=1

ci(ri + ξi) =

m∑
i=1

cidi + ξ

Note that, as the distribution of noise term ξ depends on cmax, the
aggregator must reveal cmax (but fortunately not the individual ci’s)
to all participants, so that they can generate the appropriate candi-
date noise samples.

7. CONCLUDING REMARKS
We have considered privacy preserving aggregation in constrained

scenarios where inter-participant communication is not realistically
possible. We employed Shamir secret sharing within a star network
to provide collusion resistance and fault tolerance. We developed
protocols to add noise to the computed aggregate function, thereby
ensuring differential privacy for the participants. The differential
privacy requirement requires us to appreciate that collusions are ca-
pable of reducing privacy without necessarily discovering the hon-
est participants’ data.

To add the correct amount of noise, we make the participants
generate several noise samples, with the aggregator deciding (obliv-
iously) which of those samples are utilized in the differentially pri-
vate mechanism. In this way, neither the cheating aggregator nor
the semi-honest participants know which noise values are used to
achieve differential privacy. This ensures that semi-honest collud-
ing participants cannot reduce the differential privacy guarantees of
honest participants. Our adversarial model allows the aggregator to
influence (e.g., reduce) the noise term, so we describe a protocol to
catch a cheating aggregator with overwhelming probability.

References
[1] G. Ács and C. Castelluccia. I have a DREAM! (differentially

private smart metering). In Information Hiding, pages
118–132, 2011.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed
computation. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 1–10, 1988.

[3] I. Bilogrevic, J. Freudiger, E. De Cristofaro, and E. Uzun.
What’s the gist? privacy-preserving aggregation of user
profiles. In Computer Security-ESORICS 2014, pages
128–145. 2014.

[4] T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving
stream aggregation with fault tolerance. In Financial
Cryptography and Data Security, pages 200–214. 2012.

[5] I. Damgård, M. Jurik, and J. Nielsen. A generalization of
Paillier’s public-key system with applications to electronic
voting. International Journal of Information Security,
9(6):371–385, 2010.

[6] C. Dwork. Differential privacy: A survey of results. In
Theory and applications of models of computation, pages
1–19. Springer, 2008.

[7] C. Dwork and A. Roth. The algorithmic foundations of
differential privacy. Theoretical Computer Science,
9(3-4):211–407, 2013.

[8] Z. Erkin, J. R. Troncoso-Pastoriza, R. Lagendijk, and
F. Perez-Gonzalez. Privacy-preserving data aggregation in
smart metering systems: An overview. Signal Processing
Magazine, IEEE, 30(2):75–86, 2013.

[9] Z. Erkin and G. Tsudik. Private computation of spatial and
temporal power consumption with smart meters. In Applied
Cryptography and Network Security, pages 561–577, 2012.

[10] F. Garcia and B. Jacobs. Privacy-friendly energy-metering
via homomorphic encryption. In Security and Trust
Management, pages 226–238. 2011.

[11] M. Jawurek and F. Kerschbaum. Fault-tolerant
privacy-preserving statistics. In Privacy Enhancing
Technologies, pages 221–238, 2012.

[12] M. Joye and B. Libert. A scalable scheme for
privacy-preserving aggregation of time-series data. In
Financial Cryptography and Data Security, pages 111–125.
2013.

[13] D. E. Knuth. Seminumerical Algorithms, The art of
computer programming, Vol. 2, Section 4.6, 1981.

[14] S. Koltz, T. Kozubowski, and K. Podgorski. The laplace
distribution and generalizations, 2001.

[15] K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly
aggregation for the smart-grid. In Privacy Enhancing
Technologies, pages 175–191, 2011.

[16] I. Leontiadis, K. Elkhiyaoui, and R. Molva. Private and
dynamic time-series data aggregation with trust relaxation.
In Cryptology and Network Security, pages 305–320.
Springer, 2014.

[17] I. Mironov. On significance of the least significant bits for
differential privacy. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 650–661. ACM, 2012.

[18] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In
Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 75–84. ACM, 2007.

[19] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Advances in cryptology,
EUROCRYPT99, pages 223–238, 1999.

[20] S. Rane, J. Freudiger, A. Brito, and E. Uzun. Privacy,
efficiency and fault tolerance in aggregate computations on
massive star networks. In IEEE Workshop on Information
Forensics and Security (WIFS 2015), Rome, Italy, November
2015.

[21] A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[22] E. Shi, T.-H. H. Chan, E. Rieffel, R. Chow, and D. Song.
Privacy-preserving aggregation of time-series data. In NDSS,
volume 2, page 4, 2011.

[23] J. Stern. A new and efficient all-or-nothing disclosure of
secrets protocol. In Advances in
Cryptology—ASIACRYPT’98, pages 357–371. Springer,
1998.

