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Abstract—Android allows developers to build apps with app
installation functionality themselves with minimal restriction and
support like any other functionalities. Given the critical impor-
tance of app installation, the security implications of the approach
can be significant. This paper reports the first systematic study on
this issue, focusing on the security guarantees of different steps
of the App Installation Transaction (AIT). We demonstrate the
serious consequences of leaving AIT development to individual
developers: most installers (e.g., Amazon AppStore, DTIgnite,
Baidu) are riddled with various security-critical loopholes, which
can be exploited by attackers to silently install any apps, ac-
quiring dangerous-level permissions or even unauthorized access
to system resources. Surprisingly, vulnerabilities were found in
all steps of AIT. The attacks we present, dubbed Ghost Installer
Attack (GIA), are found to pose a realistic threat to Android
ecosystem. Further, we developed both a user-app-level and a
system-level defense that are innovative and practical.

I. INTRODUCTION

Android dominated the mobile operating system (OS)
market with an 87.6% share in the second quarter of 2016 [4].
The strength of Android is its open-source nature, which
enables convenient customizations and adaption to different
needs. However, with the blessing from its flexibility and
decentralized management, comes the curse of fragmentation
and confusion, which can have significant security impacts. No
standards are available to control the security qualities of the
system apps pre-installed by different device manufacturers
and carriers, and no guidelines are available to inform the
app developers precisely what the OS can protect and what
should be taken care of by the developers themselves. Even
for services as critical as app installation, all Android provides
are nothing more than nuts and bolts (i.e., AOSP Download
Manager, Package Manager) and on top of them, the develop-
ers and device manufacturers are supposed to build up their
own services. The security implications of this treatment can be
significant, which however has never been investigated before.

Security risks in app installation. On Android, an app can be
installed or updated programmatically, with or without human
interventions. More specifically, consider app installation as
a transaction. At the center of it is an installer app (app
with installation capability: e.g., appstore app) either with or
without the INSTALL_PACKAGES permission. In the former
case, the installer app installs an apps silently (without user
interaction) by directly invoking the Package Manager Service
(PMS), whereas in the latter case the installer app presents a
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consent dialog to get user’s approval by invoking the system’s
Package Installer Activity (PIA) before app installation. Either
way, the installer goes through four steps to complete the
transaction: (1) it gets an installation request; (2) it downloads
a new app itself or through the Download Manager (DM) to the
SD-Card or internal storage; (3) it invokes the PMS or PIA for
installation; (4) the PMS or PIA installs the new app. Note that
DM, PMS and PIA are the building blocks Android provides to
the app developers; all other design and implementation details
of the app installation transaction (AIT) are left in their hands.

This treatment is in line with Android’s design philoso-
phy, which fosters diversity with minimal restrictions from
the framework end. However, for critical functionalities like
app installation, one may question the decision to leave the
design and implementation to the 3rd party app developers.
If something goes wrong, the consequences could be serious,
impacting not only the app itself but the whole system. For
example, a vulnerable installer app could be exploited to install
a malicious app or even a problematic system app to access
sensitive user resources or even gain system privileges.

Ghost installer attacks. Our scrutiny of the app installation
transaction (AIT) and popular installers reveals that almost all
AlTs are vulnerable and can be exploited, and every step of
the AIT contains security-critical weaknesses. At the first step
of AIT, we found a vulnerability in Amazon AppStore (2nd
most popular Android appstore [18]) that allows a malicious
app in the same device to command the AppStore to install
or uninstall any apps. A more generic threat that affects all
appstore apps is the redirect Intent attack: when an appstore
app receives a request to display an app for installation, a
malicious app in the background can change the app being
displayed to a different app. Also, a vulnerability we found
in Android DM allows a malicious app to damage, redirect,
acquire the file or even deny an app installation.

Most interestingly, we found that except Google Play,
most apps (including Amazon, Qihoo360, etc) utilized the
SD-Card to temporarily hold the APK file to be installed.
Although most installers have put effort to secure the SD-Card
based installation (e.g., integrity verification of APK files),
by defeating them, we show that building such protection is
actually non-trivial: we demonstrate the Time of Check to Time
of Use (TOCTOU) vulnerability in all installers using the SD-
Card, in which the malicious app can effectively identify the
time window between the integrity check and the installation to
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replace the APK files. The impacts of the attack are significant,
enabling the adversary to leverage the installer apps with to
silently install any third-party apps including system apps.

We successfully implemented all the exploits (demos [8]),
dubbed Ghost Installer Attack (GIA), and demonstrated their
significant impacts. Particularly, by exploiting Digital Turbine
Ignite (DT Ignite), an app used by 30+ world’s leading carriers
(Verizon, AT&T, T-Mobile, Vodafone, Singtel, etc) [12] to
push apps to their customers, GIA was shown to be capable
of affecting hundreds of millions of users world-wide.

Defense against GIAs. We propose two solutions that address
GIAs in SD-Card based installation without requiring the
developers to use the internal-storage. One approach modifies
the FUSE daemon, a wrapper of raw storage devices, to set
the APK files to read-only but writable only by its owner
as they are downloaded. The other approach only requires an
unprivileged app, which detects an installation event, collects
the signature of an app’s certificate before it can be replaced
and later verifies it against the app installed. Further we
developed a set of system solutions to address the security risks
caused by the redirect Intents. All new protection mechanisms
have been evaluated, found to work effectively and efficiently
against GIAs, incurring negligible performance impact.

Contributions. The contributions are outlined as follows:

e Systematic study on App installation. We conducted the
first systematic study on the app installation process on An-
droid and discovered significant security risks never known
before. Our research demonstrates that every step of the
installation transaction contains security-critical flaws that can
be exploited, opening the door to serious security breaches
(installing unwanted apps, privilege escalation, etc.) with
devastating consequences. The impacts of our findings are
significant, affecting majority of installer apps, most Android
devices in the market and hundreds of millions of Android
users. Most importantly, our study points to the problem in
Android’s design philosophy, highlighting the need to identify
the functionality with system-wide impacts and ensure that
it is securely designed and released to the public as a fully-
developed service.

e New protection. With deep understanding of GIA threat, we
present a set of lightweight and effective defense strategies that
are non-trivial as we achieve it with minimal modification on
Android. Our system-level protection can be built into systems
without undermining the strategic decisions (using SD-Card)
of appstore app developers. The user-level defense app can
protect users even when they are using insecure installer apps.

II. BACKGROUND

Nuts and bolts. Android apps can be installed in two ways:
either through an app with the INSTALL_PACKAGES permis-
sion or the PackageInstallerActivity class. In the
former case, an app granted with the permission can silently
install new apps by calling the installPackage method
of the PackageManager class. Such an app typically also
has the DELETE_PACKAGES permission to silently uninstall
apps. Due to the critical functionalities of the permissions,
their protection-level are signatureOrSystem, which is
the highest that can be assigned to a permission. The latter
approach, utilized by less privileged apps, prompts a consent
dialogue to users to get approval for installation.
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Fig. 1: App Installation Transaction (AIT) steps

Note that protection-level signatureOrSystem per-
missions such as INSTALL_PACKAGES and DELETE_PACK
AGES are only granted to apps that are part of the system
image or signed with the phone’s platform key. Hence, parties
capable of pre-installing apps to the system image or control-
ling the phone’s platform key are given the privilege to grant
those permissions with responsibility. Examples of the parties
here include phone manufacturers, carriers, etc. However as
shown in Section IV, surprisingly, 10% of the pre-installed
apps were granted with the INSTALL_PACKAGES permis-
sion. Throughout the paper, we show the serious consequences
that can be caused by such permission abuse.

App Installation Transaction. As shown in Figure 1, a typical
transaction includes AIT Invocation, APK Download,
Installation trigger and APK Install. More
specifically, an AIT starts with an Intent delivered or a set
of user interactions that trigger the whole transaction, which
is followed by the download of the target_apk (the APK file
to be installed) and its related meta-data, such as a hash of the
binary file for verification. This step can be performed through
Android Download Manager or also be self-implemented.
Once the download is completed, an Intent or an API can
be used to launch the installation process, through the PIA or
PMS. Finally, the PMS or PIA installs the app, interacting with
the user (e.g., consent dialog) when necessary.

As mentioned earlier, AITs are implemented by different
app developers, based on the nuts and bolts (e.g., permission,
PMS, PIA, etc.) provided by Android. As a result, design
and components of each AIT can vary (see Figure 1). Also
the detailed execution of AITs are actually quite diverse: e.g.,
some apps are first installed from appstores and then updated
from their developers’ sites; some pre-installed apps silently
install other apps and others are side-loaded by users. With
such diversity, it becomes less clear whether these AITs are
indeed implemented in a safe way.

Understanding SD-Card usage of 3rd party appstores.
Storage selection in Android is much subtler than it appears to
be. To install an app, developers need to temporarily save the
app file (.apk) either to the internal storage or the SD-Card.
An obvious option seems to be the internal storage since it is
more secure (by default, apps can only access its own folder)
while folders in the SD-Card are exposed to any app that has
the WRITE_EXTERNAL_STORAGE permission. Surprisingly,
however, besides Google Play, as shown in Section IV, most
3rd party appstore apps including Amazon appstore and Qi-
hoo360 (a renowned security company with a revenue of 1.8
Billion USD in 2015) choose the SD-Card even if the appstore
owners have to put additional protection in place to ensure



the integrity during the app install process. Examples of such
protection include: 1) elimination of the permission consent
dialog to ensure that the APK file cannot be modified when
the user is viewing the consent (e.g., the Amazon appstore app
installed on Galaxy S6 Verizon), 2) APK file name randomiza-
tion to prevent the attacker from locating the file and replacing
it, 3) hash verification of APK file after download, 4) use of
the Android API installPackageWithVerification
for integrity check, 5) DRM in Amazon appstore apps (Sec-
tion III) and others. With such effort, the prevalence (97.1%
of pre-installed apps, 83.7% of Google Play apps) of these
potentially vulnerable installers (Section IV) still becomes a
serious concern. In our research, we investigated the rationale
behind this insecure storage choice. Apparently, the driving
force here is the need to be compatible with low-end phones.

Installing apps through internal storage takes twice the
internal storage space compared to using the SD-Card: 1)
space for installing the app and 2) that for temporarily storing
the APK file until installation is finished. Due to such space
requirement, app installation fails when devices have insuffi-
cient internal storage left; low-end devices with small internal
space has a higher chance to suffer from such problem. For ex-
ample, if the Amazon appstore used the internal storage to in-
stall Gabriel-Knight-Sins-Fathers-Anniversary
(1.6GB [2]), the attempt would not succeed on a Galaxy J5
(the 8GB model with only 2.5GB left for third party apps). Ac-
tually, the low-end devices with small internal memory (4GB
or 8GB) are popular' as much as the flagship devices; during
the first half of year 2016, 13 million Galaxy J2 (8GB) and
11.8 million Galaxy S7 (flagship device from Samsung) were
sold [19]. Also, in Feb 2016, Gartner reported that basic and
lower-end devices will account for two-thirds of smartphone
sales by 2019 [7]. Most importantly, low-end device users are
only left with a fraction of internal storage because system
memory and pre-installed apps also takes space.

Under such circumstances, compatibility with low-end
devices becomes important to appstores, which are consis-
tently under the competitions from their peers. An exception
here is Google Play, which is not only dominating the app
market but also is pre-installed on most devices. During our
study, we found APKPure, an interesting appstore that became
popular (Alexa Ranking as of Aug 14, 2016: Global:2,674,
India:895 [1]) by just providing Google Play apps so that
users can install them through the SD-Card; APKPure has
been recommended to those who are suffering from limited
internal storage [15]. This gives us a reason to believe that 3rd
party appstores and users may prefer to leverage the SD-Card
to increase the chance of successful installations, even though
its security risks are well-known.

Understanding SD-Card usage of ordinary developers.
Interestingly, most (83.7%, see Section IV) apps from Google
Play also use the SD-Card for app installation. While appstore
app owners have some protection in place to secure the SD-
Card based installation, ordinary app developers may choose
the SD-Card due to the simplicity of implementation and the
lack of proper secure programming training. To install an
APK using internal storage, the access-control permission of
the APK’s file needs to be set to global readable. Otherwise,
PackageManager cannot read it. Searching the error caused

130 devices with 4GB and 78 with 8GB are sold at bestbuy.com
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TABLE I: Summary of AIT problems

Section Attack Name AIT steps [Step No]
32 Hijacking Installation Installation Trigger(3]
32 Hijacking Installation APK Install[4]
33 Exploiting DM APK Download|2]
3.4 Attacking Installer Interfaces | AIT Invocation[1]

by this read failure on stackoverflow, multiple answers suggest
storing the APK to the SD-Card instead. However, while this
will allow PackageManager to access the APK, it will
also enable any app with the WRITE_EXTERNAL_STORAGE
permission to tamper with the file. The tendency of developers
to apply suggestions from websites without understanding the
potential risks has created severe security issues before [33].

III.

In this Section, we elaborate our analysis on real-world AIT
implementations, which has led to the discovery of unexpected,
security-critical vulnerabilities throughout different AIT steps.
The consequences are serious: we show that a malicious app,
with very limited privilege (discussed later), can install any
apps, gaining any dangerous level permissions without user’s
consent and even access to system resources. The problem
affects hundreds of device models and hundreds of millions of
Android users worldwide (Section IV).

GHOST INSTALLER ATTACKS

A. Overview

Surprisingly, every AIT step turns out to be vulnerable:
AIT invocation (Step 1) is subject to code injection and
redirect Intent attacks (Section III-D), APK download (Step
2) is under a threat aiming at a subtle weakness within the
AOSP download manager (Section III-C), installation trigger
(Step 3) of most popular app stores (e.g., Amazon, Xiaomi,
Baidu) and pre-installed apps (e.g., DTIgnite) are all exposed
to a TOCTOU attack that swaps the packages to be installed
(Section III-B) and APK install (Step 4) is also vulnerable
due to the way the PMS and PIA verify target_apk. The rest
of the section is presented by following the complexity of the
problems: Step 3, 4, 2 and 1 (See Table I).

Adversary model. We consider an adversary that places
a malicious app on a user’s device, which is a common
requirement for Android-based attacks [27, 22, 37, 42]. For
some targets (Section III-B), the malicious app requires
WRITE_EXTERNAL_STORAGE permission, a common per-
mission used by many apps (see Section IV). From Android
4.4, private storage directory on /sdcard is supported.
However, such directories are not actually private and are
writable by any app with WRITE_EXTERNAL_STORAGE
permission [5]. Note that even with the advent of the runtime
permission request model introduced on Android 6.0, granting
this permission can be made unnoticeable to the user: the WR
ITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORA
GE permissions belong to the same permission group, i.e.
STORAGE; if an app requests a permission in the group with
an already granted permission, the requested new permission
will be given silently by the system [13]. So, the adversary
can request one of the permissions in the STORAGE group
for a legitimate purpose and then silently acquire the others.

B. Hijacking Installation (AIT Step 3 and 4)

Most app installers (for app stores) today use the external
storage to install apps (new apps or updates). More specifically,
the installer initiates the AIT by downloading the target_apk



and metadata (e.g. the hash of the apk) from its server and
storing it to the SD-Card. After verifying the hash of the
package, APIs are called or Intents are sent by the installer
to invoke the PMS or PIA to install the target_apk. The
use of the SD-Card is considered necessary for most apps,
including almost all major appstore apps (e.g., Amazon, Baidu,
etc.) except manufacturers like Google and Samsung. The
manufacturers can always pre-install their apps on the devices
they control, while the third-party installers are under peer
pressure and need to make use of every bit of storage available
to install or update their apps on their customers’ devices. This
becomes particularly important when the installer is designed
to work on the devices with different internal storage sizes,
including those with very small space (see Section II).

TOCTOU exploit. External storage is well known to be
insecure, readable and writable by the app with READ_EXTER
NAL_STORAGE and WRITE_EXTERNAL_STORAGE permis-
sions. However, an attack on the storage to tamper with
the installation process is more complicated than it ap-
pears to be. Specifically, system app developers and app-
store owners are well aware of the security risks and they
perform integrity checks to ensure that packages are not
improperly modified before installation. A direct attempt to
replace the files downloaded will be defeated if it does
not happen within the right time window (right after the
integrity check and before installation). Actually, some in-
stallers have already made an effort to minimize such time
window. Particularly, Amazon and Xiaomi appstores call the
PackageManager.installPackage API immediately
after the hash verification is completed. Also, Amazon ran-
domizes the names of the packages downloaded to avoid
being identified by an attacker. To safeguard the installation
process, Android also provides a hidden APl PackageMan
ager.installPackageWithVerification (AIT Step
4) for the PMS to verify the integrity of an app’s manifest
(AndroidManifest.xml) provided by the installer.

In spite of such protection, our research shows that a
TOCTOU attack replacing a target_apk with a malicious one
can still be reliably executed. Particularly, any app with the
above SD-Card permission can use the FileObserver class
to monitor the file access events under a given directory.
Even though some appstores randomize the names of the
packages to be installed, the directory path turns out to be less
convenient to change, given the practice that many appstores
pre-download some apps the phone user might want to install
in the future on her SD-Card and the difficulty in managing
random directories for all these apps on the card. Actually,
even when this indeed happens, the attack app can simply keep
track of all such directories and find the right targets under the
directories according to their types. In our study, we found that
the attacker, with nothing but the SD-Card permission, can
register with the FileObserver and can be notified with
file-access events such as CREATE, ACCESS, CLOSE_WRITE
and CLOSE_NOWRITE. As a result, it can catch the window
based on how files under the directory are used.

Specifically, our attack app waits until the target_apk is
created and its integrity check is done and then substitute a
malicious APK for the file. Completion of the file download
can be easily known by observing the CLOSE_WRITE event.
A bit tricky here is to detect the integrity check. Different
appstores may read from the file different number of times,
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depending on the implementation of the check. The strategy
used in our attack is to analyze the target appstore beforehand,
figuring out its access pattern. For example, for the Amazon
app, as soon as 7 CLOSE_NOWRITE events are observed right
after the completion of the download, we know that the check
is done and it is time to do the replacement; for Qihoo360,
we found that 3 CLOSE_NOWRITE events need to be seen
before the attack can be executed. This approach was very
effective, enabling us to successfully attack most appstores and
the updating process of popular apps.

Note that FileObserver is by no means the only
channel for capturing the attack window. Even when it is
closed (e.g., requiring new permissions to monitor events),
there are other ways to determine the timings for the attack.
For example, we can determine whether the target_apk is fully
downloaded by looking for the presence of its end of central
directory record located at the end of the file, and then wait
for a short period of time, as measured beforehand on the
device of the same model, before start replacing the file (by
moving a pre-stored file to the directory). In practice, this
simple “wait-and-see” strategy works very well. Note that even
when the window is missed and the corrupted file is detected,
many appstores and apps re-download the target_apk, a process
transparent to the user, which enables the attacker to try again.

Once the target_apk is replaced, only protection left is the
manifest verification which is done by PMS during installation.
This defense can be circumvented by a malicious app utilizing
the original app’s manifest, which typically happens in app
repackaging. Following we present few attacks on popular
appstores and apps.

Attack on DTIgnite (Step 3). DTIgnite is a pre-installed
system app used by major carriers (Verizon, T-Mobile, etc.) to
push (post-sale) bloatware to their customers (Section IV). For
this purpose, it is capable of silently installing apps on Android
devices. The APKs of such apps are stored on the external
storage (/sdcard/DTIgnite) by the DM and verified
against their hash values before installation. In our research,
we successfully attacked DTIgnite using our attack app (with
only SD-Card permission) through both the FileObserver
monitoring and the “wait-and-see” strategy (by waiting for 2
seconds after download) on Galaxy S6 Edge (Verizon). Given
that the system app is used by over 20 carriers, the attack
affects hundreds of millions of Android users (Section 1V).

Attacks on Appstore apps (Step 3). Amazon, Xiaomi and
Baidu are popular Android application stores, which have been
pre-installed on a large number of devices. For example, Ama-
zon app (com.amazon.venezia) routinely appears on Android
phones with Verizon and USCellular (see Section IV). All
these appstores utilize the same approach as DTIgnite to install
an app, except that they immediately activate the PMS once
the download and the integrity check are complete. However,
the protection does not work at all in the presence of the
FileObserver monitoring: our attacker successfully caught
the attack window after observing 7 CLOSE_NOWRITE events
for Amazon and 1 for Xiaomi and 2 for Baidu. Alternatively,
we found that Amazon and Baidu can be attacked in the
same way as DTIgnite, with the only difference that the
replacement needs to be done 500ms after the download is
completed. For Xiaomi appstore, its download completion can
be easily identified from the installer’s behavior that changes



the temporary name of the target_apk to its official name.

Appstore apps can also be side-loaded by users as a non-
system app. In this case, unless the appstore app is signed by
the platform key, the app installation goes through the PIA,
which pops up a user consent dialogue during installation
with the target_apk’s package name and package icon. This
protection is defeated in our study by embedding within the
malicious APK (for replacing the target_apk) the original app’s
name and icon. Note that the target_apk replacement time
window can be detected using the same FileObserver
approach as above. Like installation of a new app, updating
existing apps can also be attacked in the same way.

Attack on new Amazon appstore (Step 4). Of particular
interest here is the upgrade of the Amazon appstore from May
7th, 2015 to version—17.0000.893.3C_64 7000010. This ver-
sion includes protection under the installPackageWith
Verification API (AIT Step 4), which takes the path
of target_apk and the checksum of target_apk’s manifest
(AndroidManifest.xml) as a parameter and verifies the check-
sum before installation within the PMS, and Digital Right
Management (DRM) features that self-check whether it has
been tampered with. All such protection is defeated in our
research through repackaging an Amazon app with attack code,
removing its DRM code but keeping its manifest. Note that this
version has two hash verification protection in place, one done
by Amazon appstore itself and the other by the PMS.

Attack on PIA (Step 4). To prevent the target_apk from being
replaced while the permission consent dialogue is displayed to
the user, the PIA records the hash checksum of the target_apk’s
manifest before the consent dialogue and verifies it prior to
installation. However, as we can see, this measure cannot
defend against the attack on Step 3, since the windows between
the integrity check and the follow-up step can still be reliably
captured. Actually, the protection does not even work on Step
4, which it was designed to secure: what the adversary can
do is simply substituting a malicious APK for the original
one using the same manifest (e.g., a Phishing version of a
bank app) to completely defeat the defense. This vulnerability
demonstrates the complexity of AIT and the fact that designing
protection without fully understanding the root cause of the
problem cannot succeed. In Section V, we present a new
solution that is practical and effective.

Privilege escalation. Through unauthorized app installation,
our research further shows that the adversary can acquire
higher privileges, including system level privileges. Specifi-
cally, on Android, any apps signed with the manufacturer’s
platform key are given system permissions at the signature
protection level. By leveraging the way the platform key is
used in Android, we found that the adversary can silently
install system apps onto the user’s device, as elaborated below.

One way to gain a higher privilege is to deliberately install
a vulnerable system app signed with the same platform key
as the victim’s device and then exploit it after installation.
Since Android does not allow the existence of two apps with
the same package name, this can only be done in the absence
of the patched version of the vulnerable app, which is found
to be feasible in our research: due to the fragmentation of
Android, numerous devices of the same vendor are available
on the market, each with a different set of system apps. Most
importantly, those apps and many others in the Play store
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are all signed with a single platform key, which gives the
adversary a lot of attack opportunities. In our research, we ran
our malware that stealthily installed vulnerable Teamviewer
and later exploited it using the techniques reported by Check
Point [25] to gain system privileges.

Another path for privilege escalation is to exploit Hare
(Hanging Attribute Reference) permission. Hare permission
is a permission that is used to guard user resources but
has not been defined by any app on a device. The problem
has been found on popular Android devices by the prior
research [21]. Using GIAs an attacker can create a Hare
situation by deliberately installing a system app that uses a
permission undefined by any legitimate app on the device,
which enables the malware to grab the permission by defining
it. As a result, the attacker can utilize the permission to access
the resource it is not supposed to touch. In our research,
we successfully implemented this attack through installing
a Hare-creating system app (S-Voice and Link) on Galaxy
Note 3. The attack enables the malicious app to hijack
com.vlingo.midas.contacts.permission.READ,
com.vlingo.midas.contacts.permission.WRITE
permission and use them to steal the user’s contacts. The
scope and impact of the problem are discussed in Section IV.

C. Exploiting DM (AIT Step 2)

As mentioned earlier, at the center of the APK download
step is a download manager, which is typically the default
AOSP DM. To use the DM, an app provides the URL of
the target_apk and the destination file path as inputs, and
receives an ID from the DM to later retrieve the file and related
information or delete the file through the DM. During this
process, the DM enforces a set of security policies, binding
the requesting app’s package name to the ID and also to the
file path the app is authorized to access, further ensuring that
the path points to either the /sdcard or its cache folder.
However, we found in our research that the file path can
be symbolic, which brings in another TOCTOU risk. Note
that from Android’s perspective, symbolic paths have to be
supported, since they are extensively used, including the SD-
Card directory /sdcard. The problem is that this approach
also gives the adversary an opportunity to change the link,
pointing to a different directory after the check, if the access
control has not been well managed.

The attack. Indeed, our study shows that such an attack can
actually succeed on the Android’s DM. Specifically, we show
that our attack app was able to escalate its privilege by first
requesting the DM to download a file to a symbolic path A
pointing to an authorized location (e.g., somewhere on the SD-
Card) and once the download is completed (indicating that
the security check on A is done) re-mapping A to a different
physical path B where the app does not have the right to access
but the DM has. As a result, the attacker can acquire the DM’s
privilege to retrieve other apps’ files or even delete them.

We verified the vulnerability in Android 4.4 and 6.0. The
consequence of our attack is serious: our attack app was able
to delete any files the DM is allowed to remove, including
the DM’s database, which caused a denial-of-service attack
on Google Play; further, the attacker acquired any files the
DM had access to, including files the DM downloaded and
even the DM’s database. Interestingly in Android 6.0, the DM
actually checks the physical path of a symbolic link right



before processing an access request. However, there still exists
a gap between the check and the actual processing of the
request, which can be exploited to redirect the link to another
path. In our study, we ran a process that continuously changed
the mapping of the links, trying to capture the window. We
successfully attacked the DM as shown in our demo [8]. This
problem is serious because it enables a malicious app with no
permission to tamper with the files even in the internal storage
(considered to be secure).

The information leaked through this channel not only
informs the adversary an ongoing app installation operation,
which can be utilized to launch the hijacking attack mentioned
above (Section III-B), but also leads to the disclosure of other
sensitive information, including Android’s secret URL tokens
that might be used to gain unauthorized access to the Play
store, though its detailed use is kept secret by Google. Our
findings reported to Google are rated as a high-severity issue.
The issue has been fixed with our help.

D. Attacking Installer Interface (AIT Step 1)

At the AIT invocation step, an installer is activated by
an Intent that initiates the whole installation process. Our
research shows that even this simple boot-strapping step is
full of security risks, vulnerable to a redirect Intent attack on
the installer’s user interface (UI) and code injection through
its Intent processing interface. Specifically, an installer can
be invoked by another app (the AIT initiator) through an
Intent and its Ul can be directed by the Intent to the activity
displaying the app recommended by the initiator. The trouble,
as found in our research, is that a subsequent Intent sent
by a background app can cause a new Ul change before
the former can be perceived by the user. By exploiting this
weakness, the background malware can cheat the user into
installing a malicious app from the appstore. It is important
to note that this attack is different from the well-known Ul
Phishing attacks [28, 37] in which malware launches its own
fake activity to cover the foreground app’s UI; such an old
trick cannot cause the user to install a wrong app, since the
malware’s own fake activity cannot trigger any installation
transaction without the proper permission. On the other hand,
Redirect Intent attack leverages the victim app’s (Google Play
in our case) activity and does not require any fake activity.
Because of the difference, previously proposed protection
such as [22] does not work against our attack. Actually,
the weakness behind the new attack is fundamental, coming
from the design of Android’s ActivityManagerService,
which allows the background app to redirect the installer’s Ul
within a very short time frame (see our demo [8]) without
providing the Intent recipient (the installer here) the origin
of the redirection Intent. As a result, whenever the user is
redirected from an app she trusts, very likely she will also
trust the app it recommends, without knowing that the UI has
actually been stealthily changed to display a different app.

Further, we found that the implementations of some popu-
lar appstores’ Intent processing interfaces have not been well
thought out, missing proper authentication about the sender of
the Intent. Note that Android does not provide a mechanism
to let the Intent receiver find out the sender’s identity. The
consequence is that they could blindly act on the commands
included in the Intent, installing malicious apps or deleting
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legitimate apps on behalf of the adversary. Following we
describe the exploits we performed on popular appstore apps.

Redirect Intent attack. In our work, all appstore apps were
vulnerable to the redirect Intent attack. A prominent example is
Facebook app’s invocation of Google Play for installing Face-
book Messenger. Such an invocation, goes through Activi
tyManagerService that utilizes the parameters within the
Intent to direct Google Play to show the right UL The key to a
successful attack is the timing: the malware in the background
needs to know exactly when Facebook app sends the Intent to
Google Play. For this purpose, we utilized a side channel: the
malware continuously polls /proc/<pid>/oom_adj (zero
when the app is in the foreground) to monitor the victim app
(Facebook in this case). As soon as Facebook app leaves the
foreground and Google Play takes its place, the malware also
sends an Intent to Google Play, asking it to display a Facebook
Messenger looking like app. This transition is invisible to the
user, as demonstrated in our demo [8]. Note that this attack
requires the adversary to have knowledge of the legitimate app
that is requested to be installed (the Facebook Messenger app
in this case). This is needed for the adversary to prepare a
repackaged version or similarly looking version on Google
Play. As we show in Section IV, a large number of apps
redirect to predictable legitimate apps and thus are vulnerable
to the redirect Intent phishing attack.

Command injection. We found Amazon appstore app to be
vulnerable to command injection attacks because its public
activity com.amazon.venezia.Venezia receives other apps’ In-
tent for referring users to other apps. Specifically, the problem
is caused by Amazon’s MainActivity, whose WebView
component supports a Javascript-Java bridge which enables
Javascript services on Amazon cloud to run Java services on
a mobile device to perform app installation/uninstallation. The
problem is that the activity fails to authenticate the origin of
the Intent and check whether it includes Javascript code. As a
result, it blindly executes the commands activated by the script.
In our research, we ran a background app that sends an Intent
using single top mode, which ensures that Amazon app’s
activity would not be destroyed and recreated. As Amazon app
received the Intent, it ran the script within the message and
silently installed/uninstalled any app. We found that through
this approach, a malware can actually invoke any private
services of Amazon app, substantially escalating its privilege.

Further we discovered a security-critical problem in Xiaomi
appstore. The appstore utilizes a broadcast receiver to get mes-
sages pushed from the cloud, which can command it to install
or uninstall apps. However, the appstore never authenticates
the messages it receives. As a result, we were able to send
an Intent to the receiver, causing the appstore to silently
install an app we chose without being noticed by the user.
We broadcasted an Intent with a forged payload destined to
be captured by Xiaomi Appstore’s broadcast receiver. The
forged payload?, included the app id and package name of
the malicious app stored on Xiaomi appstore and due to
the absence of authentication the malicious app was silently
installed to the victim’s device.

2{" jsonContent™": n{utype" :"app", "appId":"xxx",
"packageName": "xxx"}"}



IV. MEASUREMENT

In this section, we report a large scale measurement study
to investigate the scope and magnitude of GIA threats.

A. Methodology and Data

Factory image and app collection. To understand the po-
tential security risks, which come from the prevalence of
INSTALL_PACKAGES within vulnerable pre-installed apps
and the management of platform keys, we crawled factory
images from Samsung-updates [16], official Xiaomi [20] and
Huawei [11]. We selected the images from Android 4.0.3 to
5.1, which covered 95.7% (as of Nov 2, 2015) of the devices
that visited Google Play [3]. Among those, we downloaded
1,239 Samsung images for 849 different device models, 382
Xiaomi images for 149 devices and 234 Huawei images for
135 devices. Such images include 231 distinct regional codes,
covering 79 countries and various carriers across the world.
From those factory images, we extracted 206,674 distinct
(based on md5) pre-installed apps, together with their sig-
natures (under their /META—-INF) and the certificates of the
platform keys within the images (from framework resources).
In addition, we analyzed top 13,500 free apps (with 12,750
unique ones) from Google Play (top 500 free apps from 27
categories) to understand the impacts of the GIA threats.
Furthermore, to find out how many apps in appstores are
signed by vendors’ platform keys, we extracted signatures from
1.2 million apps downloaded from 33 appstores, including
400,000 Google Play apps.

Finding potentially vulnerable installers. Finding poten-
tially vulnerable installers turns out to be more complicated
than it appears to be. A straight-forward solution, using an
information flow analysis to identify the use of insecure
external resources for installation®, does not work well in
practice, due to the complexity of the analysis. Specifically,
we tried to build a static tool upon Flowdroid [23] to find
out whether an installer is actually using the SD-Card to
install apps. However, the attempt failed on many apps due
to the limitations of Flowdroid. Among the 43 apps we
tested, 14% was stopped by incomplete Control-Flow Graphs,
another 14% failed because tainted data propagated through the
handlemessage (message) API that cannot be tracked
with the call graph provided by Flowdroid and 42% were dis-
rupted by the bugs in Flowdroid. Moreover, to cover different
implementation details of installers, we would need to consider
all channels each AIT modules can use to communicate with
others (Java reflection, Handler and etc.), which turns out to
be too complicated and unreliable for a measurement study.

To address the issue, we leveraged a unique observa-
tion discovered in our research: to install an APK us-
ing the internal storage (the secure option), the installer
needs to make the APK global-readable; otherwise
PackageManagerService will not have the permission
to access the APK to install it. Based on the observation,
we built a simple yet effective tool that quickly and accu-
rately identifies vulnerable installers. Specifically, our tool first
finds the APKSs including the installation API calls and the
WRITE_EXTERNAL_STORAGE permission. For this purpose,
it uses Apktool [6] to decompile APKs to search for "applic

3Note that simply checking the use of SD-Card is insufficient, since
installers may use both internal and external storage, in a safe way.
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TABLE II: Potentially vulnerable GooglePlay apps due to SD-Card usage

Type SD-Card Internal Storage
M (Potentially vulnerable apps) | (Potentially secure apps)
Excluding o
Unknown Apps 779/931 (83.7%) 152/931 (16.3%)
Including

779/1493 (52.2%) 152/1493 (10.2%)

Unknown Apps
TABLE III: Potentially vulnerable pre-installed apps due to SD-Card usage

Type SD-Card Internal Storage
yp (Potentially vulnerable apps) | (Potentially secure apps)
Excluding
Unknown Apps 102/105 (97.1%) 3/105 (2.86%)
Including

102/238 (42.9%) 3/238 (1.26%)

Unknown Apps

ation/vnd.android.package—-archive", the instal-
lation API code. Then, on those determined to be installers,
the tool checks whether they contain APIs for setting a
target_apk to global-readable. This is done by running
Soot [17] to transform dex code to jimple for retrieving
related APIs, including openFileOutput (filename, Co
ntext .MODE_WORLD _READABLE), setReadable (),
execution of chmod XXX /FilePath, setPosixFileP
ermissions () etc. Once located, the input variables of
these APIs are further analyzed through def-use-chain to
confirm that indeed right parameters are there (e.g., MODE_W
ORLD_READABLE). Based on the results of this analysis,
our tool automatically classifies apps into three categories:
(1) potentially vulnerable apps, which call installation APIs
and operate on /sdcard but do not set the target_apk
global-readable; (2) potentially secure apps, which do
not use /sdcard and also set the target_apk global-read
able; (3) unknown apps, all other installers.

Running this simple tool on 12,750 apps from Google Play,
1,493 had installation API calls. Among the 1,493 apps, 779
were classified as first category, 152 as second category and
562 as last category. We also analyzed 12,050 pre-installed
apps extracted from the selected 60 images (20 images from
Samsung, Xiaomi and Huawei which covers diverse device
models and versions). Removing the duplicate apps (based
on package name) left us 1613 apps; different devices from
the same manufacturer contains similar set of apps. Among
them 238 had installation API calls, 102 were classified as
first category, 3 as second category and 133 as last category.
By randomly sampling and manually analyzing (reading smali)
20 apps from each category, we confirmed that all apps in
“potentially vulnerable” category are vulnerable without false
positives. Similarly, Apps in “potentially secure” category were
secure without false negatives. Therefore, our measurement
based on those in the first category is conservative, including
only a subset of vulnerable installers.

To understand the impact of the redirect Intent threat
(Section III-D), we identified apps that redirect users to
Google Play by using either the URL* or scheme’. This was
done by inspecting the smali code of the apps for the URL or
the scheme. Note that this approach could miss dynamically
constructed links, which again makes our findings conservative
(the real impact can be even more significant).

B. Results

Pervasiveness of the SD-Card usage. Our study shows
that the apps vulnerable to the installation hijacking attack

“4“http://play.google.com/store/apps/details?id="
S“market://details?id=", “https://market.android.com/details?id="



TABLE IV: Number of fixed url or redirection scheme

# of hardcoded

url or scheme <=2 <=4 <=8

# apps 5.7% 1% 16.4% 18.3%
PP (723/12750) | (1405/12750)| (2090/12750) | (2337/12750)

12750: Top 500 apps from 27 categories of Google Play. Duplicates removed.

(Section III-B) are indeed pervasive, as illustrated in Table II.
Among the top 12,750 Google Play apps, 1,493 contain
installation related APIs, 83.7% of them were found to install
apps through the SD-Card and only 16.3% use the internal
storage. Even when we consider all the unknown apps to be
secure (which are certainly not), still 52.2% of the installer
apps appear vulnerable due to the way they use the SD-
Card for installation. Similarly, as shown in Table III, among
12,050 pre-installed apps, 238 contain installation related APIs,
97.1% of them use the SD-Card and only 2.86% (3 apps®)
use the internal storage. Furthermore, we found that 8,721 out
of 12,750 apps from Google Play and 5,864 out of 12,050
pre-installed apps require the WRITE_EXTERNAL_STORAGE
permission, the sufficient condition for hijacking installations,
which indicates that the bar for the attack is rather low.

Impact of vulnerable installers. Table V presents the impacts
of the vulnerable installer apps we discovered. As we see,
those apps impact hundreds of millions of users globally.
We further tested popular appstore apps (Baidu, Tencent,
Qiho0360, SlideMe) and found that all of them are vulnerable.

To understand the attack surface, we measured the number
of system apps with the INSTALL_PACKAGES permission.
Table VI presents the average number of system apps and
the ratio of them with the INSTALL_PACKAGES permission
per vendor. We see that nearly 10% of the system apps have
such privilege. Particularly, found in our study, the number of
the pre-installed apps with the permission has doubled in the
recent three years. Also, more recent flagship models such as
Galaxy 6 Edge Plus, Galaxy S6 from T-Mobile, Sprint, US
Cellular, Verizon, SK Telecom etc. have a tendency to include
more privileged apps (25-31) with the permission.

Usage of platform key. Surprisingly, from the 206,674 pre-
installed apps, we found that all three vendors (Samsung,
Huawei, Xiaomi) were using only one platform key to sign all
the device models they released. Each device of the vendors
have on average 142/68/84 (Samsung/Huawei/Xiaomi) apps
respectively and 884/301/216 apps in total signed by their cor-
responding platform key. Such signed apps are also distributed
through appstores. From the signatures of 1.2 million apps we
collected, 61/125/30 apps are signed with the key of Samsung,
Huawei and Xiaomi. The majority of them are MDM (Mobile
Device Management), remote support, VPN and backup apps.
Among them is teamviewer, a known vulnerable app [25].

Privilege escalation. To study the significance of privilege
escalation through Hare generation (Section III-B), we ex-
tracted the apps using the permissions that they themselves
fail to define from 10 Samsung images (version 4.4.4 to 5.1.1).
Note that these apps can still be secure if the permissions are
defined by authorized parties on the same device. On these
images alone, we found 178 such apps. The permissions used
in these apps were then searched across other 1,181 images,
which led to the discovery of 27,763 unique vulnerable cases
(where a system app using a permission can be installed on

63 secure apps: com.miui.tsmclientj, com.huawei.remoteassistant, com.sams
ung.android.spay (Samsung Pay)
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a factory image on which none defines that permission). On
average, each of these images has 23.5 vulnerable cases. As a
result, a malicious app on the device running such a vulnerable
image can install the Hare creating system app (signed with
the platform key) and define the missing permission to acquire
the resource the permission protects (such as user contacts).

Apps invoking Google Play. We further studied the apps that
redirect users to Google Play for installing new apps. In total,
84.7% of the top 12,750 apps on the Play store are redirecting
users with the fixed URL or scheme. As shown in Table IV,
among them, 723 contain just a single hard-coded URL or
scheme which makes them the easy and realistic targets for
the redirect Intent attack (Section III-D); there is no confusion
about which apps their redirections will lead to. (Impactful
redirection examples: Facebook—Facebook Messenger, Power
amp—Paid app, Tiny Flashlight + LED—Plugin app)

V. FIGHTING GIAS
A. Understanding the Problems

Some vulnerabilities in Section III have simple solutions,
while other harder ones require new techniques (Section V-B).

Flaws with quick fixes. Below we discuss the cause of each
problem with the solution we suggest.

e Amazon and Xiaomi appstore. The problem comes from
unauthorized execution of the malicious payload (Javascript)
within the Intent the appstore receives. The script then controls
sensitive private API that should not be exposed to the public.
The problem can be addressed by input sanitization, filtering
out malicious script code, and also limiting the capability of
the JSJAVA bridge. We have reported the issue to Amazon and
helped them to fix it. Meanwhile, Xiaomi appstore is vulnera-
ble because it exposes its BroadcastReceiver, which can
be fixed by protecting the receiver with a permission.

e AOSP DM. The fix is to ensure that the DM always checks
where a symbolic link points to whenever it has been used to
access resources. This problem, classified as a high severity
issue by Google, has been solved according to our report.

e Verification API . As mentioned earlier (Section III-B), Ama-
zon appstore and the PIA are using installPackageWith
Verification to verify the integrity of an app’s manifest
file before installing an app. This approach is insufficient, since
it can be defeated by a malware using the same manifest file
as the app being replaced. A better solution is to save the
signature of the app once it is downloaded and then verify
the signature during the app’s installation. This can ensure the
integrity of the app during the APK install stage (AIT Step 4),
as the original API was designed for (Section VIII).

Harder problems. The installation hijacking risk (Sec-
tion III-B) is caused by the use of the shared external storage.
The problem cannot be easily fixed by asking the app and
appstore developers to move the whole installation process to
the internal storage, as they need to make full use of the storage
to put their apps on the user’s device (Section III-B). Also
a large number of installer apps including various 3rd party
appstores in the wild still use the SD-Card (see Section IV).
Considering the openness of Android and the fact that they
even come from different countries with different policies, it
becomes unrealistic to expect them to shortly use the internal
storage. To provide Android users immediate protection, we



TABLE V: Impact of vulnerable pre-installed apps with INSTALL_PACKAGES permission.

Vulnerable app Affected devices

Affected carriers Affected vendors

Amazon appstore

Android devices from Verizon and US Cellular are affected. Samsung devices
from Verizon are affected; e.g., Galaxy S4, S5, S6, S6 edge, Note 3, Note 4.

Samsung, LG, HTC, Mo-

Verizon, US Cellular.
torola and more.

DTIgnite

200+ distinct device models. Devices shipped through the affected carriers
are impacted. (50+ million apps are already pushed to users device.) [12]

Vendors that release devices
through affected carriers.

30+ carriers worldwide including Verizon, T-
Mobile, AT&T and Vodafone.

Xiaomi appstore All Xiaomi devices

Carriers that release Xiaomi device - China

Mobile, China Telecom, China Unicom. Xiaomi.

Huawei appstore All Huawei devices

Carriers that release Huawei device - China

Mobile, China Telecom, China Unicom. Huawe.

SprintZone

smali code. We were not able to actually test the attack.

Android devices released from Sprint. note that we manually verified it from

Vendors that release devices

Sprint. through Sprint.

TABLE VI: Average number of system privileged apps and the ratio of the
apps with INSTALL_PACKAGES permission.

Samsung | Huawei | Xiaomi
Avg # of apps with 17.7/206 | 9.4/91.4 | 11.4/95.4
INSTALL_PACKAGES | (8.45%) |(10.32%) | (11.87%)

developed a suite new techniques that enable secure use of the
external storage for app installation (Section V-B).

Phishing through the redirect Intent attack (Section III-D)
is also an intricate problem fundamentally caused by the design
of Android, which enables a background app to send an Intent
to a foreground app, forcing it to change its activity (UI)
before it can display its current UI triggered by the preceding
Intent from a different app. In our research, we propose an
enhancement to Android, which enables the recipient of an
Intent to figure out the origin of the Intent, and a novel
mechanism to detect malicious Intents.

B. User-level Protection of AIT

We developed a user-level app, called DAPP, to defend
against the installation hijacking threat. This approach does not
change the operating system (OS) or the vulnerable app, but
provides the protection through a third-party app that can be
distributed through Google Play, which we plan to do. The idea
behind DAPP is simple: as soon as an APK is downloaded,
our app grabs its signature and compares the signature against
that of the package once it has been installed by the PMS to
detect the replacement attack. Further, DAPP can identify any
file access operations on the SD-Card that may lead to the
compromise of target_apk before the completion of its instal-
lation. The app is activated through the startForeground
API, leaving a notification in the Android Notification Center.
This protects it from being terminated by a malicious app with
the KILL_BACKGROUND_PROCESSES permission.

Covering the attack window. At the center of DAPP is
a situation-awareness module that captures file-access events
on the SD-Card. This is done through the FileObserver,
which reports the completion of target_apk download using the
CLOSE_WRITE event. Note that attacker, also using this event
(Section III-B), needs to wait until the checksum verification
completes, whereas DAPP grabs the signature as soon as the
APK is downloaded. The completion of the APK installation is
found from the PACKAGE_INSTALL and PACKAGE_ADDED
Intent broadcasted by the OS.

Finding race conditions. Also any attempt to replace tar-
get_apk will be announced by FileObserver and therefore
discovered by our app, which protects the installers that do
not check the integrity of target_apk after the download (note
that leading installers like DTIgnite, Amazon, Xiaomi and etc.
perform integrity check).

Specifically, the attempt to move a file to replace tar-
get_apk is exposed by the MOVED_TO event. Deleting the
APK and copying the replacement here can be detected from
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the DELETE (which happens immediately after the download)
and CLOSE_WRITE events. Even a more subtle trick, opening
the target_apk and gradually modifying the content (imitating
the download process) triggers the OPEN and CLOSE_WRITE
events. DAPP considers any CLOSE_WRITE that happens
shortly after target_apk download completion to be suspicious.

C. System Level Protection

In addition to the user-level approach, we also developed
a system-level solution for the GIA risk, which addresses the
root causes. Our approach includes changes to the FUSE dae-
mon to prevent installation hijacking and IntentFirewall
to defend against redirect Intent attacks and support Intent
origin identification. We evaluate our approach in Section VI

Guarding SD-Card with the FUSE daemon. In Android,
SD-Card is wrapped in a FUSE daemon, which uses FUSE
(Filesystem in Userspace) to enforce external storage related
access control policy and permission. In our research, we
modified the daemon to change the Linux discretionary access
control (DAC) scheme to protect an APK in an external
storage. Our approach makes an APK read-only but
writable only by its owner, that is, the app that requests the
download (e.g., appstore app). We altered the derive_perm
issions_locked method and made it set an APK file’s
permission to 640 (rw- r— —) as soon as an APK is created.
This prevents an unauthorized app from overwriting an APK
before installation, as described in Section III-B. Interestingly,
changing the file permission failed, since Android allows any
app with SD-Card permission to write on the external storage,
regardless the file permission (DAC) set to the file. To address
this issue, we modified the check_caller_access_to_n
ame method to enforce our policy, which protects APKs. This
ensures that all non-system apps, except the owner, cannot
alter the file, even with the WRITE_EXTERNAL_STORAGE
permission. The access setting of the APK is kept after it is
installed, in case the APK needs to be re-installed later. In the
meantime, the protected file can always be written by a system
process, which allows, for example, the user to delete the file
to release the space through Android system settings.

Also, an unauthorized app may attempt to bypass such
protection by altering (move, delete or rename) the entire path
which includes the target_apk. To prevent such attacks, we
maintain a list, called APK list, to keep track of 1) the owner
(UID) of each APK and 2) the file path of all APKs on the
SD-Card. Before any path alteration requests are processed, we
look up the list and revoke the request if the requested path
contains any APKSs that are not owned by the requester UID.
This is done by modifying the handle_rename method
which is part of the FUSE daemon as well.

Redirect Intent attack detection. To detect the redirect
Intent attack, we modified the IntentFirewall class of



TABLE VII: Effectiveness & Complexity

Strategy Tackled Attack AIT Step | LOC
User-level app (DAPP) | Installation Hijacking 3.4 127
FUSE DAC scheme | Installation Hijacking 34 156
Intent Detection scheme Redirect Intent 1 61
Intent origin scheme Redirect Intent 1 82

the Android framework to add a new class intentRecord
(IR) for keeping track of an Intent’s recipient package name,
delivery time and the caller’s Linux User ID (UID). Within the
IntentFirewall, our code creates an IR record for each
Intent sent through the startActivity API and keeps it in
a hash map using its recipient’s package name as the key (so
only the last Intent received by the package is preserved). For
each new record created, we first retrieve from the hash map
the IR for the last Intent going to the same app. If the time
interval between these two consecutive Intents is found below
a threshold (1 second in our implementation), our approach
reports the event to the user as a possible attack. To avoid false
positives, we do not raise an alarm for such an Intent pair if
(1) they all come from the same app, or (2) they are sent and
received by the same app or (3) the sender is a system app
or service. Further, since our detection mechanism focuses on
the Intents from the startActivity API, which is typically
used to respond to the user-triggered event (such as a click), we
do not expect any benign app to send such an Intent within 1
second after another event also generated by the user’s activity.
Note that apps belonging to the same author (i.e., shared UID)
would not be affected by our detection approach since we
record the intent recipient’s package name and caller’s UID.

Intent-origin identification. As mentioned earlier, the fun-
damental cause of the redirect Intent threat is the lack of
origin information for an Intent received. Otherwise, an Intent
recipient, e.g., an appstore, can display the name of the sender
to the user to get her confirmation. To address this issue, we
enhanced Android to support the delivery of the Intent origin
information to the recipient. To this end, we modified Inten
t.java and IntentFirewall. java to add a field mIn
tentOrigin that keeps the package name of the sender
within the Intent class, together with a pair of new methods
getIntentOrigin and setIntentOrigin (as hidden
API) to manage the field. When an Intent passes through the
IntentFirewall, the modified checkIntent function
calls setIntentOrigin to put the sender information in
mIntentOrigin, which can be inspected by the recipient
by calling getIntentOrigin.

VI
A. Effectiveness and Complexity

Table VII lists the lines of code (LOC) for DAPP and the
modifications on the FUSE daemon for mitigating hijacking
installations, detecting redirect Intents and identifying Intent
origins. As we see, our defense mechanisms are lightweight
and could be easily adopted. Moreover, DAPP is a regular
Android app and will be uploaded to Google Play. Our system-
level defenses just include 61-156 LOC of Java and C code.

To understand the effectiveness of our protection mech-
anisms, we tested them against the attacks described in Sec-
tion III. As depicted in Table VII, DAPP and our FUSE patches
successfully thwarted the installation hijacking attacks and

EVALUATION

ITo replace the prior Intent’s resulting screen, a malicious app needs to
send an Intent in 200ms-500ms after the legitimate Intent.
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TABLE VIII: FUSE DAC scheme performance

L Write Write |, Read Read %0
Unitins | o DAC) (mod DAC) (org DAC)| (mod DAC) 7
Average | 1772.06 | 176844 | 99.80% | 750.53 | 765.7 102.02%

*%: Percentage mod DAC compared to org DAC.
TABLE IX: Intent Detection Scheme Performance
Unit:ns *Total Time Our Logic **Percentage
Average 4804339.08 175247.52 0.30%
*Total Time: Time taken from sending intent to receiving intent.
**Percentage: Average of percentage value from all test cases.

our Intent detection scheme successfully captured malicious
Intents. Further, with all the protection mechanisms on a Nexus
5, for 45 days we installed 924 new apps and used it for daily
operations (email, web browsing, social networking, etc.).
During this period, no false alarms were reported and none of
the legitimate operations were disrupted by our mechanisms.

B. Performance

We further evaluated the performance of our techniques.
Specifically, to find out the delay incurred by our detection and
access control protection, we utilized the SystemClock.el
apsedRealtimeNanos () API, which returns the time
since boot, including time spent in sleep. The evaluation was
conducted on a Nexus 5 device running Android 5.1.

Overhead of DAPP. We measured the CPU and RAM usage
of DAPP during app installation and when the system was
idle. Using OS Monitor app [9], DAPP was found to work
efficiently, on average using only 0.1%-0.7% of CPU and
6.3MB of RAM during installation and 0% of CPU and 6.2MB
of RAM on idle. Note that when DAPP extracts signatures
from a target_apk, because the target_apk is read into memory,
DAPP’s CPU and RAM usage rose to 1.5%-45% and 10.7MB-
76.2MB, but for only 214.7ms in average. Using GSam Battery
Monitor [10], we measured the battery consumption by in-
stalling 21 apps in 1 hour: with the total consumption hovering
around 20% during the experiment, DAPP was responsible for
only 0.08%. On idle, DAPP consumed nearly 0% from total
11% in 1 hour. With this level of power consumption, one
can use the device downloading 21 apps within an hour and
use the device throughout the day, with only 0.08% of battery
being spent on DAPP, which is indeed negligible.

Security enhanced DAC. We evaluated the performance of
the modified DAC scheme, in terms of the time it takes to
perform a write and a read operation on a protected file. For
this purpose, we built an app that creates a file and writes
1 MB to it. We repeated it 100 times. Similarly, the app also
read a file with 1 MB repeatedly, 100 times. Table VIII reports
the average time for each operation on the modified Android
5.1 vs. the original one. As we can see from the table, the
overhead of the modified FUSE was so small that it could not
even be measured: our implementation on average ran even
slightly faster (1%) than the AOSP for the write operation,
due to the variations of the execution time.

Redirect Intent detection. To find out the overhead caused
by our Intent detection scheme, we built an app that sends an
Intent which starts an activity within the other, and recorded
the time it takes for the Intent to be delivered (from the moment
the sender calls startActivity till the recipient gets the
Intent but before it displays the view). We compare the time
delay caused by our logic to the total time taken to deliver
the Intent. We repeated the test 50 times. Table IX shows
the delay caused by our Intent inspection logic within the



TABLE X: Intent Origin Scheme Performance
Unit:ns *Total Time Our Logic **Percentage
Average 64881655.14 828131.06 1.67%
*Total Time: Time taken from sending intent to receiving intent.
**Percentage: Average of percentage value from all test cases.

modified IntentFirewall.checkIntent (). Again, we
cannot observe any statistically significant delay caused by our
logic, indicating that the overhead is negligible.

Intent origin. To evaluate the performance of the Intent origin
scheme we conducted the above experiment (on the Intent
detection scheme) again, with our origin mechanism on the
modified Android 5.1. The result presented in Table X, again,
shows that the impact of our additional code is unnoticeable.

VII.

Development of Security-critical functionalities. In this
work, we systematically analyzed the entire AIT, presenting
the diversity of the AIT designs (due to customization) and
the problems that exist in each step in detail. The presence
of these vulnerabilities points to the challenges in making
AIT right in practice and most importantly, questions the
fundamental design mentality of leaving such a security-
critical functionality open to customizations. We suggest that
at least the security-critical functionalities should be taken care
of by the OS and the current way of leaving them in the hands
of individual app developers can be risky.

DiSCUSSION

Suggestions for developers. In real world, various designs of
AIT exist and problems can occur in any stage of it. Thus,
problems we discussed cannot be solved with one simple
solution. Most importantly, despite the criticalness of AIT, the
openness of Android is allowing any developer to develop their
own installer app without further guidance. To improve such
situation, below we provide the key points which will help
developers to build a secure installer app.

o Suggestion 1. Only use the SD-Card if internal storage space
is insufficient. Developers should always use the internal stor-
age space to install a target_apk when there is enough space.
If not, we recommend developers to use the SD-Card with the
defense techniques (using FileObserver events) we elaborate in
Section V. As discussed in Section II, in certain circumstances
SD-Card may be preferred; small internal memory, big apps.

o Suggestion 2. Verify hash of the target_apk in a secure
storage. Developers should verify the hash of the target_apk in
a secure storage (internal storage or SD-Card with our defense
in place) right before installation to make sure the file has not
been tampered with. This is the last line of protection that can
prevent replaced apps from being installed.

o Suggestion 3. Sensitive components in AIT should be well
protected. Sensitive private APIs that implement app instal-
lation should be guarded with proper access control (eg.,
permission for broadcast receiver). As shown in Section III,
once those APIs are exposed, attackers will be able to silently
install apps onto users device. Furthermore, components (eg.,
database files, content providers) that store installation related
data should be protected. Also, database files should be kept
under the installer app’s private directory (internal storage).

o Suggestion 4. User interfaces should provide more informa-
tion. Current Android design does not provide the Intent origin
information, which makes the redirect intent attack possible.
Providing more information of the app intended to be shown
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(eg., image of the icon, developers name/email, package name,
etc.) in the appstore app before redirection, will help the users
notice suspicious behaviors.

VIII. RELATED WORK

Android vulnerabilities. PaloAltoNetworks [14] reported that
an attacker can wait (using logcat: works before Android 4.1)
for the permission consent dialogue and replace the target_apk
once it is displayed to the user. Although they show that an
attack opportunity exists for the SD-Card based installation
(whose risk is already known to the app stores, given the
various protection put in place to use the SD-Card), we are
the first to reveal the TOCTOU window that covers the entire
Step 3 and 4. Moreover, we show that even current protection
of enterprises (e.g., Amazon, Qihoo, etc.) in SD-Card based
installation can be defeated. Thus the security threat is sig-
nificant and far-reaching (Section IV-B), not to mention the
consequences that the exploits could cause, such as gaining
system privileges. As evidence for the lack of understand-
ing, even the installPackageWithVerification API
from Google, checked only the app’s AndroidManifest.xml.
This can easily be circumvented by the malware using the
same manifest. Our study sheds light on the TOCTOU risks
of the whole AIT, its impact, fundamental cause and proposes
the first solution that indeed mitigates the threat.

For other related flaws, Grace et. al. [34] discusses pri-
vacy issues on Android due to Javascript-Java bindings. They
consider malicious ad libraries that exploit such bindings to
perform remote runtime attacks on Java APIs without the
knowledge of their host apps. However, our work reports a
new technique that can exploit such bindings. We show how
malware can send Intents with Javascript code to installer
apps that expose a WebView with such bindings to silently
install and uninstall apps. Also, [24, 30, 35] touch specific
issues of installation: for example, how PMS checks developer
signatures and assigns the UID to newly installed apps [24].
However, no effort has been made to systematically investigate
installation as a transaction as did in our research.

UI Phishing attacks. Prior studies reveal various Phishing
attacks through Uls [28], e.g., using a Phishing activity to
cover the view of a foreground app to hijack its task flow [37].
However, none of them can directly cause a malware to be
installed through an app store, because the attack app often
does not have the installation permission. In addition, while
prior attacks require a fake activity, ours do not. Our attack
instead, changes the UI of a legitimate installer without being
perceived by the user, which can lead to the installation of
a malware, apparently as the result of the redirection from
a legitimate app. This has never been done before. Due to
such difference, previous prior [22], cannot detect nor prevent
our attack. Most importantly, such a stealthy transfer of a
legitimate app’s own Ul opens the possibility for other exploits,
when the victim app can be manipulated to confuse the user.

Android side-channels. Prior studies [42, 27] infer packet
data, UI states (e.g., shared_pm) from /proc. The redirect
Intent attack utilizes oom_adj, also in /proc, for the first
in an attack. Moreover, our purpose is just to detect Ul
redirections from apps to appstore apps, which is lightweight
through oom_adj, avoiding the learning step in the prior
work [27]. [41] proposed a user-level app that detects back-
ground monitoring services. However, it only protects selected



apps due to high overhead. The trouble here is that many apps
redirect users to appstores and all of them need to be protected.

Mitigation strategies. Many studies aim to identify mali-
cious or suspicious apps utilizing permissions as a detection
feature [31, 32, 43]. Such approach is not applicable in
our case, since the adversary we consider uses a popular
permission (WRITE_EXTERNAL_STORAGE). Even with the
new runtime permission check introduced on Android 6.0,
the adversary can silently gain the permission (Section III-B)
by requesting once either the READ_EXTERNAL_STORAGE
or the WRITE_EXTERNAL_STORAGE for a legitimate use
which is likely to be granted by the user [13]. Others employ
static or dynamic analysis to detect malware [23, 36, 40, 39],
given known malicious behaviors. GIA is a new attack, based
on a common permission and detecting it can be nontrivial.
More importantly, our protection mechanisms are meant to be
the last line of defense against this type of malware, even
after it manages to bypass the appstore’s vetting process.
Although Mandatory Access Control [38, 26, 29] can help,
our approach is exceedingly lightweight and effective making
minimal change to the framework (Section VI-B)

IX. CONCLUSION

We report a study on Android app installation transaction,
which led to the discovery of significant risks in this security-
critical procedure. Our findings show that most installers today
are not securely designed and can be exploited at every step
of AIT. Particularly, the TOCTOU problem in installing apps
from external storage, utilized by most appstores and system
apps, essentially enables an unprivileged adversary to become
a Ghost Installer, with the power to silently install any apps
and escalate its privilege. Our research reveals the significant
impacts of the GIA threats, affecting hundreds of millions of
users. New techniques are developed to protect AIT against
the threats. Most importantly, the study highlights the lessons
learnt from our findings: security-critical functionalities should
be handled by the OS and leaving them in the hands of app
developers is by no means a wise solution.
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