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ABSTRACT

Privacy-preserving statistical databases are designed to provide information

about a population while preventing end-users from learning about an indi-

vidual. Meanwhile, scholars [1, 2] have shown that a sophisticated adversary

can break such assumption against primitive privacy protections. Differential

Privacy (DP) measures how likely an adversary learns about an individual

from statistical database queries. Recent state-of-the-art Privacy-Enhancing

Technologies (PETs) often implement noise injection based mechanisms in

order to satisfy a strong DP protection level. While these privacy protection

guidelines minimize risks of private information disclosure, many people have

raised concerns on impracticality of the implementation. Based on statistical

figures and quantitative experiment results, much literature formalized the

utility-privacy tradeoff caused by the noise injection.

In contrast, this work describes a qualitative analysis of the Laplacian noise

mechanism, one of the most prevalently used DP mechanisms, with regards

to the utility-privacy tradeoff on various types of visualization products. The

dataset used for the analysis is a time series meter readings from smart grid

electricity consumption of selected households from the Republic of Ireland.

We examined how five types of visualization products, bar graphs, pie charts,

heatmaps, linear plots and scatterplots, present information from statistical

database queries. Visualization products showed seasonal, daily and weekly

periodic consumption patterns such that power utilities can make a qual-

itative analysis of consumption profiles. We call these patterns as “visual

cues.” After applying the Laplacian noise mechanism on these visualization

products, we made qualitative observations on the privacy-preserved figures

and looked for notable changes.

The project provides graphic findings of a relationship among the compos-

ability of queries, the number of queries, and the scale of the Laplacian noise.

We observed that visualization products which required less than ten queries
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from the dataset suffered minimal information loss. However, we spotted a

high degradation of visual cues when we implemented the noise mechanism

to heatmaps with up to 25,200 composable queries. These visualizations no

longer conveyed most key information that used to be present on their unpro-

tected counterparts. To best of our knowledge, no state-of-the-art existing

pre/post-processing techniques significantly recovered most visual cues. Fi-

nally, we found that some visualizations belonged to neither of the first cases.

privacy-preserving linear plots (based on 336 composable queries) and scat-

terplots (based on 3,639 pairs of parallel queries) inherited some visual cues

after executing privacy-preserving procedures. We further discovered some

pre/post-processing mechanisms that recovered visual cues.

iii



To my parents, for their love and support.

iv



ACKNOWLEDGMENTS

This material is based upon work supported by the Department of Energy

under Award Number DE-OE00007801 and the Maryland Procurement Of-

fice under Contract No. H98230-14-C-01412. The smart meter data used is

provided by the Commission for Energy Regulation, and accessed via the

Irish Social Science Data Archive.

1This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof.

2The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Maryland Procurement Office.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
1.1 Visualization as a Data Analysis Technique . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . 4
2.1 The Laplacian Noise Mechanism . . . . . . . . . . . . . . . . . 5
2.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Advanced Composition . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 3 EXPERIMENT INFORMATION . . . . . . . . . . . . 9
3.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 4 LOW DEGRADATION OF VISUAL CUES . . . . . . 14

CHAPTER 5 HIGH DEGRADATION OF VISUAL CUES . . . . . . 21

CHAPTER 6 MEDIUM DEGRADATION OF VISUAL CUES . . . . 28
6.1 Linear Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Scatterplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 7 LIMITATIONS AND FUTURE WORKS . . . . . . . . 40
7.1 Subjective Experimentation Methodology . . . . . . . . . . . . 40
7.2 Decision Making based on Confidence Level and Costs . . . . 40
7.3 Complexity of Visualization . . . . . . . . . . . . . . . . . . . 41
7.4 Dataset Variety . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 43

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



LIST OF FIGURES

3.1 Heatmap of Residential Aggregated Electricity Consumption . 10
3.2 Heatmap of SME Aggregated Electricity Consumption . . . . 10

4.1 Bar Graph of Daily Aggregate Consumption during Week
of Christmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Pie Chart of Daily Aggregate Consumption during Week
of Christmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Pie Chart of Daily Aggregate Consumption with Percentage . 16
4.4 (1,∞)-DP Bar Graph . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 (1,∞)-DP Pie Chart . . . . . . . . . . . . . . . . . . . . . . . 18
4.6 Bar Graph of 4-Hour Aggregate Consumption during Week

of Christmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7 Pie Chart of 4-Hour Aggregate Consumption during Week

of Christmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8 (1,∞)-DP Private Pie Chart . . . . . . . . . . . . . . . . . . . 20

5.1 (1,∞)-DP Residential Heatmap with Sequential Noise Com-
position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 (100,∞)-DP Residential Heatmap with Sequential Noise
Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 (0.79,10−5)-DP Residential Heatmap with Advanced Noise
Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 (41,10−5)-DP Private Residential Heatmap with Advanced
Noise Composition . . . . . . . . . . . . . . . . . . . . . . . . 24

5.5 Residential Heatmap Created by Divide and Aggregate Al-
gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.6 (1.25,10−5)-DP Residential Heatmap Created by Divide
and Aggregate Algorithm . . . . . . . . . . . . . . . . . . . . . 27

6.1 Linear Plot of Aggregation Consumption During Week of
Christmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 (1,10−5)-DP Linear Plot of Aggregation Consumption Dur-
ing Week of Christmas . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Applying SAVGOL filter to Noisy Linear Plot . . . . . . . . . 31
6.4 Comparing Raw and Processed Linear Plots . . . . . . . . . . 32

vii



6.5 Scatterplot of Electricity Consumption during 1300 to 1330
for December 18th and December 25th . . . . . . . . . . . . . 34

6.6 Scatterplot of Average Consumption for December 18th
and December 25th . . . . . . . . . . . . . . . . . . . . . . . . 34

6.7 2D Histogram Based on the Scatterplot from Figure 6.5 . . . . 36
6.8 (1,∞)-DP Histogram of Figure 6.5 . . . . . . . . . . . . . . . 36
6.9 (1,∞)-DP Scatterplot of Figure 6.5 . . . . . . . . . . . . . . . 37
6.10 (1,∞)-DP Private Counterpart of Figure 6.6 . . . . . . . . . . 38
6.11 (10,1) Crowd-Blending Private Counterpart of Figure 6.6 . . . 39

viii



CHAPTER 1

INTRODUCTION

Queries from privacy-preserving statistical databases should only provide

information of a group. However, we observed how these queries could

be exploited from famous de-anonymization examples of the Netflix Prize

dataset [1] and of the Massachusetts Group Insurance Commission medical

encounter database [2]. These attacks raised awareness of statistical database

privacy, and led to a formalization of private information disclosure risk. DP

measures a risk of exposing any information of an individual included in

the database. [3] Since its introduction, DP is often utilized as a measure of

privacy protection in numerous PET-related papers.

Many DP mechanisms use randomized noise to hide trace of each individ-

ual. One of such mechanism is called the Laplacian noise mechanism which

adds a set of noise distributed on a Laplace distribution to the query values.

While the Laplace mechanism offers randomness that minimizes danger of

identifying samples in the database, users reported its adverse effects on ac-

curacy of the privacy-protected queries. Numerous authors formalized this

utility-privacy tradeoff based on quantitative and statistical figures like mean-

square error. Meanwhile, most of these scholars overlooked a possibility of

analyzing this tradeoff from a different viewpoint.

1.1 Visualization as a Data Analysis Technique

Data analysis techniques summarize general trend of large data and illustrate

important implied information. Technology advancements enabled compu-

tation and creation of large data, so the importance of analysis techniques

has increased. Statistical databases output queries as data analysis sources.

Data visualization, one of the most common data analysis techniques, assist

our visual system’s “highly tuned ability” to see patterns, identify outliers,
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and enhance our understanding of data. [4]

Although the main purpose of visualization products is to visually illus-

trate overall trend of given data, the possibility of leaking PII from published

visualization products must not be underestimated. For instance, an adver-

sary can map visual signals (numbers, colors, length of objects, and etc.)

to numerical query values. Depending on how sophisticated the mapping

technique is, the adversary can obtain actual query data from visualizations

without obtaining its numerical counterpart. The uncertainty caused by the

translation process may fool us to conclude that the risk is negligible. Mean-

while, any knowledge of an individual gained from the visualization can be

combined with exterior knowledge of the adversary. As a result, individual’s

sensitive information can be leaked from unprotected visualization products.

1.2 Contributions

Only a few number of research groups focused on implementing DP mecha-

nism to visualization products. Even fewer groups attempted to measure a

utility-privacy tradeoff when injecting Laplacian noise to queries that con-

stitute visualizations. This project serves to provide a qualitative analysis of

implementing the Laplacian noise mechanism to 2D plots and charts. The

project largely focuses on degradation of utility caused by the randomness

of noises. The project also provide countermeasures against potential adver-

saries who attempt to exploit vulnerabilities from unprotected data visual-

ization products.

We simulated a statistical database that stores smartgrid meter readings of

Irish households. Based on the statistical queries, we created visualizations

of five different types such as bar graphs, pie charts, heatmaps, linear plots

and scatterplots. We observed these visualizations and recorded qualitative

observations of information contained in each visualization. We also simu-

lated a DP counterpart database that outputs DP queries. We also created

visualizations from these queries as well. Information from these visualiza-

tions was compared with those provided by unprotected products to make a

utility-privacy tradeoff analysis.

The main contribution of our thesis includes:

• We examined how different visualization products conveyed informa-
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tion to end-users. We made qualitative observations and found key

patterns that were not captured when examining raw, unsorted data.

These “visual cues” aided viewers to efficiently collect implied yet cru-

cial information.

• We demonstrated a case study of utility-privacy tradeoff analysis for

DP visualization products. We observed how the Laplacian noise mech-

anism degraded information contained in visualizations and found that

different visualizations showed different degree of degradations. We

concluded that degradation of visual cues worsened as the number of

dependent queries has also increased.

• We provided guidelines for data pre/post-processing of data when im-

plementing the Laplacian noise mechanism to different visualization

methods. Some visualizations discussed in the thesis require data pro-

cessing procedures. We delineated the procedures such that readers

could utilize our findings on their works in the future.

1.3 Thesis Structure

The thesis is outlined as following. Chapter 2 serves to introduce the defi-

nition of DP and to explain existing DP mechanisms. The chapter also de-

lineates current state-of-the-art privacy-preserving visualization techniques.

Then on Chapter 3, we explain our experiment details such that readers can

understand our contributions. We discuss our experiment results in three

chapters, Chapter 4, Chapter 5 and Chapter 6. Details for each experiment

will be explained in respective chapters. We examine limitations and future

works in Chapter 7. Finally, we conclude our thesis in Chapter 8.
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CHAPTER 2

BACKGROUND

Let x and y be databases of samples collected from a universe χ. Then, x

and y can be redefined as histograms of χ such that x, y ∈ N|χ| where each

xi ∈ x and yi ∈ y represents the number of sample i ∈ χ in the databases.

Given these notations, Dwork and Roth [5] define DP as following.

Definition 1. A randomized algorithmM with domain N|χ| is (ε, δ)-different-

ially private if for all S ⊆ Range(M) and for all x, y ∈ N|χ| such that

‖x− y‖1 ≤ 1:

Pr[M(x) ∈ S] ≤ exp(ε)Pr[M(y) ∈ S] + δ

Set S is a subset of the range of M . Inequality ‖x− y‖1 ≤ 1 represents a

distance between two databases, and the distance between the two is at most

one. In other words, the database y is equivalent to the database x with or

without an individual. Thus for small ε and δ, the definition above ensures a

strong statistical guarantee that a presence or an absence of individual will

unlikely affect the output of the algorithmM . In other words, two parameters

δ and ε define a risk of privacy disclosure. Dwork and Roth recommended

δ to be less than the inverse of any polynomial in the size of the database.

Most scholars set ε to be less than or equal to one when they discuss a strong

privacy guarantee.

Authors emphasize that DP is “immune” to post-processing techniques.

That is, once an end-user receives output of DP algorithm M , he or she can-

not change the privacy protection level of the output given that the user does

not have additional knowledge about the database. This is extremely useful

as we introduce several post-processing mechanisms that improve utility of

visualizations throughout this paper.
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2.1 The Laplacian Noise Mechanism

DP is a definition not a protection mechanism. In order to satisfy the defini-

tion, constructing a randomized algorithm M is crucial. In this section, we

introduce the Laplacian noise mechanism as a randomized DP mechanism

to construct M . This mechanism adds Laplacian noise, an independent and

identically distributed (i.i.d.) random variable drawn from Lap(∆f/ε) dis-

tribution, to each query. Note that the distribution has a parameter ∆f/ε.

The symbol ε simply represents the level of ε-DP to be accomplished. The

remaining ∆f is called the sensitivity of function f . Dwork and Roth [5]

define sensitivity as below.

Definition 2. Sensitivity of a function f : N|χ| → Rk is:

∆f = max‖f(x)− f(y)‖1

Sensitivity determines a range of output from DP algorithm M due to an

inclusion of a sample individual. It represents a bound of randomness for

each DP query. In case of histograms, function f would refer to frequency of

each bin. Given that x and y differs by one sample, the maximum difference

of frequency for each bin would be 1. Thus, ∆f = 1 for a histogram.

Dwork and Roth [5] have shown that algorithm with ε-Laplacian noise

mechanism is (ε, 0)-DP. We used this mechanism to implement DP mecha-

nism when constructing DP visualizations.

2.2 Composition

Another important characteristics of any DP mechanism is the concept of

composition. Consider a statistical database which outputs aggregate elec-

tricity consumption of consumers during Christmas Eve and Christmas Day.

One query would represent aggregate consumption during 24th and another

one would represent the consumption during 25th. An adversary may gain

information of an individual from both queries since the individual’s con-

sumption data are aggregated in both queries. We define two queries to be

correlated or dependent when the adversary can compose two queries to gain

information of an individual.
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On the other hand, consider another statistical database which outputs

average heights of women and men in Champaign, Illinois. One query rep-

resents average height of men in Champaign, and another query represents

that of women. Then, adversary can only use one query to learn about an

individual since any individual would belong to only one of two genders. We

define two queries to be uncorrelated or independent when adversary cannot

compose two queries to gain information of an individual.

Based on this notion of correlation or dependence, there exist two different

types of composition, sequential composition and parallel composition. [6]

• When ε-DP mechanism is queried t times where each query is corre-

lated with another query, then overall query is thought to be (ε × t)-
differentially private. This concept is called the sequential composition

of differentially private queries.

• When ε-DP mechanism is queried t times where each query is not corre-

lated with another, then overall query is thought to be εmax-DP where

εmax represents the largest εmax among t DP queries. This concept is

called the parallel composition of differentially private queries.

While each query is ε-DP, a composition of t queries make overall output

(ε × t)-differentially private. Therefore, to ensure this group of queries to

be ε-DP, one must ensure each query to be ε/t-DP. In the case of sequential

composition, the number of queries and the size of the Laplacian noise are

proportional to each other.

Composition and sensitivity determine the scale of noise for DP mecha-

nisms. Therefore, one must consider these two aspects when constructing

DP visualizations. In case of histograms, computing sensitivity would not

require much effort. However, how would one compute sensitivity of a scat-

terplot? How would one quantify presence and absence of a point? Further-

more, naively implementing a DP mechanism often result in poor privacy-

utility tradeoff. When creating any visualization product, each respective

algorithm usually repeats a set of noise-injection operations over each visu-

alization component. For instance, the scatterplot algorithm needs to run a

dot-drawing procedure for each sample and the histogram algorithm needs

to run a bar-drawing procedure for each frequency bin. Since each query of

visualization mechanism is often correlated with one another, the noise may

grow too large such that utility of the output is greatly degraded.
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2.3 Advanced Composition

Dwork and Roth [5] introduce theory of advanced composition which reduces

the scale of noise growth and ensures the size of noise to be O(
√
k). This

theorem can be applied in case where repeated use of differentially private al-

gorithms on the same database occurs. Constructing visualizations requires

collecting iterative queries from the same database as each query represents

an attribute or a reading of visualization. The theorem of advanced compo-

sition is shown below.

Theorem 1. (Advanced Composition) For all ε, δ, δ′ ≥ 0, k-repetitive or k-

fold adaptive composition of (ε, δ)-differentially private mechanisms satisfies

(ε′, kδ + δ′)-differential privacy for:

ε′ =
√

2kln(1/δ′)ε+ kε(eε − 1).

Note that if 0 < ε′ < 1, ε = ε′

2
√

2kln(1/δ′)
.

The size of noise is O(
√
k) with respect to k composable queries. Nonethe-

less, with large k, the noise can grow significantly large.

2.4 Related Work

To the best of our knowledge, only a few group of researchers published

literature regarding the topic of privacy-preserving visualization techniques.

Dasgupta et al. implemented k-anonymity and l-diversity on parallel co-

ordinates. [7] The same research group implemented their aforementioned

technique on scatterplots and introduced various metrics which measure

privacy-utility tradeoffs. [8] Unfortunately, the research group did not use

DP to measure privacy protection of visualizations. It is known that for

a high-dimensional dataset, k-anonymity cannot provide sufficient privacy

protection. [9]

Xu et al. implemented differential privacy on histograms. [10] The au-

thors showed that the DP-protected histogram with finer bins led to lower

accuracy than a coarse one. Authors also discussed some cases when his-

togram structure itself leaked sensitive information. They introduced two

algorithms, Noise First and Structure First, for computing DP-compliant

histograms. Eibl et al. implemented DP to dataset of smart-grid consumers’
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aggregate electricity consumption. [11] The authors implemented DP on ag-

gregate meter readings and plotted linear plots to visualize the results. They

applied a smoothing algorithm as a post-processing mechanism to improve

utility of output.
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CHAPTER 3

EXPERIMENT INFORMATION

Before we explain our experiment results, we would first like to describe

our smartgrid electricity dataset for the experiment. The Commission of

Energy Regulation (CER) and the Irish Social Science Data Archive (ISSDA)

provided electricity consumption profiles of around 5,000 Irish homes and

businesses [12]. The dataset was built using smart meter measurements that

took place from July 2009 to December 2010. The meters installed in each

household made measurements once per 30 minutes, and the consumption

was measured in kWh. The dataset was anonymized by removing any PII and

each household was identified by a unique id number. The ISSDA commented

that this anonymization would not provide sufficient privacy protection, so we

presented only visualizations of the dataset as an abstraction of the dataset.

If the adversary had the original dataset, he or she could compromise privacy

of individuals.

3.1 Data Analysis

Based on a survey from ISSDA, each household belonged to one of three

categories, Residential, Small and Medium Enterprises (SME) or Others. We

created heatmaps of aggregate electricity consumption for each category to

see consumption patterns for each category. Figure 3.1 represents heatmap

of residential households aggregated electricity consumption and Figure 3.2

represents that of SME.
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Figure 3.1: Heatmap of Residential Aggregated Electricity Consumption

Figure 3.2: Heatmap of SME Aggregated Electricity Consumption

For both Figures, x-axis represents 48 half-hour indices of each week where

index 0 represents 12:00 AM Monday and index 47 represents 11:30 PM

10



Sunday. The y-axis represents 75 weeks from July 2009 to December 2010.

The colormap on the right represents a mapping from a color to aggregate

electricity consumption measurement. These two heatmaps provided rich

information of electricity consumption patterns. For instance, in Figure 3.1

we observed that Irish people tend to have highest electricity consumption

during evening time from dinner time to bed time. Then, the consump-

tion dipped at dawn when people went to sleep. Also the figure showed

that people spent more electricity during winter than during summer. Ire-

land has relatively cool weather during summer (average high temperature

of 19 Celsius during July and August) such that people probably did not

use air conditioning much during summer. Meanwhile, many households

use electrical heating in winter, so electricity consumption largely increased

during winter. Furthermore, we observed that Friday of week 22 for Figure

3.1 showed a unique consumption pattern where the peak consumption hap-

pened during day time. Furthermore, the Thursday and Friday of week 22

both showed relatively higher electricity consumptions than rest of the week.

We concluded that this meter data showed a special holiday pattern, because

Thursday and Friday of week 22 are Christmas Eve and Christmas Day in

year 2009. Note that Friday and Saturday of week 74 also showed a similar

consumption pattern. We confirmed that those two days also represented

Christmas Eve and Christmas Day in year 2010.

The Christmas holiday weeks consumption pattern was also clearly dis-

played in Figure 3.2 for SMEs aggregate electricity consumption heatmap.

Week 22 had very low consumptions compared to those of adjacent weeks

such that a horizontal line was created between each day’s band. We inferred

that many SMEs closed their businesses during Christmas holiday week such

that the electricity consumption dropped largely during that week. We ob-

served similar horizontal band patterns for Mondays, and we concluded that

these bands represent Irish bank holidays. Also, in Figure 3.2 we found

out that week day electricity consumption was relatively higher than that

of weekend electricity consumption since many SMEs did not operate on

weekends.

We decided that the residential dataset and the SME dataset clearly showed

many different consumption characteristics, so we used the residential dataset

for the rest of the experiment. We conducted a series of experiments on a

variety of widely used visualization methods to observe effects of differential
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privacy.

3.2 Experiment Design

Different visualization products convey different information to end-users.

Among those products, we have chosen five widely used techniques. Those

include bar graphs, pie charts, heatmaps, linear plots and scatterplots. We

plotted each visualization with different aspects of the dataset to distinguish

each product. Then, we examined these visualization products and analyzed

information implied in the visualizations. The information aided end-users

to answer questions and make decisions such that the viewers had more

understanding of the dataset after viewing each visualization. For most vi-

sualization types, we attempted to find if it is possible to recognize effects of

the Christmas holidays in visualizations of calendar data.

Then, we applied DP to each visualization product. In this experiment,

we implemented the Laplacian noise mechanism. In most cases, each data

query was related with another query such that adversary potentially learns

more about an individual by composing information of two queries. The

DP mechanism counters this additional information gain by increasing the

scale of Laplacian noise directly proportional to that of the number of re-

lated queries n. We used two different kinds of composition, naive sequential

composition and the advanced composition [5]. Advanced composition, given

that each query is similar to another, reduces the noise scalability by O(
√
n),

so we implemented advanced composition. We only used sequential composi-

tion when the size of the noise injected to each data query was too minuscule

such that the end products did not vary much. We set default epsilon to 1,

which was the largest epsilon with sufficient privacy protection.

After producing DP visualizations, we once again made the same observa-

tions as we did with its unprotected counterparts. We asked a following ques-

tion. “After adding noise for privacy protection is it possible to recognize key

effects in visual data representations?” In other words, did visual cues which

existed in original visualizations disappear after applying DP mechanisms?

The experiment section is divided into three large categories. The first part

of experiment on bar graphs and pie charts depicted straight-forward imple-

mentation of DP without much challenge. We called this experiment “low

12



degradation” experiment. Then the next experiment on heatmaps showed

that the DP implementation substantially degraded original products such

that to best of our knowledge, no state-of-the-art technique can be imple-

mented to preserve utility and protect privacy. We called this experiment

“high degradation” experiment. Finally, two experiments on linear plots and

scatterplots are called “medium degradation” experiments. After implement-

ing the Laplacian noise mechanism on these two visualizations, we observed

that the privacy-protected products contained some information. Then, we

made some post-processing tricks onto these products which recovered lost

information.

Due to limitation of time and resources, author of the thesis was the only

participant of the experiment. Therefore, we are fully aware that qualitative

observations made in this thesis can be biased. We would like to incorporate

crowd-sourcing based surveys to complement this research in future works.
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CHAPTER 4

LOW DEGRADATION OF VISUAL CUES

Our experiment first focused on visualizations with a small number of at-

tributes. These products usually conveyed simple, coarse-grained informa-

tion. For instance, plotting daily average consumption during the week of

Christmas requires seven queries from statistical database, one for each day of

week. Directly displaying numerical values in tables would also display sim-

ilar information if the number of attributes is small. Thus, we also wanted

to observe if providing numerical values along with visualizations provide

different information than visualizations without numbers.

For this section, we focused on two visualization types, bar graphs and

pie charts, because we believed these two visualization methods were most

suitable to deliver coarse-grained information to viewers. Furthermore, we

evaluated that these two products conveyed analogous information to end

users such that using the same data queries on each visualization would

result in similar results. When observing these products, we asked following

questions.

• Do bar graphs and pie charts with the same data give the same degree

of information gain? In other words, can pie charts substitute bar

graphs without sacrificing any utility?

• Do numerical values assist readers to understand the visualizations?

• In bar graphs and pie charts of Christmas week calendar data, is it

possible to recognize effects of the Christmas holidays?

Since applying Laplacian noise mechanism on small number of attributes

won’t degrade data much, we tagged this experiment to be an easy experi-

ment. For the experiment, we first used daily aggregation consumption dur-

ing week of Christmas for residential households. The visualization products

without privacy protection are shown at Figure 4.1 and 4.2.
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Figure 4.1: Bar Graph of Daily Aggregate Consumption during Week of
Christmas

Figure 4.2: Pie Chart of Daily Aggregate Consumption during Week of
Christmas
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Figure 4.3: Pie Chart of Daily Aggregate Consumption with Percentage

Without knowing prior knowledge of what day Christmas was in year 2009,

the end-users are most likely to guess which day Christmas was with 1
7

prob-

ability of being correct. Then the user sees the bar graph of daily aggregate

consumption from Figure 4.1. Given that viewer knows that Christmas Eve

and Christmas Day have more electricity consumption than other days of

week in residential households, viewers must be able to distinguish a pair

of days with consecutive high electricity consumption from Figure 4.1’s bar

graph. We concluded that bar plots effectively showed those days in Fig-

ure 4.1 such that the end-user has gained information regarding when the

Christmas holiday was.

On the other hand, we could not gain such information from pie charts in

Figure 4.2. For the bar graph, each bar was sided along with each other so

that length comparison tasks among different bars were trivial. Meanwhile,

comparing areas of each sector for pie charts was not an easy task. Figure

4.3 attempted to add a numerical percentage for each day’s sector to assist

the readers. After adding the numerical percentages along with the visual-

ization, then viewers could distinguish that Thursday and Friday were the

Christmas Eve and Christmas Day pair. Meanwhile, in such case viewers

gained information from numerical values not from the pie chart itself. We
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concluded that bar graphs provided more information than pie charts for the

data set of daily electricity consumption during the week of Christmas. After

making qualitative observations from unprotected visualizations, we applied

the Laplacian noise mechanism to both visualizations. Figure 4.4 and Figure

4.5 are the products.

Figure 4.4: (1,∞)-DP Bar Graph
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Figure 4.5: (1,∞)-DP Pie Chart

Figure 4.4 and 4.5 are (1,∞)-DP counterparts of Figure 4.1 and 4.2. There

was no visible difference after injecting Laplacian noises. Viewers would

receive the same information from (1,∞)-DP counterparts as they did before,

so the DP mechanism would not impact end-users’ decision making process.

This was expected since visualizations required only seven queries such that

only minuscule noise was injected to each attribute value.

We attempted to create visualizations with another set of data queries to

confirm if pie charts can completely substitute bar graphs or not. From the

same dataset, we plotted average consumption during 4-hour period.
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Figure 4.6: Bar Graph of 4-Hour Aggregate Consumption during Week of
Christmas

Figure 4.7: Pie Chart of 4-Hour Aggregate Consumption during Week of
Christmas
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Figure 4.8: (1,∞)-DP Private Pie Chart

In Figure 4.6, consumption decreases as time elapses from first bin (0 to 4

AM) to second bin (4 to 8 AM) period, because most people went to sleep

until around 7 to 8 AM. Then the consumption drastically increased during

8 to 12 PM period. The measurements were only made once in 4 hours, so

the information provided were too coarse-grained to make any conclusion,

but viewers could nonetheless see some chronological pattern. For its pie

chart counterpart, Figure 4.7, we now could compare area of each sector

since the difference among each sector was large enough to be observed by

human’s naked eye. We observed the same drastic increase from 4 to 8 AM

period to 8 to 12 PM period, and we concluded that 4 to 8 PM period had

highest electricity spending period for both Figure 4.6 and 4.7. Thus, pie

charts can convey similar information as bar graphs do if a value of each

attribute differs significantly. The Figure 4.8 is the DP counterpart of 4.7.

As we have observed from previous visualizations, the number of queries was

too small such that there was no visible change after applying the Laplacian

noise mechanism.
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CHAPTER 5

HIGH DEGRADATION OF VISUAL CUES

While bar graphs and pie charts displayed useful summarized information

of the dataset, the queries only displayed the week of Christmas and one

aggregated reading per day. In contrast, the heatmaps we saw in Figure 3.1

and 3.2 showed aggregate consumption information of all 75 weeks with 48

readings per day. We would like to ask if we can protect privacy of each

consumer when we publish this heatmap to the public. Can a DP heatmap

created with the Laplacian noise mechanism still display information that

we saw from Figure 3.1 and 3.2? For the DP heatmaps, we would like ask a

following question. In the heatmap of smartgrid calendar data, is it possible

to recognize effects of

• Christmas holidays

• seasonal changes

• weekends and weekdays

• day and night time

Figure 5.1 and 5.2 are heatmaps created with the sequential composition,

which is the same technique we used when we created DP bar graphs and

pie charts.
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Figure 5.1: (1,∞)-DP Residential Heatmap with Sequential Noise
Composition

Figure 5.2: (100,∞)-DP Residential Heatmap with Sequential Noise
Composition

In Figure 5.1, the heatmap no longer shows any useful information. We
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could no longer see holiday patterns, seasonal patterns or daily patterns that

were present in its unprotected counterpart from Figure 3.1. As we increased

the epsilon to 100 in Figure 5.2, we could barely distinguish night and day

time with black vertical bands. Also, we could observe that winter weeks have

many sky blue and dark blue pixels while summer weeks mostly have purple

pixels. Thus, we could infer that electricity consumption is higher in winter

than in summer. Nonetheless, most of the information provided by Figure

3.1 was no longer available. Furthermore, (100,∞)-DP is not considered to

be sufficient protection measure against any adversary.

Sequential composition required very conservative standards when com-

posing queries. We used the same noise injection mechanism on the same

database throughout the algorithm. Advanced composition [5] allows noise

to grow slower when repeated use of differentially private mechanism on

the same database occurs. Thus, we believed use of this composition could

greatly improve the quality of visualization products. The DP visualizations

created with advanced composition mechanism are shown at Figure 5.3 and

5.4.

Figure 5.3: (0.79,10−5)-DP Residential Heatmap with Advanced Noise
Composition
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Figure 5.4: (41,10−5)-DP Private Residential Heatmap with Advanced
Noise Composition

Figure 5.3 is the (0.79,10−5)-DP counterpart of Figure 3.1. Unfortunately

we still could not see most information that used to be present on its unpro-

tected version. We can claim some findings from this visualization, but we

concluded that we had to increase epsilon in order to recover original infor-

mation from Figure 3.1. We kept increasing the epsilon, and found that by

the epsilon of 41, we finally were able to reproduce most information from

original dataset. The resulting visualization product is shown at Figure 5.4.

We can spot Christmas Eve and Christmas Day based on electricity spend-

ing peaks, and we could distinguish summer and winter based on average

spendings. Also, day time and night time can be clearly distinguished as

well. However, epsilon of 41 is too large to be considered as sufficient privacy

protection.

We applied many state-of-the-art post-processing mechanisms to improve

our results, but none of them yielded a satisfactory result. We would like

to present our final post-processing effort with “divide and aggregate” algo-

rithm. This algorithm attempted to aggregate readings that are adjacent and

similar to each other. This could reduce the number of queries and the size

of the Laplacian noise. The pseudo-code of the algorithm is the following.
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inputs:

M, aggregate smartgrid meter readings matrix

h, threshold

divagg(M,h) {

avg = mean(M)

flag = true

for each m in M:

if abs(m - avg) < h:

flag = false

break

if flag is true:

return M’ which is a new matrix filled with avg

else:

divide M into four sub-matrices, M1, M2, M3, and M4

lt = divagg(M1,h)

rt = divagg(M2,h)

lb = divagg(M3,h)

rb = divagg(M4,h)

merge lt, rt, lb, and rb into a new matrix M’

return M’

}

Note that adjacent pixels of the heatmap often had a similar color. Thus,

we concluded that we could combine entries with similar values into one

representative query rather than returning every query. Our algorithm re-

cursively finds a group of adjacent meter readings that have similar values

within a threshold h and unifies all readings to one average value. Figure 5.5

is the result of the algorithm with threshold h of 800 kWh.
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Figure 5.5: Residential Heatmap Created by Divide and Aggregate
Algorithm

The total number of queries reduced from 25,200 to 1,570. However,

we evaluated that the visual cues still remained in this processed heatmap.

The heatmap still showed a unique consumption pattern during the week of

Christmas, and it showed seasonal consumption patterns. Furthermore, the

resulting heatmap did not display any false information that was not present

in the real heatmap. Nonetheless, we evaluated that the number of queries

(1,570) was too large such that applying the DP mechanism would greatly

obscure the visual cues. Thus, we decided to reduce measurements from 75

weeks to 52 weeks, because 52 weeks constituted annual data such that extra

23 weeks of data repeated first 23 weeks. We reduced the total number of

queries to 952 after making this decision. We calculated new sensitivity for

each query and applied the advanced composition with epsilon of around 1.2

on the Figure 5.5. Figure 5.6 is the product of the implementation.
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Figure 5.6: (1.25,10−5)-DP Residential Heatmap Created by Divide and
Aggregate Algorithm

Although we applied pre-processing mechanisms that greatly reduced our

privacy budget to 952 queries, the resulting product was too obscured. We

could observe some purple or blue vertical bands that represented dawn pe-

riod with low electricity consumption between each day, but we could not

confidently claim that we observed the same daily consumption pattern as

we did when we read Figure 5.5. The DP heatmap did show that consump-

tion was higher during winter period, but the heatmap failed to show some

key patterns that were seen in Figure 5.5. For instance, the private coun-

terpart no longer showed an increase of electricity consumption during the

week of Christmas in comparison to adjacent weeks. Furthermore, we could

no longer spot a unique consumption pattern that happened during Christ-

mas. Overall, we concluded that the visualization did not provide enough

information to conjecture consumption patterns of Irish consumers. There-

fore, we categorized this experiment to the experiment of high degradation

of visual cues.
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CHAPTER 6

MEDIUM DEGRADATION OF VISUAL
CUES

So far, we have seen two categories of experiments. The first one was a

“low” degradation experiment where the number of queries was less than 10

such that noise injections did not have any noticeable impact on visualiza-

tion products. Meanwhile, the second experiment was a “high” degradation

experiment where the number of queries was too large (25,200) such that af-

ter applying the Laplacian noise mechanism, the degree of data degradation

was too large such that no state-of-the-art post-processing effort helped us to

recover information displayed from its unprotected counterpart. This time,

we conducted experiments for “medium” degradation of visual cues.

For first part of experiment, we used original 30-min period measurements

like we did for heatmap experiment, but limited the range of data only to

the week of Christmas not 75 weeks. In such case, the number of queries

was greatly reduced from 25,200 to 336. We determined that a linear plot

was the best visualization method to show weekly periodic patterns, so we

created linear plots and made qualitative observations with the data. For the

second part of the experiment, we collected 3,639 pairs of parallel queries from

each sample such that each sample provided two queries. we used parallel

composition when implementing the Laplacian noise mechanism, and plotted

a scatterplot to visualize this collection of queries.

6.1 Linear Plots

For this experiment, we wanted to ask following questions when reading the

plots.

In linear plot of Christmas weeks calendar data, is it possible to recognize:

• Effects of Christmas holidays
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• Consumption peaks and troughs

• Characteristics of daily consumption pattern

Note that we successfully answered all three questions when we observed

heatmaps. The heatmap has a higher dimension than linear plots do, because

linear plots only show the data in x and y axis while heatmaps incorporate

color to show information in addition to the two axes. Thus, the heatmap

was suitable for visualizing the whole data set which contained weekly pe-

riodic information along y-axis and daily periodic information along x-axis.

Meanwhile, linear plots only displayed information in two dimensions, so we

concluded on plotting a week worth of data for daily pattern analysis.

Figure 6.1: Linear Plot of Aggregation Consumption During Week of
Christmas

Just like previous set of experiments, viewers with limited prior information

gain information after reading the linear plot because they could infer that

Thursday and Friday had highest consecutive electricity consumptions. This

information gain was crucial for guessing the Christmas Eve and Christmas

Day. Furthermore, we could distinguish each day since a consumption trough

exists between two days when Irish consumers went to sleep. In addition, we
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also observed that most days had peak consumption during night time while

Christmas had its peak time during day time.

Figure 6.1 provided a fine-grained consumption information for weekly

aggregate consumption data. We gained information regarding daily and

weekly periodic consumption pattern. Furthermore, we easily identified

Christmas Day by distinguishing the highest consumption peak. We ex-

perienced the same degree of information gain from Figure 3.1 when we

conducted the heatmap experiment, but we lost all information when we in-

jected Laplacian noise. Figure 6.2 shows (1,10−5)-DP Linear plot of aggregate

consumption during the week of Christmas.

Figure 6.2: (1,10−5)-DP Linear Plot of Aggregation Consumption During
Week of Christmas

We recovered some information that existed before noise injections. For

instance, one could distinguish one day from another based on placements of

consumption troughs. However, the plot contained too much noise for each

measurement such that it lost many interesting features that we observed in

Figure 6.1. Meanwhile, we could once again post-process the data without

sacrificing privacy protection. For noise filtering purposes, the Savizky-Golay

filter [13] is one of the most widely used filters, so we applied this filter to

our visualization.
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Figure 6.3: Applying SAVGOL filter to Noisy Linear Plot

After applying the filter in Figure 6.3, the visualization product was still

(1,10−5)-DP Private since DP mechanisms are immune to post-processing.

Nonetheless, viewers definitely gained more information from visualization

after applying the filter. Now, end-users could confidently claim that there

existed a small consumption spike during morning time before large spike in

night time. Nonetheless, note that there existed some false information which

did not exist in original raw product but existed in the filtered product. For

instance, when one makes an observation for consumption during Saturday,

he would conclude that the aggregate consumption during morning and night

time are relatively similar to each other. Meanwhile, that was definitely false

when we observed raw visualization product from Figure 6.1. For every day,

peak consumption during night time was higher than that of day time.
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Figure 6.4: Comparing Raw and Processed Linear Plots

This figure illustrated degradation of information caused by noise injec-

tion and filtering. Although some macro-level information like daily peak

consumption and daily trough consumption do not differ much, there existed

significant difference in micro-level information where the exact shape of

each day’s consumption curve has changed after applying privacy protection

mechanisms.
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6.2 Scatterplots

So far, our visualizations plotted periodic data such that x axis represented

time and day of measurement. Meanwhile, a scatterplot cannot plot such

stream data, because a 2D scatterplot only allows two attributes per sample.

Therefore, we would like to make different assumptions for this section of

the experiment. For other visualization experiments we assumed that the

producer of visualizations had no prior knowledge of the dataset other than

its structure. For this experiment, we assume that producer of the scatterplot

already read a heatmap of the dataset, so the producer already knows that

the day of Christmas has higher electricity consumption than other Fridays

or other days during the week of Christmas.

We created two scatterplots for this experiment. First, we plotted total

electricity consumption from 1:00 to 1:30 PM period for December 18th (x

axis) and December 25th (y axis). We knew that Irish people usually con-

sumed less electricity during 1300 to 1330 period, but spent more electricity

on 25th at the same time period. Next a scatterplot compared average elec-

tricity consumption of each consumer during December 18th and December

25th. We knew that people spent more electricity during Christmas than

during other Fridays, so we drew a Line of Best Fit (LOBF) to see if the

slope of the line was higher than one. Figure 6.5 and Figure 6.6 are the

products.
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Figure 6.5: Scatterplot of Electricity Consumption during 1300 to 1330 for
December 18th and December 25th

Figure 6.6: Scatterplot of Average Consumption for December 18th and
December 25th

LOBF: y = 1.07x+ 0.17
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Figure 6.5 shows three groups of consumers. A group of consumers con-

stituted the majority of samples where they spent more electricity on 25th

than on 18th during 1300 to 1330 period. This was expected since 25th’s

aggregate consumption during 1300 to 1330 period was higher than that of

18th. Next group of consumers had very low electricity consumption for

Christmas but had much higher consumption on 18th. We concluded that

these consumers left their households for holiday trips during Christmas such

that only minimal electricity for refrigerators or other home appliances was

required. Finally we spotted some consumers who spent about the same elec-

tricity for both days. On the other hand, Figure 6.6 showed a linear pattern

such that most consumers’ average consumption fitted to the LOBF drawn

as a red line. The slope of the LOBF was 1.07, indicating that consumers

on average spent 7% more on Christmas than on other Fridays. Note that

this scatterplot did not remove outliers yet. We will analyze how outliers

impacted the visualization afterwards.

Implementing the DP mechanism on scatterplot required pre-processing

procedures, because we could not directly measure sensitivity of each sample.

Thus we decided to convert our scatterplot to a heatmap that was equivalent

to a 2D histogram. Then we applied Laplacian noise to the heatmap via

parallel composition. Finally we create scatterplot from the histogram by

randomly drawing each bin’s samples within the bin’s area.

We implemented the Uniform Grid Algorithm [14] when converting the

scatterplot to a 2D histogram. The algorithm partitions the space into m×m
grid cells and adds Laplacian noise to each cell. Literature suggestsm =

√
Nε
10

provided the least amount of error, so we used following formula to divide

scatterplots. Since this is equivalent to a histogram, the sensitivity of each

bin is one and each consumer only contributes to a count of one bin. Thus,

we used parallel composition for this experiment. Figure 6.7, 6.8 and 6.9

show process of creating (1,∞)-DP counterpart of Figure 6.9.
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Figure 6.7: 2D Histogram Based on the Scatterplot from Figure 6.5

Figure 6.8: (1,∞)-DP Histogram of Figure 6.5
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Figure 6.9: (1,∞)-DP Scatterplot of Figure 6.5

The protected scatterplot still shows a group of people who spent more

electricity during Christmas and a group of consumers spent few electricity

during Christmas. However, we found that the scatterplot showed a large

number of outliers that were not present on its unprotected counterpart.

Differential privacy aims to hide an individual in the dataset by adding an

appropriate amount of noise. Meanwhile, outlier analysis aims to pinpoint

individuals that do not fit to the dataset’s normal trend. When converting

unprotected scatterplot to 2D histogram, there existed many empty/low fre-

quency bins since samples were grouped close to x or y axis. However when

adding noise to the histogram, we added noise to empty bins such that we

created artificial samples across an empty region to hide outliers. To best of

our knowledge, there is no technique that can preserve outliers and satisfy

(1,∞)-DP requirements. Thus, anomaly analysis must require unprotected

visualizations or use synthesized databases.

Using the same algorithm, Figure 6.10 is the (1,∞)-DP Counterpart of

Figure 6.6.
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Figure 6.10: (1,∞)-DP Private Counterpart of Figure 6.6

While Figure 6.9 successfully showed major consumption trends of Figure

6.5, Figure 6.10’s Line of Best Fit was tilted to the right after injecting arti-

ficial outliers. In this case, outliers scattered across the scatterplot affected

the slope of the LOBF. Therefore, applying the same noise mechanism across

all cells did not benefit our visualization. We either had to remove outliers

when computing LOBF or use the other noise injection mechanism. Remov-

ing outliers for LOBF computation seemed to be a hard task, since it was

hard to define outliers without viewing the original scatterplot. We could

remove all samples that were not positioned near the crowd of samples at

the left bottom corner, but there existed a large number of samples across

the scatterplot. The number of spreaded points was too large to claim that

all of those points were outliers. Thus, we incorporated the CBP mechanism

[15] for this scatterplot. When we injected noise to the 2D histogram, we

only added noises to bins with less than ten samples. For bins with less than

ten samples, we suppress the bin count to zero. The mechanism removes

outliers while ensures privacy of all consumers. The resulting scatterplot is

shown at Figure 6.11 which is (10, 1) Crowd-Blending Private.
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Figure 6.11: (10,1) Crowd-Blending Private Counterpart of Figure 6.6

LOBF: y = 0.96x+ 0.22

The slope of LOBF decreased from 1.07 to 0.96. the CBP mechanism

erased a number of samples that spent more electricity during Christmas than

during the 18th of December, because the algorithm defined those samples

as outliers. While aggregate electricity consumption during Christmas was

larger than that of December 18th, majority of people spent higher electricity

during 18th than during 25th. The mean consumption during 25th is larger

than the median consumption. We thought a number of factors would have

contributed to this phenomenon. For instance, two or three families could

gather at their relative’s place to hold a Christmas party. Then, there would

exist two to three empty houses and one household with higher electricity

consumption.
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CHAPTER 7

LIMITATIONS AND FUTURE WORKS

Our project illustrated obscuring effects of visual cues caused by the Lapla-

cian noise. However, we admit that our results would have strengthened if

our experiments did not contain several limitations. In this section, we would

like to discuss those limitations of the experiment.

7.1 Subjective Experimentation Methodology

Qualitative measurements are subjective as observations rely on observers’

judgments. Observations and decisions are likely to be biased. Thus, studies

based on qualitative measurements often require crowd-sourcing based user

study for validity of results. Unfortunately, author was the only observer for

this experiment. Our observations focused on evident visual cues such that

we believe most readers agree with our qualitative observations. Nonethe-

less, lack of participants diminish the strength of our academic arguments.

Thus, conducting a supplementary user study to confirm our findings is nec-

essary. We would like to conduct a similar observation experiments to a large

group of diverse crowds from crowd-sourced survey services like the Amazon

Mechanical Turk (AMT) [16].

7.2 Decision Making based on Confidence Level and

Costs

On the other hand, decision making process depends on multiple factors.

Confidence level and cost-benefit analysis largely impact decision makers.

While our preliminary questions introduced in the beginning of each exper-

iment motivated readers to find and determine the visual cues, we did not
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consider cost model and confidence level of observers. We would like to ex-

amine how people make different decisions on presence or absence of visual

patterns depending on different environments which accompany different con-

fidence levels and cost models. For example, visualizations involving stock

market predictions and plots depicting temperature predictions would result

in different degree of pressure and motivation for end-users to find the visual

cues.

7.3 Complexity of Visualization

Modern visualization products often display multiple, diverse plots to effi-

ciently deliver information to viewers. Multi-layer visualizations constitute

intertwined information flow such that each layer is dependent on other plots.

For these visualizations, directly implementing the Laplacian noise mecha-

nism to numerical data queries would overlook a possibility of composing

different layers to gain database sample’s membership information. How-

ever, our study only focused on implementing DP noise injection mechanism

to independent plots.

We only discussed non-interactive visualizations for the experiment. Our

static productions did not receive or respond to user inquires. Interactive

visualizations may require extra attention to privacy protection since this

experiment did not account for uncertainties created by user inputs. We

believe this subject is out of scope from this study, but we would like to

prepare a different research experiment on interactive visualizations in the

future.

7.4 Dataset Variety

Our study used one dataset provided by ISSDA. While this a year-long time

series dataset provided motivating visualizations, our study was largely lim-

ited by the dataset. For instance, the dataset contained only 5,000 samples

while each sample had 25,200 meter readings. If the dataset had larger sample

size, we would not have encountered degradation problems throughout the

experiment. Nonetheless, limitation of sample size also served us to present
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novel pre and post processing algorithms for the project. We would like to

conduct a separate study on a new time series dataset with large sample size

to strengthen our findings. Much literature [17, 18] discussed implementa-

tion of DP mechanisms to protect patients’ genomic data, and these authors

encountered similar concerns that we observed. We would like to conduct a

parallel study on those type of database to contribute our findings to their

studies.

Progress can be made on comparing different visualization products. While

our low degradation experiment compared visual cues of bar graphs and pie

charts, our set of experiments is mostly disjoint. We believe that using a

different dataset can mitigate this issue as each visualization technique is

suitable for plotting different kinds of data. We are especially interested in

comparing different visualizations to judge whether one type of visualization

inherently provides more privacy protection than other types.
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CHAPTER 8

CONCLUSION

Our work presented qualitative observations regarding the impacts of the

Laplacian noise mechanism, as a DP mechanism, against a smart-grid dataset.

We recognize limitations of our project, and we look forward to conduct a

complementary user study which supplement our findings. We discussed how

different visualization products resulted in various degrees of information loss

when the Laplacian noise was injected to each visualization. We discussed

three different levels of information loss with five different visualization prod-

ucts.

We discussed low degradation of visual cues with pie charts and bar graphs,

and this experiment showed that bar graphs were more suitable for delivering

information from the Irish dataset. Then we observed high degradation of

visual cues with heatmaps. We concluded that no state-of-the-art DP mecha-

nism could satisfy sufficient privacy protection and maintain key information

for dataset with insufficient number of samples. Finally we discussed some

visualizations with medium degradation of information. These visualizations

required pre/post-processing efforts to maximize utility of visualizations.

privacy-preserving linear plots maintained some visual cues from its unpro-

tected counterpart, but some information was washed out after injecting

noise and applying the noise-filtering algorithm. privacy-preserving scatter-

plot contained artificial outliers that obscured information. CBP scatterplot

cleared these outliers and showed new information to end-users. While most

visualization products only required noise injection to numerical data, some

visualizations required pre/post-processing mechanisms to enhance utility of

the products.
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serving processing of genomic data: A survey,” Journal of biomedical
informatics, vol. 56, pp. 103–111, 2015.

45


