
Resolving the Predicament
of Android Custom Permissions

Güliz Seray Tuncay, Soteris Demetriou, Karan Ganju, Carl A. Gunter
University of Illinois at Urbana-Champaign

{tuncay2, sdemetr2, kganju2, cgunter}@illinois.edu

Abstract—Android leverages a set of system permissions to
protect platform resources. At the same time, it allows untrusted
third-party applications to declare their own custom permissions
to regulate access to app components. However, Android treats
custom permissions the same way as system permissions even
though they are declared by entities of different trust levels. In
this work, we describe two new classes of vulnerabilities that arise
from the ‘predicament’ created by mixing system and custom
permissions in Android. These have been acknowledged as serious
security flaws by Google and we demonstrate how they can be
exploited in practice to gain unauthorized access to platform
resources and to compromise popular Android apps. To address
the shortcomings of the system, we propose a new modular
design called Cusper for the Android permission model. Cusper
separates the management of system and custom permissions and
introduces a backward-compatible naming convention for custom
permissions to prevent custom permission spoofing. We validate
the correctness of Cusper by 1) introducing the first formal
model of Android runtime permissions, 2) extending it to describe
Cusper, and 3) formally showing that key security properties
that can be violated in the current permission model are always
satisfied in Cusper. To demonstrate Cusper’s practicality, we
implemented it in the Android platform and showed that it is
both effective and efficient.

I. INTRODUCTION

Android’s permission model forms the security basis for
the critical operations that can be performed on the plat-
form by the apps. In a nutshell, the main purpose of this
model is to regulate access to platform and app resources,
which is achieved by utilizing a set of security labels, called
permissions. In order to protect the platform resources (e.g.,
microphone, Internet etc.), the platform uses system permis-
sions, which are a predefined set of permissions introduced
by the platform itself. The permission model also provides
the platform with finer-grained security as a means to protect
Inter-Process Communication (IPC) between different app or
system components. Specifically for this purpose, Android
introduces custom permissions: these are application-defined
permissions which allow developers to regulate access to their
app components by other apps. In fact, the use of custom
permissions is very common among third-party applications.
According to our study on the top free apps on the Google

Play Store, 65% of the apps define custom permissions, while
70% request them for their operation.

Unfortunately, design flaws and vulnerabilities in custom
permissions can completely compromise the security of IPC,
inevitably leading to exploits on third-party apps and the
platform itself. Previous work has consistently found custom
permissions to be problematic [30], [28], and as a response to
these studies, Google made an effort to address the identified
problems by releasing bug fixes. However, similar vulnera-
bilities still exist even after Google patched this initial wave
of vulnerabilities. In this work, we present two classes of
attacks that exploit the vulnerabilities in custom permissions
to get unauthorized access to platform and app resources.
With one of our attacks, a malicious app can bypass the
user interaction requirements for acquiring dangerous system
permissions on Android versions that support runtime permis-
sions and stealthily access high-risk platform resources (e.g.,
camera, microphone etc.). With our other attack, a malicious
app can escalate its privileges to gain elevated access to the
protected components of other apps. We further demonstrate
how an adversary can utilize the aforementioned vulnerabilities
to target high profile apps with millions of downloads, such
as CareZone and Skype, and access sensitive user data (e.g.,
medical conditions, insurance information) and functionalities
(e.g., VoIP calls). We have officially reported these attacks to
Google, which acknowledged them as severe flaws that need
to be addressed in the next versions of Android.

In our investigation of the Android permission model
and its respective source code, we observed that there is no
separation of trust between system and custom permissions
in the Android framework, which leads to the manifestation
of permission vulnerabilities; we call this failure to distin-
guish custom permissions in the system, the ‘predicament’
of custom permissions. First, system and custom permissions
are currently insufficiently isolated and they receive the same
kind of treatment from Android, which opens up opportunities
for malicious apps to utilize custom permissions to obtain
unauthorized access to platform resources. Second, there is
currently no enforced naming convention for when declaring
custom permissions—apps are allowed to declare custom per-
missions with any name they desire. This creates a confused
deputy problem where a privileged app’s protected resources
can be utilized by unauthorized apps that possess different
custom permissions declared with the same name as of the ones
used by the privileged app to protect its resources. In order to
systematically address these problems, we propose a design
and corresponding implementation which we call Cusper.
Cusper decouples the handling of custom permissions from

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23210
www.ndss-symposium.org



system permissions to prevent an adversary from escalating
their privileges and stealthily acquiring system resources. Ad-
ditionally, Cusper implements an OS-level naming convention
for custom permissions to prevent custom permission spoofing.
This is backward-compatible with existing apps and enables
the system to properly identify custom permissions according
to the developer signature of their definer apps.

To prove the correctness of Cusper, one could employ
traditional analysis methods such as testing and static analysis.
However, these are typically insufficient since they depend on
the analyst determining all possible test cases, a challenging
endeavor. In contrast, formal methods can be leveraged to build
models and verify that key properties are never violated in
a proposed system. In fact, previous work has already used
the latter approach to formally model the Android permission
model [20], [21], [29]. Unfortunately, the proposed formal
models are outdated since they correspond to the install time
permission model of Android. In order to verify the correctness
of Cusper, we build the first formal model of the Android run-
time permission model using the Alloy specification language.
Specifically, we model the data abstractions for permission-
related structures and the behavior of system operations (e.g.,
install, uninstall, update) that concern permissions for the
runtime model, which significantly differ in terms of both
abstractions and behavior from the previous model. We found
that the original permission model violates two fundamental
security properties regarding access to app and platform re-
sources: 1) there should be no unauthorized component access,
and 2) there should be no access to high-risk (‘dangerous’)
platform resources without user’s consent. We leverage our for-
mal model to demonstrate the existence of vulnerabilities that
violate these invariants in the original permissions model and
show that, in contrast, Cusper always satisfies them. Finally, to
illustrate Cusper’s practicality, we implement it in Android and
show that it effectively resolves the identified vulnerabilities
while incurring a negligible overhead. Our contributions can
be summarized as follows:

1) We identify severe—as acknowledged by Google—
vulnerabilities in custom permissions and demon-
strate how they can be exploited in practice to ob-
tain unauthorized access to critical platform and app
resources.

2) We study the identified vulnerabilities in detail to un-
derstand the design flaws leading to their occurrence,
and based on our observations, we propose a modular
design, Cusper, which aims to systematically eradi-
cate and prevent custom permission vulnerabilities.

3) We implement the first formal model of the Android
runtime permission model, and formally prove the
correctness of Cusper.

4) We implement Cusper on Android and show that it
resolves the identified vulnerabilities effectively and
efficiently.

The rest of the paper is organized as follows: Section II
covers the background information. Section III presents our
analysis on the use of custom permissions by the most popular
apps on Google Play. Section IV describes our attacks that ex-
ploit the custom permission vulnerabilities. Section V presents
our design and implementation of Cusper. Section VI presents
our Alloy formal model of Android permissions. Section VIII

discusses related work on Android permissions. Finally, we
conclude the paper in Section IX.

II. BACKGROUND

In this section, we will cover the background on Android
permissions, IPC on Android, and formal verification using
Alloy.

A. Android Permissions

In Android, each app runs as a separate Linux user within
its assigned sandbox with limited access to resources to ensure
the integrity of the system and the apps. When an app wishes
to use a resource outside its sandbox, it has to conform to
Android’s permission model and explicitly request it.

Permission Essentials. Android associates permissions with
protection levels depending on their severity. There are cur-
rently three protection levels in Android: normal, signature,
and dangerous. Normal permissions are used to protect re-
sources (e.g., Internet) that constitute very little risk to user’s
privacy or the operation of other apps; whereas dangerous
permissions are associated with very high risk operations (e.g.,
accessing a user’s contact list). Signature permissions protect
private resources of apps, where the requester can be granted
the permission only if it is signed with a matching certificate to
that of the definer of the permission of interest. Additionally,
Android has permission groups that cluster permissions based
on their utility [4].

Before Android 6.0 (API level 23), all permissions were
granted at application installation time. However, starting with
version 6.0, Android adopted the runtime permission model,
where dangerous permissions are granted to an app at runtime
by the user the first time they are used by this app, and the
user is given the ability to revoke these permissions to apps at
any time. Normal and signature permissions are still granted
at installation and cannot be revoked by the user. According to
the runtime model, if a dangerous permission in a permission
group is granted to an app, all the dangerous permissions in
that group will also be granted (if explicitly requested by the
app) in order to minimize user’s effort.

Custom Permissions. Third-party apps are allowed to define
new permissions on Android. These permissions, called custom
permissions, are used to protect an app’s own resources from
others. In order to define a new custom permission, an app
must provide a permission name and can optionally include
a permission group to which this permission belongs and
a description regarding the utility of the permission in its
manifest as shown in the lines 1 - 6 of Listing 1. Additionally,
in order to request a permission, an Android app needs to
declare the use of the permission by referring to it with its
name, as shown in line 8 of Listing 1. Furthermore, Android
allows applications to create custom permissions dynamically
via the use of the addPermission() API method. In order
for this method to work successfully, apps need to declare
permission trees in their manifest file which state the domain
name under which the dynamic permissions will be created.

Although it is suggested that reverse domain name notation
should be used for custom permission names, there is currently

2



Listing 1: Creating and requesting custom permissions
1 <permission <!--Create a custom permission-->
2 android:name="com.example.PERM_NAME"
3 android:protectionLevel="normal"
4 android:permissionGroup=
5 "android.permission-group.STORAGE">
6 </permission>
7 <!-- Request a custom permission -->
8 <uses-permission android:name="com.example.PERM_NAME" />

no naming convention enforced by the system for custom per-
missions and apps can use any name they desire when creating
new custom permissions. One exception is that Android does
not allow two different permissions to coexist on the same
device if they have the same name; hence, installation of an
app which defines a permission with a name that belongs to an
existing permission on the device will be denied by the system.
Conventional use case for custom permissions is for apps to
define custom permissions with the signature protection level
so that only the apps that are signed with the same certificate
(e.g., apps that belong to the same developer) can utilize the
definer app’s resources.

B. Inter-Component Communication

The Android operating system relies on IPC (also called
ICC on Android) in order to achieve re-usability. Here, we
present the details on how IPC is achieved and protected on
Android.

App Components. Android apps can comprise of four com-
ponents: activities, services, broadcast receivers, and con-
tent providers. Each of these components (except content
providers) can be an entry point to the apps. Activities are
components that present the user with a graphical user interface
to perform a single task. Services run in the background
to perform long-running operations with no user interface.
Broadcast receivers are used to receive broadcast messages
from the system or the other apps. Content providers allow
storing and sharing data between apps via a relational database
interface. Communication between components is achieved
through the Intent mechanism on Android. Intents are asyn-
chronous messages between components in the same app or
different apps that are used for activation of components.

IPC Security. Android ensures the security of IPC by utilizing
its permission model. When two components communicate,
both the caller and the callee can require the other party to
hold certain permissions for a successful communication. More
specifically, this protection can be achieved through the use of
custom permissions, which are used by app developers to re-
strict access to their components. For example, if a component
is protected with a signature permission, only the apps that are
signed with the same certificate as that of the component owner
can access it. Both third-party app developers and the system
rely on the correct operation of custom permissions for their
security; hence, it is of paramount importance to ensure the
security of custom permissions.

C. Formal Verification via Alloy

Alloy is a declarative specification language that is used
to model the behavior and structural constraints of complex

systems [1]. It provides a modeling tool called Alloy Analyzer
that operates based on first-order (i.e., predicate) logic and
can be used to analyze formal models created with the Alloy
language.

Alloy Language. Statements in Alloy can be interpreted both
from object-oriented (OO) programming paradigm and from
set theory perspectives. Signature is a declaration of a schema,
which defines the vocabulary of the model. It is similar to
the concept of a class in OO paradigm and to a set in set
theory. It can consist of several fields, which are equivalent to
fields in OO paradigm and to relations from a set theoretical
perspective. Facts are global constraints to the model that
are always supposed to hold. Predicates define parametrized
constraints, which can be interpreted as operations that can
be performed in the model. Functions are expressions with
declaration parameters and they return a result based on the
parameters. Assertions are assumptions made on the model
and they can be validated via the Alloy analyzer. Addition-
ally, Alloy allows using multiplicity keywords as quantifiers
in quantified constraints: all (universal quantifier), some
(existential quantifier), lone (zero or one), one (exactly
one), no (zero). Also, it is possible to use some (or set
interchangeably), lone, and one for field declarations in
signatures to indicate the number of elements a field can take
and also for signature declarations to indicate the number of
elements that can belong to the set of the signature.

Alloy Analyzer. The Alloy Analyzer tool performs only finite
scope checks on the models. The analysis is sound since it can
never return false positives and is complete up to a scope as
the tool will never miss any counterexamples that are equal
or smaller than the specified scope. As in traditional model
checking, Alloy models are infinite, that is, the specification
dictates how the components of a system should behave
without any restrictions on their quantity. The analyzer also
provides automated analysis by allowing automatic generation
of examples that satisfy a given model as well as counterex-
amples to claims (i.e., assertions) that are expected to hold in
the model.

III. USE OF CUSTOM PERMISSIONS

Custom permissions provide security to IPC that apps
harness for their operation. They are utilized by app developers
to restrict access to components as per the sensitivity of
the protected resource. In this section, we investigate the
prevalence of custom permissions among the top free apps
on Google Play and showcase two high-profile apps that we
selected to launch attacks on by exploiting the vulnerabilities
in custom permissions.

A. Prevalence

We collected 50 top free apps from each of the Google Play
Store categories (with some failures in collection) and in total
analyzed 1308 apps to identify statistics regarding the use of
custom permissions. As can be seen in Table I, 65% of the
apps in our dataset declare custom permissions (statically or
dynamically) and 70% of them request custom permissions.
Additionally, 89% of all the permissions created by these apps
are of protection level signature (see Table II), which indicates

3



TABLE I: Apps at risk due to custom permissions
Usage Number of Apps
Create Static Custom Permissions 834 (64%)
Create Dynamic Custom Permissions 50 (3%)
Create Custom Permissions 847 (65%)
Request Third-party Permissions 919 (70%)
Total number of apps in dataset 1308 (100%)

TABLE II: Protection Levels of Custom Permissions
Permission Protection Level Number of Permissions
Signature Permissions 1203 (89%)
Dangerous Permissions 14 (1%)
Normal Permissions 40 (2%)
Signature or System Permissions 57 (4%)
Total Number of Permissions 1350 (100%)

that app developers typically use custom permissions to allow
other apps to utilize their protected components only if they
are signed by the same developer or company.

This analysis shows that custom permissions are commonly
utilized by app developers. Vulnerabilities in their use create
risks for the security of the platform and key apps. To
illustrate this we have identified ways we can launch attacks
on the platform to obtain any system resource (e.g., camera,
microphone) without user consent and on apps to stealthily
access their protected components and data. Apps that utilize
custom permissions are potentially susceptible to the attacks
that target their protected components when they are installed
on Android 6.0 or newer. This currently includes more than
50% of all Android devices [3] with a growing user base. This
is a widespread security concern: just the apps in our dataset
have been downloaded on average 25 million times.

B. Case Studies

In this section, we present case studies where sensitive data or
resources of popular Android apps have been leaked through
the custom permission vulnerabilities. In order to obtain the
vulnerable components that leak resources, we conduct manual
analysis which requires going through the decompiled applica-
tion code and crafting attacks specifically for the app in study.
As an example, to attack a vulnerable activity component,
we go through the decompiled code to find the Java file for
the activity itself and if it is not obfuscated, we proceed to
inspect the source code to identify whether the intent it expects
is of a particular format. Finally, using this information, we
create attack apps that exploit the existing custom permission
vulnerabilities and stealthily activate the component of interest
with the appropriate intent. We will explain the details of how
this attack works in Section IV-B.

CareZone is a medical Android app produced by a com-
pany with the same name. It has 1,000,000+ downloads and
has a 4+ rating on the Google Play Store. The app allows
users to store medical-related information such as health
background (e.g., blood type, medical conditions, allergies
etc.), medication lists, medical contacts and their addresses,
calendar events, insurance information, and photos or health
files in an organized manner. It also features calendars to
track appointments as well as to-do and notification lists for
tracking tasks. All of this medical data and meta-data is stored
in a single content provider which has been exported and

is protected by a signature permission. There are no other
dynamic checks on accessing the content provider. Our attack
is able to bypass the signature requirements and read the entire
content provider, which gives us access to the aforementioned
sensitive data without the user’s explicit consent or knowledge.
The fact that all this data was stored in a single content
provider seems to reflect the developer’s implicit reliance on
the security guarantees provided by the platform.

Skype is an Android app by Microsoft that allows users
to make voice and video calls over the Internet. It has
500,000,000+ downloads and a 4+ rating. Skype has an activity
which can be invoked to start the call functionality to any
telephone number. This activity is protected using a signature
permission which, once bypassed, would allow the adversary
to invoke calls to a specified person or number. This could
have many implications. For example, it could be used as part
of a suite of other spying capabilities. Our attack is able to
spoof the original permission and launch Skype calls without
the user’s knowledge through this protected activity.

IV. ATTACKS

Custom permissions play an important role in enabling re-
usability on the Android platform by providing security to
IPC; hence, any threat to their proper operation can result in
the compromise of the security of the apps and the platform
itself. In this section, we discuss two types of custom per-
mission vulnerabilities we identified on Android: 1) custom
permission upgrade and 2) confused deputy. By exploiting
these vulnerabilities, an app can bypass user consent screens
for granting/denying permissions to obtain high-risk system
resources and can also gain unauthorized access to protected
components of other apps. We reported these to Google which
acknowledged both of them as severe vulnerabilities. Given its
real-world implications and its prevalence, we believe that the
predicament of custom permissions constitutes a current and
notable security risk worth addressing.

Threat Model. We consider an adversary that has the ability to
crawl app markets (e.g., Google Play Store) to download vic-
tim apps of interest, reverse engineer them by utilizing several
tools [7], [12], [10], and analyze the Android manifest files and
source code of these apps to observe the cases where custom
permissions are used to protect app components. The adversary
can build and distribute on app markets a set of malicious apps
that exploit the custom permission vulnerabilities of Android
to launch attacks on the victim apps and on the platform.

A. Custom Permission Upgrade Attack

Android runtime permission model (supported by Android
6.0 and onward) requires user’s approval for granting apps per-
missions of protection level dangerous. This attack enables
a malicious app to completely bypass the user consent screen
and automatically obtain any dangerous system permissions
[15].

In particular, there are 24 dangerous permissions in 9
permission groups [2] on the current version of the Android
platform (7.0), which protect access to high-risk system re-
sources (e.g., storage, contacts, location, camera, microphone,
sms, sensors etc.). Our attack illustrates how an adversary can

4



gain unfettered access to all high-risk system resources that
are protected by these permissions without the user’s consent.

Attack Overview. First, the adversary creates an app that
includes in its manifest file a custom permission declaration
with the protection level normal or signature and sets this
custom permission to be a part of a system permission group
(e.g., storage, camera etc.). Then, they update the definition
of this custom permission so that the protection level is
changed to dangerous and proceed to push an update to
their app on the respective app market. Here, this update can
be pushed to all the app users after the app reaches a target
user base. In addition, specific user groups can be targeted
via the use of push services (e.g., Google Cloud Messaging
(GCM) [11], which is used by 94% of the apps in our database
that utilize custom permissions) that allow sending update
notifications, and via enterprise app stores (e.g., Appaloosa
[18]) that enable enforced targeted updates. The expectation is
that since the custom permission is of level dangerous, the
user will be prompted at runtime to make a decision on whether
to grant or deny this permission in the runtime permission
model. However, the malicious app automatically gets granted
the permission. In addition, since the runtime permission
model grants dangerous permissions on a group basis, the app
also automatically obtains all the other requested dangerous
permissions of the system permission group that the original
permission belongs to. Same procedure can be followed to
attack any system permissions group; hence, the adversary can
silently obtain all system permissions simultaneously. Request-
ing dangerous permissions in the Android manifest constitutes
no problems for the adversary, as permission requirements of
an app are not directly presented to users at installation since
Android 6.0. Hence, the user will be completely unaware that
all these system permissions are granted to the app.

Internals of the Attack. Android does not treat custom
permissions any differently than system permissions. As we
will describe in more detail in Section VI-B, granting of
any permission is handled according to the permission’s
protection level and the SDK level of the requesting app
on the runtime model. Normal and signature permissions
are always granted as install time permissions. For legacy
apps (SDK level <23), dangerous permissions are still install
time permissions; whereas for new apps they are granted at
runtime. In case a legacy app gets upgraded to SDK level 23
or more, the system also “upgrades” the granted dangerous
permissions from install time to runtime permissions and
automatically grants them if they were not manually revoked
by the user through the permission settings (indicated by the
FLAG PERMISSION REVOKE ON UPGRADE flag being
set for the permission). However, the system does not consider
other cases where a change in the definition of a permission can
mistakenly trigger the same permission upgrade operation. In
the case of our attack, when a custom permission declaration
is modified by an app update such that the protection level
changes from normal or signature to dangerous, the system
wrongfully treats this case as an app upgrade, and tries to also
upgrade the existing permission to a runtime permission even
though the update operation did not change the app’s SDK
level. Since Android does not allow users to revoke normal or
signature permissions, the aforementioned flag will never be
set for the existing install permission. Hence, the dangerous

permission will be granted automatically without any user
consent. Evidently, this violates a key security principle that
should always hold in the Android runtime permission model:
no dangerous runtime permission should be granted without
user interaction.

Note that, the problem here is that the system does not
consider the special cases that can happen in the case of
custom permissions. If a system permission is being upgraded
from an install to a runtime permission for an app, this can
only mean that the app is being upgraded to SDK level 23
or more. However, when a custom permission is upgraded for
an app, this can indicate either that the legacy app is being
upgraded, or that the permission definition is being changed
from normal or signature to dangerous. Currently, the system
is not equipped with the ability to distinguish between these
two cases for custom permissions as it cannot even distinguish
system permissions from custom permissions. To make things
worse, the system allows a third party developer to declare a
custom permission as a part of a system permission group.
Thus, the adversary can not only get a dangerous custom
permission silently granted, but they can further get access
to all system dangerous permissions in the same group with
any granted dangerous custom permission.

B. Confused Deputy Attack

In this attack, the adversary exploits the lack of naming
conventions for custom permissions on Android to launch
an attack on a victim app that utilizes custom permissions
to protect its components [13]. To do this, the adversary
counterfeits the custom permissions of the victim app by
reusing their names in her own permission declarations and
takes advantage of the system’s inability to track the true origin
of permissions to access protected components of the victim
app.

Attack Overview. In this attack, the adversary’s goal is to get
the operating system to grant their apps a signature custom
permission of a victim app that is signed by a different key than
that of the adversary and therefore obtain unauthorized access
to the components protected by this signature permission.

In order to achieve this, the adversary develops two applica-
tions: 1) a definer attack app which spoofs the custom permis-
sion of the the victim app by reusing the same permission name
but changing the protection level to dangerous, 2) a user
attack app which only requests this permission in its manifest
file. The reason adversary needs two apps to carry out this
particular attack is that Android currently does not allow two
applications that declare a custom permission with the same
name to coexist on the same device. Hence, the adversary’s
app cannot simultaneously exist on the device along with the
victim app if it declares a permission with the same name to
the one used by the victim. However, the adversary can divide
their attack into two different apps, one that spoofs the custom
permission as long as the victim app is not installed on the
device, and a second one that only requests this permission and
is able to coexist with the victim. The definer attack app needs
to be installed first by the user, and this should be followed
by the installation of the user attack app. After the spoofed
permission of the definer attack app is granted to the user
attack app at runtime, the definer attack app can be uninstalled

5



by the user or updated by the app developer (for all users or
targeted to a specific group by using services like GCM or
Appaloosa) to remove the custom permission definition so that
the victim can be installed afterwards. After the installation of
the victim app, the user attack app is able to launch an attack
on the victim to freely access victim’s signature-protected
components even though it is not signed with the same app
certificate as the victim. Google acknowledged this as a high-
severity attack since it bypasses operating system protections
that isolate application data from other applications.

Note that there can be many ways for an adversary to
get the user to install two applications on their device. For
instance, the app developer can use in-app advertisements and
links to direct the user to app stores to download their other app
(e.g., Facebook and Messenger). Another effective way would
be to utilize a common Android app development practice
called plug-in architectures [8], [5], which on demand unravel
new features to the user in the form of new apps in order to
foster re-usability and save storage space by unlocking features
only if they are necessary. An example to apps using this
architectures is Yoga Guru [19], which unlocks users new yoga
exercises—as part of new apps—only after making progress
with the set of exercises they currently have.

Internals of the Attack. During the installation or the update
of an app, if a permission definition is removed from the
system due to this operation, the system iterates over the
existing apps to readjust their granted permissions. The desired
outcome of this behavior is that all the undefined permissions
should be revoked to the remaining apps after an uninstallation
or an update. However, instead of immediately revoking an
undefined permission to the remaining apps, the system instead
revokes it only if a new permission with the same name is
being redeclared. Even though this initially seems unharmful
since the granted permission is rendered useless until it is
redefined, this behavior is what enables our attack. Once the
permission name is recycled by the introduction of a new
signature permission, due to the mismatch of signatures, the
system attempts to revoke this permission to the adversary;
however, it mistakenly only revokes install permissions and
fails to do so for runtime permissions. This, in turn, leaves
the undefined runtime permissions granted to the app. Since
Android utilizes only the names of permissions during permis-
sion enforcement, it cannot differentiate between two distinct
permissions with the same declared name. Hence, the app
holding a “dormant” dangerous permission gains unauthorized
access to components protected with a signature permission
with the same name. Evidently, this violates a key security
principle that should always hold in the Android permission
model: there should be no unauthorized component access.

Note that again the framework developers seem to disregard
the peculiarities and corner cases created by custom permis-
sions. Currently, a third-party app cannot define a custom
permission using the name of an existing system permission.
It was, however, possible for them to use the name of a new
system permission that were to be defined in the next version of
the OS, to hijack the system permissions [32]. Google’s fix to
this security vulnerability was that the system would always
take the ownership of permissions defined by itself; hence,
spoofing attacks on system permissions should not succeed
anymore as the platform is treated as the main principal to

define/remove system permissions under any circumstance.
However, a similar approach cannot be applied to custom
permissions as the system cannot make a decision regarding
the ownership of a permission between two apps that define the
same custom permission. Hence, we not only need to identify
whether a permission is system or custom, but in the latter
case, we also need a way to identify its origin and treat it as
a different permission in case there are other permissions with
the same name. It is worth noting that whether a permission
is custom or system cannot be determined solely based on its
name as even custom permissions can currently use system
prefixes (e.g. android.permission) and system apps can
create permissions with any name without being forced to use
a system prefix (e.g., browser permissions).

V. CUSPER

System permissions are defined by the platform—a privi-
leged principal—whereas custom permissions are defined by
apps—less privileged principals. The former kind typically
protects system resources while the latter is utilized to protect
inter-component communication between apps. The fact that
the system treats them the same, results in severe security
vulnerabilities as the ones we discovered (Section IV). Note
that other vulnerabilities might also exist or might manifest
in the future because of this non-separation between the two
classes of permissions. Ideally, we need a new design which
will allow us to achieve a clean separation of trust between
the system and custom permissions. This way, the system
will have to handle the two cases differently avoiding logic
errors and at the same time, any potential vulnerabilities in
third party app custom permissions will not allow privilege
escalation, which can enable exploits of system permissions
and platform resources. However, such a new design needs
to be carefully constructed to be practical. In fact, it needs
to be as simple as possible to be adopted in practice, and
backward compatible. A complete redesign of the Android
permission model would require non-trivial modifications to
the Android framework while thousands of apps relying on
custom permission would be immediately affected. Instead,
in our work, we introduce two main design principles which
can easily be incorporated into the current design of Android
permissions, require no changes to the existing apps, and
can guarantee a separation of trust eliminating the threat
of privilege escalation in permissions, without breaking the
operation of system and third-party components that rely on
permissions. These design principles are: (a) decoupling of
system and custom permissions; (b) new naming scheme for
custom permissions. We implement these in our system that
we call Cusper.

A. Isolating System from Custom Permissions

Currently, Android does not maintain distinct representa-
tions for system and custom permissions, that is, the system
does not track whether a permission originated from the system
or from a third-party app. Due to this reason, both types of
permissions are also granted and enforced in the same fashion.
As we have shown in Section IV, this is problematic as it
allows apps to use custom permissions to gain unauthorized
access to system permissions. For example, a malicious app
can declare a custom permission and assign it to a system

6



permission group. This behavior is allowed by Android since it
does not differentiate between the two permission types. Thus,
when the custom permission is granted, the app automatically
gains access to the system permissions in the same group,
essentially elevating its privileges from a permission defined
by a low trust principal to permissions defined by the platform.
In our system, we never allow custom permissions to share
groups with system permissions. Additionally, the fact that
Android internally treats all permissions the same way is an
important limitation with security repercussions: platform de-
velopers tend to overlook the existence of custom permissions
when handling permissions. The custom permission upgrade
attack is an example of that. To overcome this, in our system,
system and custom permissions have distinct representations
in the platform. By doing this, we can differentiate between
the two types of permissions during granting as well as
enforcement and apply different strategies depending on the
type of permissions.

Implementation. In order to decouple the two permission
kinds, one could create separate object representations and
data structures. This would require a complete redesign of
the Android permission implementation throughout the An-
droid framework which we think is impractical. Alternatively
one could use existing fields in the current permission rep-
resentation in Android which can give us information on
the source of a permission. BasePermission class has a
sourcePackage field that indicates the originating pack-
age of a permission. For system permissions defined in the
platform manifest, this field is set to android, for system
permissions defined in system packages, it usually starts with
com.android, and for custom permissions it is the package
name of the defining third-party app. However, the package
name itself cannot be used to identify whether a package
is system or third-party, as there are already system apps
with package names not starting with com.android (e.g.,
browser) and even third-party apps can have package names
starting with the system prefixes (com.android etc.). Hence,
sourcePackage is not a reliable identifier of whether a
permission is custom or system.

Instead, a both practical and robust approach, would be
to extend the object representation of a permission with
an additional member variable, indicating whether this per-
mission is a custom permission. In Cusper, we imple-
ment this by augmenting the BasePermission and the
PackageParser.Permission classes. The value of the
new variable is assigned when an app’s manifest is parsed
(PackageParser.java) during installation or upgrade. If
the app under investigation is untrusted (as indicated by its
non-platform signature), we mark its permissions as custom.
When parsing an untrusted app’s manifest, we further check
whether the app developer assigned a custom permission
to a system permission group. In this case, we ignore the
assignment, which results in the permission having no group.
Moreover, if the app declares a custom permission group,
we ensure it does not use a system permission group prefix
(android.permission-group). In essence, we thwart
the vulnerability while ensuring that even if future vulnerabili-
ties manifest, there will be no escalation to system permissions.

After doing this, we can now track the creation of custom
permissions by third-party apps. In order to particularly thwart

the Custom Permission Upgrade, when a custom permission—
which we can now effectively and efficiently differentiate
from system permissions—is created with the protection level
normal or signature (i.e., install permission), we simply set the
FLAG PERMISSION REVOKE ON UPGRADE flag so that
the permission will not be granted automatically if it is later
updated to be a dangerous (runtime) permission.

B. Naming Conventions for Custom Permissions

Android allows third-party apps from different developers
to declare permissions with the same name. The current
solution is to never allow two permission declarations with
the same name to exist on the device. While this sounds
effective, it is unfortunately unable to stop the second attack
we demonstrated: a definer app A declares a permission and
another app B gets the permission granted. When the first
app A is uninstalled and a victim app C comes in declaring
and using the same permission to protect its components, it is
vulnerable to confused deputy attacks from app B. We solve
this problem by introducing an internal naming convention:
we enforce that all custom permission names are internally
prefixed with the source id of the app that declares it. Note
that we do not expect app developers to change their practices.
Custom permissions are still declared with their original names
in the manifest files of apps to allow backward compatibility.
However, in our system, the custom permission names are
translated to source id : permission name. Thus,
even if permission revocation such as in the above attack
scenario fails, the attack will be rendered ineffective. This
is because, as far as our system is concerned, the granted
permission to app B will be an entirely different permission
than the one app C uses to protect its components.

Choosing the appropriate source id is not straightforward.
Consider for example using an app’s package name as the
source id. This introduces two main problems. First,
repackaged apps distributed on third-party application markets
could use the package name of an app distributed on Google
Play. Thus, the repackaged app could take the role of the
definer attack app (see Section IV) and instigate a confused
deputy attack. This is possible since the repackaged app and
the victim app share the same package name and a permission
created by the repackaged app cannot be distinguished from the
one created by the victim if they share the same permission
name.Second, using the package name as the source id
might break the utility of signature custom permissions
for some use cases. For example, developers that have a
set of applications which utilize each other’s components,
commonly use signature permissions to protect the components
of their apps from others. Since the installation order cannot
be determined in advance, each app in the set has to declare
the same permission (i.e., same name and protection level) in
their manifest to make sure this permission will be created
in the system. If permissions are prefixed with their declarer
app’s package name, then the system will treat them as
different permissions. Therefore, any attempted interaction will
be wrongfully blocked.

In Cusper, we instead use the app’s signature as the source
id to prefix permission names. In the case of a repackaged app,
assuming the malicious developer does not possess the private
keys of the victim app developer, the declared permission will

7



be a different permission in the system than the victim’s de-
clared permission. Moreover, utility is preserved since custom
permissions with the signature level will be treated as the same
permission as long as they come from the same developer,
which is exactly the purpose. Note that the same scheme can
also be utilized for permission tree names.

Lastly, the official suggestion to Android app developers
which declare custom permissions, is to use names that follow
the reverse domain name paradigm (similar to the one for
package names). However, Android does not enforce this
naming convention. Even though it will ignore a permission
declaration with the exact same name as an existing permis-
sion, it allows third-party apps to use a system permission
name prefix (e.g., android.permission) in their custom
permission declarations. Since permission names and groups
are currently the only information the system has regarding
the intention and source of the permission, this treatment is at
the very least hazardous. In Cusper, we address this naturally
as we add prefixes to permission names and never allow a
custom permission to use a name prefix reserved for system
permissions. Since we decouple the two types, we can now
identify the type and origin of permissions, and readily enforce
this rule. To maintain backward compatibility and ensure that
the custom and system permission names are distinct, we also
ignore system permission names for custom permissions (as
the original system currently does).

Implementation. To thwart custom permission spoofing at-
tacks of any sort (including our Confused Deputy attack), apart
from distinguishing between custom and system permissions,
we further need a way to track the origin of custom permissions
and uniquely identify them in the system. Towards this end,
we implement a naming convention for custom permissions in
Cusper. Our implementation consists primarily of a permission
name translation operation to prefix the permission names
with their source id to ensure uniqueness in the system.
This translation happens during installation and update for the
names of the declared custom permissions and requested install
time permissions, and at runtime for dangerous permissions
and the permissions used to protect components (guards).

At the time of installation, we allow the system to parse
declared custom permission names from an untrusted app’s
manifest; however, we translate their names to be prefixed
with the hash of their app’s signature before the actual
permission is created in the system. In the case an app is
signed with multiple keys, we sort the hashes of the keys
and concatenate them. Note that one could attempt to perform
the translation in place. For example, it could perform the
translation while parsing a permission name from the manifest.
However, at that point, the app’s certificates are not yet
collected. Doing so would incur non-negligible overhead since
it involves a number of file opening and reading operations
(PackageParser.collectCertificates()). Instead,
we keep the parsed data unaltered until after the certificate
collection normally happens. Then, we scan the package’s
meta-data to perform the necessary translations. Our approach
resulted in great performance savings which keep Cusper’s per-
formance comparable to the original system (see Section VII).

Similarly, we first proceed to translate the names of the
requested permissions during installation or update. This is

done to correctly grant install time permissions (i.e., normal
and signature). Note that a requested permission might not
necessarily exist in the system at this time and therefore the
permission name translation cannot happen. For example, an
app that declares the permission might be installed at a later
point in time. Since the declared permission will be translated,
it will essentially be treated as a different permission than the
one requested, violating application developers’ expectations.
This is not a problem with install time permissions: the permis-
sion correctly will not be granted as its definition does not exist
on the system at the time of installation, which is on a par with
the behavior of the original Android OS. In the case of danger-
ous permissions which are granted by the user at runtime, we
need to dynamically check for existing declared permissions.
Therefore, we perform a requested permission translation at
runtime. In particular, when a dangerous permission is to
be displayed to the user, we perform a scan on all declared
permissions to find a custom permission with the same suffix
as the requested permission. In our implementation, we do not
allow declaration of custom permissions with the same name
which ensures that the scan will result in only one possible
permission. This is also the current design of Android which
does not allow two apps to declare the same permission. Note,
however, that since we prefix custom permissions, one could
extend our system to allow multiple apps to use the same
custom permission names. In case of an app requesting that
permission, we could readily resolve the conflict if one of the
declarers has the same signature. If all declarer apps come from
different developers, a mechanism similar to Intent filters could
be utilized to allow the user to select the appropriate declarer
app.

It is worth noting that one could alternatively create a sep-
arate hash map for custom permissions (e.g., key-value pairs
of (suffix, prefix)) to avoid the linear scan for suffix lookup.
However, this hash map would need to be kept consistent
with the original hash map for all declared permissions in the
system (e.g., tracking addition/removal of permissions), which
is hard to achieve since there are multiple places throughout
the Android source code where this in-memory data structure
is updated or sometimes even constructed from scratch from
files in persistent storage. Hence, for the sake of consistency
and not breaking utility, we prefer the linear scan method and
do not change the structure of the in-memory data types for
permissions. As we will show in our evaluation in section VII,
this method does not result in any significant overhead.

Finally, as for permissions that are used to protect app com-
ponents (guards), their name translation takes place at runtime
during enforcement since a guard might not necessarily exist
in the system at the time of installation.

VI. ANDROID PERMISSIONS ALLOY MODEL

As a part of the software development process, to verify
that a piece of software meets the requirements, it is common
practice in industry to rely only on software testing and not
provide formal proofs of program correctness for the under-
lying model as formal verification is highly time consuming,
difficult and expensive. However, we argue that fundamental
components like a permission system are naturally worth more
effort as any failure in such components can make way for
critical security vulnerabilities or even render the security of

8



the whole system ineffective. Additionally, numerous security
bug reports on similar issues present further proof that the
current testing methodologies for Android permissions are not
completely effective and a better way of proving program
correctness is necessary. Hence, in this section, we focus on
providing a formal model of Android (runtime) permissions
and a formal proof for the correctness of our design for Cusper.

Formal verification allows us to systematically reason about
our design of Cusper by covering many cases that would
otherwise be difficult to investigate with static analysis or
testing. This is not to say software testing is unnecessary
when a formal correctness proof is provided. In fact, we
still need software testing to verify that our implementation
conforms to our proposed model (which is formally verified
to be correct). On the other hand, “formal verification re-
duces the problem of confidence in program correctness to
the problem of confidence in specification correctness” [16].
In other words, verification is performed not on the actual
implementation but on a representation that is as close to
the original implementation as possible. This is because it is
challenging to perform formal verification at a scale required
by source code, especially at the huge scale of the Android
source code. Progress in the area does exist towards this for
other programming languages [27], but such approaches are
typically employed at the time of development, where the
developer is required to annotate the code. This would be
infeasible in our case where a large portion of the Android
source code is already written. Additionally, correctness is
proved only with respect to a set of fundamental properties that
were defined based on the specification. There is no guarantee
the system will behave correctly under any condition that was
not a part of the defined properties or in case of redesigns
of the system that might invalidate the model assumptions.
Hence, the state of the art formal verification is not a silver
bullet but still a best effort technique for proving correctness.

To analyze the security of Android permissions, previous
work proposed formal models that correspond to the older
Android versions which supported only install-time permis-
sions [20], [21], [29]. Unfortunately, no such model exists
for Android’s currently-adopted runtime permissions. Hence,
we build the first formal model of the Android runtime
permissions and use it to verify the correctness of Cusper.
This allows us to investigate Cusper under many cases such as
all possible installation orders and app declarations. Note that
having such a formal model has other benefits; for example,
security researchers can use it to verify other properties of
their interest on the runtime permission model. We based our
model on the Alloy implementation of [20] as Alloy is a high-
level specification language that is easy to interpret. However,
we spend a significant amount of effort to extend this model
to conform to the official specification for the new runtime
permissions [4]. We analyze the security of the model through
an automated analysis and show that when it is augmented with
the design of Cusper, the fundamental security properties that
were originally violated are satisfied. Our main contributions
to the existing formal analysis on Android permissions can be
summarized as follows:

• We updated the definitions of permission-related data
abstractions in the model to comply with the new
definitions of the runtime permission model.

• We significantly updated the permission granting
scheme to comply with the complex granting scheme
of the runtime model specification (e.g., permissions
can be granted as either install or runtime).

• We implemented permission groups and permission
granting on a group basis for dangerous permissions
according to the runtime permission model.

• We enabled apps to dynamically change their manifest
declarations and introduced an app update mechanism
(apps could not be updated in the previous model).

• We identified and fixed the bugs in the existing model
(e.g., missing signature checks for permissions).

• We demonstrated the existence of the aforementioned
custom permission vulnerabilities in the model.

• We implemented our defense, Cusper, in the model to
thwart these vulnerabilities and showed that Cusper
satisfies the fundamental security properties.

We only model the parts of Android that concern permissions
(e.g., permission-related data abstractions and operations) as it
would be infeasible to model all of Android due to its large
scope and complexity. Additionally, due to space limitations,
we will be only be presenting the parts of our model that are
key to understanding the general operation of the model or that
significantly differ from the previous model. As for the actual
Alloy implementation, we will present only a small part of
it in this section. but the full implementation can be found
in [17]. Our model can be dissected into three main parts:
1) abstractions related to permissions, device architecture, and
applications on Android, 2) system operations that concern
permissions, and 3) fundamental security properties to verify
the correct behavior of the model.

A. Abstractions

In this section, we present the abstractions in our model that
correspond to the representations of permissions, applications
and devices on Android.

Permissions. Our Permission abstraction is on a par with
what we described in Section II: each permission is associated
with a name, a source package to indicate the defining package
name, a protection level, and at most one permission group.
Listing 2 presents the Alloy implementation for permissions,
protection levels and permission group abstractions.

Applications and Components. Each Application on
Android has a unique package name, a signature used by the
developer to sign the app, and a target SDK level. Additionally,
each app can comprise of several components, defined by the
set Component, where a component can be one of the four
Android components. Each component can be protected with
a permission that we call guard. Furthermore, an application
itself can have a guard to protect all of its components.
Component guard takes precedence over the application guard
in case they both exist. Each application can define a set of
custom permissions and request a set of permissions.

In order to keep track of the permissions that are granted
to apps, each app is associated with a permissionsState
field that consists of a set of PermissionData objects
which carry system flags and state information (e.g., whether
a permission is granted as runtime or install time) regarding

9



each permission granted to the app at any time. This concept
of “stateful” permissions is one of the major representation
differences between the runtime and the install time models.

In order to implement an app update mechanism, we need
to allow apps to dynamically change the declarations in their
manifest file. To achieve this, we associate the fields that
require to be mutable with an object from the totally-ordered
set of Time in order to allow pairing of the fields with different
values at different time steps. Obviously, package name and
the signature should be immutable since these are the unique
identifiers for apps and developers. The ability to dynamically
change declarations is another important feature we introduce
in our model, as this gives us the ability to update Android
apps that are already installed on a given device. Listing 3
demonstrates the application-related abstractions in Alloy.

Device. Each Device comes with a set of built-in system
permissions and a set of custom permissions defined by third-
party apps. We also include a platform signature in our device
representation to correctly perform signature checks when
granting signature permissions defined by the system. Listing 4
illustrates the device abstraction in Alloy.

B. System Behavior

In this section, we describe the main system operations
(i.e., Alloy predicates) that deal with Android permissions.
By carefully investigating the Android source code, we have
observed that most of these critical operations have either
undergone a significant amount of change or been recently
introduced with the runtime permission model. Specifically,
apart from the significant change in abstractions, main oper-
ations such as install, uninstall and update now all require
a scan over all the other existing applications to properly
adjust their permissions whenever there is a change in the set
of permissions (e.g., removal of a permission). Additionally,
Android’s permission granting scheme changed drastically
with the introduction of runtime permissions. We aim to reflect
all of these changes in our formal model. It is important to note
that the order of statements in the presented predicates do not
affect their correct operation since Alloy is a declarative (rather
than imperative) language.

Grant Permissions. In contrast with the install permission

Listing 2: Permissions and permission groups in the model
1 sig Permission {
2 name : PermName,
3 protectionLevel : ProtectionLevel,
4 sourcePackage : PackageName,
5 permGroup : lone PermGroupName// if perm belongs to

group
6 }
7

8 abstract sig ProtectionLevel {}
9 one sig Normal, Dangerous, Signature extends

ProtectionLevel {}
10

11 sig PermissionGroup {
12 name : PermGroupName,
13 perms : Permission -> Time // set of changing perms
14 }

Listing 3: Applications and components in the model
1 sig Application {
2 packageName : PackageName,
3 signature : AppSignature,
4 declaredPerms : Permission -> Time, // custom

permissions
5 usesPerms : PermName -> Time, // requested permissions
6 guard : lone PermName, // protects all components
7 components : set Component,
8 targetSDK : Int -> Time,
9 // carries info regarding granted perms

10 permissionsState : PermissionData -> Time
11 }
12 abstract sig Component { // def. shortened for brevity
13 app : Application,
14 guard : lone PermName, // protects only this component
15 }
16 sig PermissionData {
17 perm : Permission,
18 flags : Flags,
19 isRuntime : Bool // runtime or install permission
20 }

Listing 4: An Android Device in the model
1 one sig Device {
2 apps : Application -> Time,
3 builtinPerms : set Permission, // system permissions
4 customPerms : Permission -> Time, // custom permissions
5 platformPackageName : one PackageName,
6 platformSignature : AppSignature,
7 builtinPermGroups : set PermissionGroup // system

groups
8 }

model where permissions can be granted only at installation,
in the runtime permission model, depending on the protection
level and the app’s target SDK level, permissions can be
granted as either install or runtime permissions. Permissions
with protection level normal and signature are always granted
as install permissions, whereas for dangerous permissions, the
behavior changes based on the target SDK level of the app
being installed.

Table III shows the cases that can happen for when
granting permissions. Each case will add/remove “stateful”
permission objects for this app. As explained in IV, we
observed implementation flaws in this part of the Android
source code which make the aforementioned attacks possible
and we mirrored the same erroneous behavior in our Alloy
predicate for granting permissions (grantPermissions).
For example, when denying “dangling” permissions to apps,
we skip to revoke runtime permissions and only revoke install
permissions as it is currently implemented in Android. Also,
when a custom permission is updated from normal to danger-

TABLE III: Cases of grantPermissions. (∗ Precondition: Permission
should exist as an install permission. † Deny if no other case matches.)

Grant Permission Cases Protection Level SDK Level Grant As
Grant install Normal Any Install
Grant install Signature Any Install
Grant legacy install Dangerous <23 Install
Grant upgrade∗ Dangerous >=23 Runtime
Grant runtime Dangerous >=23 Runtime
Deny † - - -

10



Listing 5: Granting permissions in the Alloy model
1 pred grantPermissions[app : Application, t, t’ : Time] {
2 all pname : app.usesPerms.t’ |
3 pname in (Device.builtinPerms +

Device.customPerms.t’).name =⇒
4 (let p = findPermissionByName[pname, t’] {
5 p.protectionLevel = Normal // Case GRANT_INSTALL

(normal)
6 =⇒ grantInstallCase[p, app, t, t’]
7 else // Case GRANT_INSTALL (signature)
8 p.protectionLevel = Signature and
9 (verifySignatureForCustomPermission[p, app, t’]

or
10 verifySignatureForBuiltinPermission[p, app])
11 =⇒ grantInstallCase[p, app, t, t’]
12 // . . . other cases (grant runtime etc.)
13 else // Case GRANT_DENY (deny permission)
14 no pd : PermissionData | pd.perm.name = pname

and pd in app.permissionsState.t’
15 })
16 else //permission doesnt exist, evoke (wrongfully

only install perms)
17 let pd = getPermissionData[pname, app, t]{
18 hasPermissionData[pname, app, t]
19 and pd.isRuntime = True
20 and pd.perm.protectionLevel = Dangerous
21 =⇒ pd in app.permissionsState.t’
22 else
23 no pd : PermissionData | pd.perm.name = pname

and pd in app.permissionsState.t’
24 }
25 // make sure app cannot be granted unrequested

permission
26 no pd : app.permissionsState.t’ |
27 pd.perm.name not in app.usesPerms.t’
28 }

ous protection level, we treat this as an app SDK update—
just as Android mistakenly does—and automatically grant
the dangerous permission without user’s consent. Note that
our final formal model corrects these and other problematic
issues according to Cusper’s design. Listing 5 illustrates this
operation; an example to how an individual case are handled
can be found in Listing 10 in Appendix.

Installation. As a precondition to the install operation,
the app being installed should not exist on the device and the
list of apps after the operation is completed should consist
strictly of all the apps before installation augmented by the
new app. As a result of installation, custom permissions of
this app will be added to the device. Just as it is currently
handled in Android, our Alloy predicate for installation does
not allow an app to declare a custom permission which has the
same name as an existing permission on the device. Custom
permissions that are declared to be part of system permission
groups also get added to the respective groups. Finally, the
permissions requested by the app will be granted to the app
without affecting the permissions granted to other apps, that
is “stateful” permission objects should not change.

Uninstallation. The uninstall operation removes an ex-
isting app and its custom permissions from the device and it
readjusts the permissions granted to other apps in case there is
a change in the set of custom permissions. In order to achieve
this, grantPermissions is executed for all the apps on
the device to reassign permissions and make sure that apps

Listing 6: Uninstall operation in the Alloy model
1 pred uninstall[t, t’ : Time, app : Application] {
2 app in Device.apps.t // precondition
3 // remove app from list
4 Device.apps.t’ = Device.apps.t - app
5 // remove custom perms defined by app
6 Device.customPerms.t’ = Device.customPerms.t -

app.declaredPerms.t
7 all a : Application - app | grantPermissions[a, t, t’]
8 // remove permissions from permission groups
9 all pg : Device.builtinPermGroups, p : Permission |

10 p in pg.perms.t and p not in app.declaredPerms.t’
11 =⇒ p in pg.perms.t’ else p not in pg.perms.t’
12 }

Listing 7: Update operation in the Alloy model
1 pred update[t, t’ : Time, app : Application] {
2 app in Device.apps.t // precondition
3 Device.apps.t’ = Device.apps.t
4 // 1. Fix custom permissions on the device
5 Device.customPerms.t’ =
6 Device.customPerms.t - app.declaredPerms.t +

app.declaredPerms.t’
7 // 2. Update all other apps if a perm is removed
8 anyPermissionRemoved[t, t’, app] =⇒

updatePermissions[Application - app, t, t’]
9 else

10 all a : Application - app | a.permissionsState.t’
= a.permissionsState.t

11 // 3. Regrant permissions for the current app
12 grantPermissions[app, t, t’]
13 // 4. Adjust permission groups
14 adjustPermissionGroups[app, t, t’]
15 }
16 pred updatePermissions[apps : set Application, t,t’ :

Time] {
17 all app : apps | grantPermissions[app, t, t’]
18 }

will be revoked the custom permissions of the removed app.
This is a new behavior introduced by Google as a response
to the previous bug reports regarding the issues with custom
permissions. Listing 6 demonstrates uninstallation in Alloy.

Update. We introduce the update operation in our model
since this operation is necessary to demonstrate the Custom
Permission Upgrade vulnerability. Similar to uninstall,
if a custom permission defined by this app is being re-
moved from the manifest file with the update, we in-
voke grantPermissions for all other apps on the
device in order to revoke this permission. Additionally,
grantPermissions is executed for the app being updated
to readjust its granted permissions, regardless of any change on
the set of permissions. Permission groups are also readjusted
such that the permissions removed from the app are also
removed from their respective permission groups and the
newly-added permissions are added to their respective groups.
Listing 7 demonstrates the update operation in Alloy.

C. Correctness of Cusper

In order to verify the correctness of a proposed model, one
needs to first compile a set of fundamental properties that need
to be satisfied by the model under all conditions. Then, we
need Alloy assertions, which are sanity checks to verify that
this model behaves as expected with respect to these properties.

11



All security properties that had to be satisfied by the
original Android permission model should also be satisfied by
Cusper. Here, we focus on the properties that were violated by
the original model. Our observation is that the new classes of
vulnerabilities we discussed in Section IV are made possible
because of the violation of two fundamental security properties
that should always hold on the Android runtime permission
model: 1) dangerous runtime permissions should never be
granted without user interaction, 2) there should never be an
unauthorized application component access. The first property
means that a dangerous permission should only be granted
with the user’s approval for when the app’s target API level
is equal to or more than 23. The second one suggests that an
app cannot access another app’s components if it does not have
the right permission for it. For example, if an app component
is being protected by a signature custom permission, only the
applications that possess the same signature as this app should
be able to access the component.

In order to verify our observation, we built Alloy assertions
of fundamental security properties and showed that the original
model indeed does not satisfy the two aforementioned proper-
ties as the Alloy analyzer is able to produce counterexamples
for both assertions indicating the violation of these properties.
These correspond to the attack instances we have previously
described. However, when the permission model is augmented
to describe Cusper, we show that all the security properties
are always satisfied, formally verifying the correctness of our
design.

VII. SYSTEM EVALUATION

In the previous section, we verify the correctness of the for-
mal model of Cusper which provides confidence regarding our
design decisions. Next, we want to generate evidence regarding
the practicality of Cusper’s respective system implementation.
Toward this end, we empirically evaluate our implementation
of Cusper on Android, with respect to (a) its ability to thwart
the specific attacks we presented and (b) its performance
overhead incurred in the affected Android operations.

Effectiveness. To evaluate the effectiveness of Cusper, we
carried out the two attacks we mentioned in Section IV on
Cusper-augmented Android and showed that both attacks fail.

First, we attempted the Custom Permission Upgrade attack
on Cusper-augmented Android and verified that the attack
could no longer succeed. The user is correctly being consulted
to grant the pemission by the system once a permission dec-
laration changes from a normal protection level to dangerous.
Moreover, we verified that a third-party app can neither assign
a custom permission in a system permission group, nor declare
a custom permission group using the system permission group
naming convention. At the same time, normal operations of
benign third-party and system apps are preserved.

With respect to the Confused Deputy attack, using the the
apps mentioned in Section III (i.e., Skype, CareZone) as well
as other real-world apps, we verified that the attack can no
longer succeed while again utility is preserved with Cusper.
We further tested that permission revocation happens correctly
when the declarer app is uninstalled. We also verified that
declared custom permissions are prefixed by a hash of the app

developer’s signature, and the same happens for the custom
permissions used to protect app components. Finally, we tested
that granting normal and signature permissions at installation
time, granting dangerous permissions at runtime, and using the
permissions to access protected app or system components,
happen correctly; hence, we do not break any utility.

Efficiency. In evaluating the performance of our system, we
focused on the operations affected by our modifications. These
include the app install operation, the app uninstall operation,
runtime (dangerous) permission granting, and permission en-
forcement. We did not include our evaluation for the app
update operation as its performance is similar to that of app
install. We use a Nexus 5 phone running Android 6.0 (android-
6.0.1 r77) for all our experiments. According to a previous
study, Android users have on average 95 apps [6] installed on
their devices. In addition, according to our prevalence study in
Section III, apps create one custom permission on average. In
order to evaluate Cusper under realistic conditions, we mimic
this average case in our experiments and make sure the device
contains 100 custom permissions along with all of the system
permissions.

In our app install and app uninstall experiments, we
used the Android Debug Bridge (adb) to install and unin-
stall an app of size 1.2 MB 100 times. The app de-
clares a custom permission, with protection-level
dangerous, uses the permission, and declares a ser-
vice which is protected by that permission. We instru-
mented the installPackageAsUser() method in the
PackageManagerService class to get the start time
of app installation. We got the end time at the point be-
fore the system broadcasts the ACTION PACKAGE ADDED
intent indicating the completion of the package installa-
tion. For app uninstallation, we instrumented the methods
deletePackage() and deletePackageX() to get the
start time and end time respectively. Figure 1a and Figure 1b
illustrate our results.

We compared our system with the unmodified Android
version (Android). During installation, our system performs
checks during parsing, performs the permission translation, and
handles the permission revocation. While parsing, it checks
and stores whether a permission definition is for a custom
permission and it enforces the permission group checks. Then,
it parses the in-memory meta-data of an app to perform a
custom permission translation. Nonetheless, as shown in our
evaluation, the performance overheads are indeed negligible:
there is no statistically significant deviation between Cusper
and the original version.

In addition, we evaluated the operation of granting a
dangerous permission at runtime. We used an app which
requests a custom permission previously defined in the system.
Note that this is a process which involves user interaction:
the system pops up a dialog box asking the user to grant
or deny the permission request. We automated this process
and ran this experiment 100 times. However, to avoid the
unpredictable temporal variable of user interaction, we do not
count the time between the display of the dialog box and the
time the dialog box is removed. Our evaluation instrumentation
is deployed in the GrantPermissionsActivity class.
Figure 1c summarizes our results. Evidently, Cusper does not

12



Android Cusper
1600

1700

1800

1900

2000

2100

2200

R
u

n
ti
m

e
 (

m
s
)

(a) App Install
Android Cusper

90

100

110

120

130

R
u

n
ti
m

e
 (

m
s
)

(b) App Uninstall
Android Cusper

4

6

8

10

12

14

R
u

n
ti
m

e
 (

m
s
)

(c) Grant Dangerous Permission

Fig. 1: Performance evaluation of Cusper for installation, uninstallation and runtime (dangerous) permission granting.

Android Cusper

20

40

60

80

100

120

R
un

tim
e 

(m
s)

(a) Activity

start Service stop Service

0

5

10

15

20
R

un
tim

e 
(m

s)

Android
Cusper

(b) Service

Android Cusper

35

40

45

50

55

60

R
un

tim
e 

(m
s)

(c) Broadcast Receiver

Android Cusper

35

40

45

50

55

60

R
un

tim
e 

(m
s)

(d) Content Provider

Fig. 2: Performance evaluation of Cusper for component access.

incur any distinctive overhead.

Finally, we evaluated the performance of permission en-
forcement for custom permissions. For this case, we show per-
formance results for accessing permission-protected app com-
ponents of all kinds (i.e., activity, service, broadcast receiver,
and content provider) in Figure 2. As can be seen, Cusper
indeed incurs negligible overhead for all types of component
invocation operations that require permission checks.

In summary, our modifications to the Android system are
shown to have no perceivable performance overhead while they
greatly strengthen the security of the Android OS.

VIII. RELATED WORK

Previous work investigated Android Permissions and IPC
security from many different perspectives.

IPC security on Android. Previous work has shown ways
of exploiting IPC on Android to acquire unauthorized access
to resources. In [26], the authors discuss the permission re-
delegation problem where an unprivileged app can access sys-
tem resources through a privileged app via IPC. Additionally,
[23] shows ways of exploiting the Intent mechanism to send
or receive Intents in an unauthorized manner and get access
to other app’s private resources.

Analysis of Android Permissions. Wei et al studied the
evolution of permissions across Android versions and showed
that the set of permissions on Android tends to grow with every
release [31]. Stowaway tool aims to detect if apps follow the
least privilege for permission requests [25]. Additionally, [20]
presents a formal analysis of Android permissions for older
Android versions (<6.0) in Alloy; whereas [21], [29] introduce
similar models in Coq.

Android Runtime Permissions. One of the early works on
runtime permissions shows the necessity of having revocable,

ask-on-first-use type permissions on Android, supported by
user studies [25]. [33] provides an initial analysis on the
runtime permission model and identifies several problems in
this model that might open up ways for exploits. In [24], the
authors analyze the undesirable side effects of switching to
runtime permissions and introduce a tool called RevDroid that
aims to identify these problems in apps. DP-transform provides
a tool which helps developers adapt to the runtime model by
automatically introducing the permission requests required by
the model into the application code [22].

Android Custom Permissions. Although previous work has
studied Android permissions, there is little work done specifi-
cally regarding Android custom permissions.The blog post in
[9] discusses how the ”first one wins” approach for custom
permission definitions can create problems. Shin et al presents
a viable attack on custom permissions by exploiting the naming
convention problem of custom permissions [30], to which
Google responded with bug fixes. In [28], the authors discuss
how permissions can stay dormant on the Android platform,
later to be revived by the installation of a permission definer
app, and demonstrate attacks on custom permissions via the
exploitation of this undesirable property.

IX. CONCLUSION

In this work, we investigate the Android runtime per-
mission model and identify design flaws in custom permis-
sions that can open up ways for adversaries to escalate their
privileges to obtain unauthorized access to app components
and platform resources. In order to systematically fix these
flaws, we propose a defense mechanism, Cusper, that provides
separation of trust between system and custom permissions and
introduces an internal naming convention for custom permis-
sions to effectively track their origins. To show the correctness
of our approach, we first construct a formal model of the
Android runtime permission model using Alloy specification

13



Listing 8: New permission representation according to Cusper
1 sig Permission {
2 name : PermName,
3 protectionLevel : ProtectionLevel,
4 sourcePackage : PackageName,
5 isCustomPermission : Bool, // new field for Cusper
6 permGroup : lone PermGroupName,
7 sourceId : AppSignature // new field for Cusper
8 }

language and formally prove the existence of the vulnerabil-
ities in this model. Then, we leverage this formal model to
show that Cusper satisfies the fundamental security properties
that were previously violated due to the custom permission
vulnerabilities. Our evaluation of Cusper on Android shows
that Cusper effectively fixes the existing vulnerabilities while
inducing minimal overhead.

Acknowledgments. This work was supported in part by NSF
CNS grants 15-13939, and 13-30491. The views expressed are
those of the authors only.

APPENDIX
A. Implementation of Cusper in Alloy

In our formal model, we update the representation of
permissions in order to reflect our design decisions. First, we
add a boolean field to our Permission Alloy signature to
indicate whether a permission is custom or system. Then, we
also add a source id field, which will be used during permission
enforcement to uniquely identify permissions. Here, we use
app signature and not the hash of it for our formal model
for simplicity. Updated permission abstraction can be seen in
Listing 8.

For app and component guards, Cusper performs name
translation at runtime during enforcement. Listing 9 represents
the component invocation operation and the predicate in line 8
illustrates how permission enforcement is done according to
Cusper. Whenever a component is being invoked, we retrieve
the name of corresponding app or component permission,
perform a lookup operation to find the corresponding Cusper
name (see line 11). In addition, we update how we perform
enforcement, so that when the system checks whether a calling
app has the permission required to invoke a component, it will
use both the permission name and the source id (see line 14).

Furthermore, we utilize the boolean custom
permission indicator field to correctly set the
FLAG PERMISSION REVOKE ON UPGRADE flag as
shown in line 25 of Listing 10, which illustrates how
grantInstall case is handled.

B. Other discovered attacks

In addition to the attacks we discussed in Section IV, we
also discovered another attack on Android custom permissions
that utilizes the lack of naming conventions for permissions to
launch attacks on benign apps [14].

As described in Section II, custom permissions can also be
created dynamically via the Android APIs. In this attack, the
adversary spoofs the dynamic custom permissions of the vic-
tim. This attack is currently reproducible only on older versions

Listing 9: Component invocation with Cusper
1 pred invoke[t, t’ : Time, caller, callee : Component]{
2 caller.app + callee.app in Device.apps.t
3 canCall[caller, callee, t]
4 noChanges[t, t’]
5 }
6

7 // Permission enforcement in the model according to
Cusper

8 pred canCall[caller, callee : Component, t : Time] {
9 let pname = guardedBy[callee],

10 // name translation during enforcement for
components

11 source = getSourceId[callee, t],
12 pd = getPermissionData[pname, caller.app, t] {
13 pname in pd.perm.name
14 source in pd.perm.sourceId
15 }
16 }
17

18 // Return name of the permission protecting component
19 fun guardedBy : Component -> PermName {
20 {c : Component, p : Name |
21 // component-specific permission takes priority

over the app-wide permission
22 (p = c.guard.name) or (no c.guard and p =

c.app.guard.name)
23 }
24 }
25

26 // Guard names are translated during enforcement
27 fun getSourceId[c : Component, t : Time] : one

AppSignature {
28 {p : AppSignature |
29 (p = findPermissionByName[c.guard.name,

t].sourceId) or
30 (no c.guard and p =

findPermissionByName[c.app.guard.name,
t].sourceId)

31 }
32 }
33

34 // No changes in device and granted permissions
35 pred noChanges[t, t’ : Time] {
36 Device.customPerms.t’ = Device.customPerms.t
37 Device.apps.t’ = Device.apps.t
38 all a : Application | a.permissionsState.t’ =

a.permissionsState.t
39 }

of (<6) due to some other issues in the new versions. Since
we focused on modeling the new versions of Android and did
not find strong evidence for the use of dynamic permissions by
third-party developers as of now, we did not address this attack
in our work. However, we believe it is worth presenting here as
it demonstrates the extent of custom permission vulnerabilities
and provides further proof that Android custom permissions
are problematic at their current stage.

• Steps to Produce the Attack. In order to carry out the dynamic
custom permission attack, the adversary builds an app that
statically declares a custom permission that the victim app is
planning to dynamically create via the addPermission()
API method, which requires the static declaration of a permis-
sion tree with a specific domain name by the victim. The attack
can work only if the installation of the attack app is performed
before the victim app has an opportunity to dynamically create
the permission of interest. After this, the attack app can gain
unfettered access to signature protected components of the

14



Listing 10: Grant install case for grantPermissions predicate
1 pred grantInstallCase[p : Permission, app : Application,

t, t’ : Time] {
2 hasRuntimePermission[p, app, t]
3 =⇒ revokeRuntimePermission[p, app, t, t’]
4 grantInstallPermission[p, app, t, t’]
5 // no runtime permission should exist for this

permission
6 no pd : app.permissionsState.t’ |
7 pd.perm = p and pd.isRuntime = True
8 }
9

10 pred hasRuntimePermission[p : Permission, app :

Application, t : Time] {
11 one pd : app.permissionsState.t |
12 pd.perm.name = p.name and pd.isRuntime = True
13 }
14

15 pred revokeRuntimePermission[p : Permission, app :

Application, t, t’ : Time] {
16 no pd : app.permissionsState.t’ |
17 pd.perm.name = p.name and pd.isRuntime = True
18 }
19

20 pred grantInstallPermission[p : Permission, app :

Application, t, t’ : Time] {
21 one pd : app.permissionsState.t’ |
22 pd.perm = p and pd.isRuntime = False
23 // Cusper fix : clear the flag to disallow

automatic upgrade to runtime for custom
permissions

24 p.isCustomPermission = False =⇒
clearPermFlags[pd, t’]

25 else setPermFlags[pd, t’]
26 }
27

28 pred clearPermFlags[pd : PermissionData, t : Time] {
29 pd.flags.FLAG_PERMISSION_REVOKE_ON_UPGRADE = False
30 // clear other flags. . .
31 }
32

33 pred setPermFlags[pd : PermissionData, t : Time] {
34 pd.flags.FLAG_PERMISSION_REVOKE_ON_UPGRADE = True
35 // set other flags. . .
36 }

victim app, while the victim will not be able to dynamically
create its own custom permission anymore since it is already
defined in the system.

• Internals of the Attack. Android does not seem to perform
any checks on the availability of the permission names for
statically defined custom permissions against the permission
tree names on the device. In other words, an app can still
statically declare a custom permission with the domain name
of a permission tree declared by another app, even though the
operation would fail if the app tried to declare this permission
dynamically (i.e., throws SecurityException stating the
tree belongs to another app). Same kind of name translation
approach we presented in Cusper can be used for the names
of permission trees to resolve this problem.

As we mentioned, this attack works only on older
Android versions (<6.0) since the new versions require
MANAGE USERS or CREATE USERS permissions for the
addPermission() API to properly work even though this
behavior is not documented in the Android developer guides.
We believe this itself might be an undesired behavior that
was introduced by the system developers while implementing

possibly the multi-user framework in Android; hence, if this
implementation is changed, the dynamic custom permission
spoofing vulnerability should emerge on Android 6.0 and
onward.

REFERENCES

[1] “Alloy: A language and tool for relational models.” http://alloy.mit.edu.
[2] “Android : Requesting permissions,” https://tinyurl.com/y8gp4dn6.
[3] “Android dashboard,” https://tinyurl.com/qfquw3s.
[4] “Android permissions.” https://tinyurl.com/y863owbb.
[5] “Android plugin application,” https://tinyurl.com/ycfd9pot.
[6] “Android users have an average of 95 apps installed on their phones,

according to yahoo aviate data,” https://tinyurl.com/ybc7dqbn.
[7] “Apktool decompiler,” http://ibotpeaches.github.io/Apktool/.
[8] “Creating apps with plugin architecture,” https://tinyurl.com/ydfdk9z7.
[9] “Custom permission vulnerabilities.” https://tinyurl.com/y7yoae52.

[10] “Dex2jar.” https://github.com/pxb1988/dex2jar.
[11] “Google cloud messaging,” https://tinyurl.com/ybocrrqw.
[12] “Jd-gui.” http://jd.benow.ca/.
[13] “Privilege escalation by exploiting fcfs property of custom permissions,”

https://issuetracker.google.com/issues/37131935.
[14] “Privilege escalation by exploiting permission trees and dynamic custom

permissions,” https://issuetracker.google.com/issues/37324008.
[15] “Privilege escalation through custom permission update,” https://

issuetracker.google.com/issues/37130844.
[16] “Program correctness, the specification,” https://tinyurl.com/y8r8cze8.
[17] “Resolving the predicament of android custom permissions,” https://

sites.google.com/view/cusper-custom-permissions/home.
[18] “Upload applications to appaloosa,” https://tinyurl.com/y94pb3cv.
[19] “Yoga guru,” https://tinyurl.com/yb3dqopp.
[20] H. Bagheri, E. Kang, S. Malek, and D. Jackson, “Detection of design

flaws in the android permission protocol through bounded verification,”
in International Symposium on Formal Methods, 2015.

[21] G. Betarte, J. Campo, C. Luna, and A. Romano, “Verifying android’s
permission model,” in Theoretical Aspects of Computing, 2015.

[22] D. Bogdanas, N. Nelson, and D. Dig, “Analysis and transformations in
support of android privacy,” Tech. Rep., 2016.

[23] E. Chin, A. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in MobiSys, 2011.

[24] Z. Fang, W. Han, D. Li, Z. Guo, D. Guo, X. Wang, Z. Qian, and
H. Chen, “revdroid: code analysis of the side effects after dynamic
permission revocation of android apps,” in Asia CCS, 2016.

[25] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in CCS, 2011.

[26] A. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: and defenses.” in USENIX Security, 2011.

[27] K. Leino, “Dafny: An automatic program verifier for functional cor-
rectness,” in Logic for Programming AI and Reasoning, 2010.

[28] J. Sellwood and J. Crampton, “Sleeping android: The danger of dormant
permissions,” in SPSM, 2013.

[29] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A formal model
to analyze the permission authorization and enforcement in the android
framework,” in SocialCom, 2010.

[30] W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A small
but non-negligible flaw in the android permission scheme,” in POLICY,
2010.

[31] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evolution
in the android ecosystem,” in ACSAC, 2012.

[32] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your
android, elevating my malware: Privilege escalation through mobile os
updating,” in IEEE Security and Privacy, 2014.

[33] Y. Zhauniarovich and O. Gadyatskaya, “Small changes, big changes:
an updated view on the android permission system,” in RAID, 2016.

15

http://alloy.mit.edu
https://tinyurl.com/y8gp4dn6
https://tinyurl.com/qfquw3s
https://tinyurl.com/y863owbb
https://tinyurl.com/ycfd9pot
https://tinyurl.com/ybc7dqbn
http://ibotpeaches.github.io/Apktool/
https://tinyurl.com/ydfdk9z7
https://tinyurl.com/y7yoae52
https://github.com/pxb1988/dex2jar
https://tinyurl.com/ybocrrqw
http://jd.benow.ca/
https://issuetracker.google.com/issues/37131935
https://issuetracker.google.com/issues/37324008
https://issuetracker.google.com/issues/37130844
https://issuetracker.google.com/issues/37130844
https://tinyurl.com/y8r8cze8
https://sites.google.com/view/cusper-custom-permissions/home
https://sites.google.com/view/cusper-custom-permissions/home
https://tinyurl.com/y94pb3cv
https://tinyurl.com/yb3dqopp

	Introduction
	Background
	Android Permissions
	Inter-Component Communication
	Formal Verification via Alloy

	Use of Custom Permissions
	Prevalence
	Case Studies

	Attacks
	Custom Permission Upgrade Attack
	Confused Deputy Attack

	Cusper
	Isolating System from Custom Permissions
	Naming Conventions for Custom Permissions

	Android Permissions Alloy Model
	Abstractions
	System Behavior
	Correctness of Cusper

	System Evaluation
	Related Work
	Conclusion
	Appendix
	Implementation of Cusper in Alloy
	Other discovered attacks

	References

