
AliDrone: Enabling Trustworthy Proof-of-Alibi for
Commercial Drone Compliance

Tianyuan Liu, Avesta Hojjati, Adam Bates and Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign, Champaign, US
{tliu60, hojjati2, batesa, klara}@illinois.edu

Abstract—
Commercial use of Unmanned Aerial Vehicles (UAVs), or

drones, promises to revolutionize the way in which consumers
interact with retail services. However, the further adoption of
UAVs has been significantly impeded by an overwhelming public
outcry over the privacy implications of drone technology. While
lawmakers have attempted to establish standards for drone
use (e.g., No-Fly-Zones (NFZs)), at present a general technical
mechanism for policy enforcement eludes state-of-the-art drones.

In this work, we propose that Proof-of-Alibi (PoA) protocols
should serve as the basis for enforcing drone privacy compliance.
We design and implement AliDrone, a trustworthy PoA protocol
that enables individual drones to prove their compliance with
NFZs to a third party Auditor. AliDrone leverages trusted
hardware to produce cryptographically-signed GPS readings
within a secure enclave, preventing malicious drone operators
from being able to forge geo-location information. AliDrone
features an adaptive sampling algorithm that reacts to NFZ
proximity in order to minimize the processing cost. Through
laboratory benchmarks and field studies, we demonstrate that
AliDrone provides strong assurance of geo-location while im-
posing an average of 1.5% overhead on CPU utilization and
0.3% of memory consumption. AliDrone thus enables the further
proliferation of drone technology through the introduction of a
trustworthy and accountable compliance mechanism.

Index Terms—Drone, GPS Forgery Attack, Privacy, TrustZone

I. INTRODUCTION

The Unmanned Aerial Vehicles (UAVs) technology, also
known as “drones”, enables many promising applications.
Besides military purpose, many businesses are paying more
attention on the commercial usage of drones. For example,
Amazon announced its Air Prime Delivery Service [1] in
2013, aiming to deploy small drones to deliver lightweight
packages. The expected delivery time can be as short as 30
minutes after the purchase is made, which is much faster
than the best delivery option in the current state. Additionally,
other drone applications include infrastructure construction,
precision agriculture, and photography [2]–[4].

Despite all the benefits of drones, the public has shown
great concern of privacy for the drone applications. A drone
equipped with high resolution camera can surreptitiously
surveil anyone’s backyard 400 feet high in the air. Since 2010,
the Federal Aviation Administration (FAA), has been working

Funded by the Department of Energy, Award Number DE-OE0000780, and
National Science Foundation, NSF CNS 16-57534, NSF CNS 17-50024 and
NSF CNS 13-30491.

on the UAV regulations to control the risks of commercial
drone usage. The most recent rules [5] include requirements on
the pilots, the UAV specs, and the locations where drones are
allowed to fly. However, these rules mainly focus on the safety
protection but fail to defend against the privacy violation.

One promising countermeasure for mitigating drone surveil-
lance is the establishment of no-fly-zones (NFZs) over privacy-
sensitive locations. If a drone is sufficiently far away from a
sensitive area, surveillance cannot be carried out successfully.
The FAA has designated a variety of NFZs, primarily for
safety purposes, around critical infrastructures such as airports.
An established NFZ specifies that no drone is permitted to fly
within 5 miles of the protected location. To more effectively
notify drone operators of NFZs in their area, the FAA has even
published the B4UFLY mobile app [6]. Unfortunately, regu-
lation alone cannot prevent drones from flying over restricted
areas; as the drone navigates in open airspace, it is hard for an
observer on the ground to accurately determine the location of
a drone. Instead, what is needed is a reliable means of tracking
drone locations for the detection of NFZ policy violations.

In this paper, we present the design and implementation
of AliDrone, a geo-location based alibi protocol that enables
drones to generate proof-of-non-entrance to an NFZ. We
define three roles in the system: Zone Owners that own
some property, Drone Operators that operate a drone and
control its navigation through an area, and Auditors, authorized
third parties (e.g., local agents of the FAA) that attest drone
locations and detect any non-compliance on NFZ regulations.
Before flying, the Drone Operator queries the Auditor for the
location of nearby NFZs. While flying, the drone computes an
alibi, i.e., a signed GPS trace, based on its real time location.
At the end of the flight, the Drone Operator submits the drone’s
Proof-of-Alibi (PoA) to the Auditor. The Auditor then verifies
the PoA and initiates punishment on the Drone Operator if a
policy violation is detected.

We design AliDrone with consideration that a Dishonest
Drone Operator may try to navigate the drone over a restricted
area without being detected by the Auditor. Such an attacker
could attempt to forge an innocent compliant route and com-
pute its alibi based on this forged GPS trace. As a result, an
adversary may take a shortcut route or gain pictures of the
restricted area.

Defending against such adversary is challenging. As the
owner of the drone, the Dishonest Drone Operator has priv-

ileged access to the drone software stack as well as any
exposed hardware, meaning the attacker could attempt to
extract security keys used in the alibi protocol or replace the
system components with malicious software.

Our design relies on the existing secure hardware to provide
a trusted execution environment for drones to generate their
Proofs-of-Alibi (PoA). The PoA is a keyed cryptographic hash
of the drone's GPS trace that is signed by a security key
protected by secure hardware. Thus, the Drone Operator does
not have access to the private signing key. We require the
Drone Operator to submit the alibi (i.e., the GPS trace) along
with this proof to the Auditor. The Auditor knows each drone's
public key and can therefore verify the signatures. In this way,
the Drone Operator is unable to tamper with the alibi submitted
to the Auditor.

We outline the paper's main contributions below:
� We present AliDrone, a lightweight and practical alibi

system that enables drones to generate trustworthy proof
of privacy compliance.

� We introduce an adaptive sampling mechanism to minimize
the processing and energy overhead.

� We provide performance benchmarks and perform an ex-
haustive real-world evaluation of AliDrone.
The rest of this paper is organized as follows:

� Section II, describes the background of drones and secure
hardware technology;

� Sections III and IV, demonstrates the system model followed
by the design decisions;

� Section V, describes the hardware platform and implemen-
tation details;

� Section VI, presents the evaluation of AliDrone;
� Section VII, discusses limitation and extensions of

AliDrone;
� Section VIII, is dedicated to related work.

II. BACKGROUND

A. Unmanned Aerial Vehicle (UAV)

An unmanned aerial vehicle, usually referred to as a drone,
is an aircraft without a human pilot onboard. Such devices can
be controlled remotely by the operator within a distance of 200
- 3,000 meters. A typical drone costs from $200 to $1,000.
It �ies at up to 40mph with a �ight time of 20 - 30 minutes.
Most drones are equipped with a camera, which enables many
popular applications such as aerial photography. Recently,
some drones with programmable features are available on the
market. These drones can be programmed to perform actions
including object tracking, navigation, and surveillance [7].

B. Trusted Execution Environments

Trusted Execution Environment (TEE) is a set of secu-
rity extensions added to main processors. These processors
partition the hardware and software and run a separated
subsystem known as “secure world” in addition to the normal
operating system, a.k.a. “normal world”. The TEE technology
is programmed into the hardware to protect the memory

Fig. 1. OP-TEE Architecture. The code and data in secure world are protected
by hardware. The switching between two worlds are triggered via Secure
Monitor Call (SMC).

and peripherals. Consequently, security is enforced without
degrading the system performance. TEE can be implemented
on commercial secure hardware such as ARM TrustZone [8]
and Intel SGX [9].

After the initial effort in standardizing software development
for TrustZone, ARM partnered with GlobalPlatform to de�ne
a new TEE API. TEE encompasses three major features:
� Safe and secure boot ensures all system software compo-

nents are in a known and trusted state before launching the
operating system.

� Isolated execution of critical applications in a virtualized
environment.

� Data protection of trusted applications in terms of integrity
and con�dentiality.

In this work, we leverage the integrity feature of TEE to
authenticate the geo-location data.

C. OP-TEE

OP-TEE is an open source project for TEE in Linux using
the ARM TrustZone technology. It implements a TEE client
in the normal world and a TEE core in the secure world using
the GlobalPlatform TEE System standard. Fig. 1 shows the
architecture of OP-TEE.

OP-TEE provides a minimal secure kernel (OP-TEE core)
which can be run in parallel with a normal world OS such
as Linux. It provides drivers (OP-TEE Driver) for the nor-
mal world OS to communicate with the secure world. The
transition between the two worlds are triggered via Secure
Monitor Calls (SMC). It uses a daemon service in the normal
world, i.e., tee-supplicant, to help the Trusted OS with the
miscellaneous such as storage access.

OP-TEE allows two types of Trusted Applications (TAs)
[10]. A normal TA runs in non-privileged mode in the secure
world. When compiled, a TA is signed by a private key which
is unknown to the user in the normal world. Hence, it can
be stored in the untrusted storage. Every TA is assigned a
unique UUID. When an OP-TEE enabled application calls an
interface provided by a speci�c TA, it provides the associated
UUID and the interface ID. Then, the tee-supplicant will locate

the TA by the UUID in the storage and help the OP-TEE
core to load the TA. Dynamically loading the normal TAs
can reduce the size of TEE core. However, such TAs cannot
access the devices and peripherals by their physical addresses.
The other type of TA is called Pseudo Trusted Application
(PTA). Unlike the normal TAs which are dynamically loaded
when necessary, PTA are statically built into the OP-TEE core.
PTA can access the peripherals by creating a mapping from
the physical address to the memory. In this work, our design
involves in both TA and PTA components.

III. SYSTEM MODEL

A. Physical Model

We consider aDrone Operatorthat instructs a drone to nav-
igate a given �ight pattern. We represent the drone's activity
as a series of samplesS = (lat; lon; t), each represented as
a tuple of latitude, longitude and timestamp that are sampled
from a GPS receiver. A particular drone �ight patternF can
thus be summarized as:

F = f S0; S1; : : : ; Sn g:

This work considers a situation where a drone must navigate
an area in which many NFZs are present. We assume all NFZs
to be circular, and are de�ned by:

z = (lat; lon; r);

wherelat andlon are the latitude and longitude of the center,
and r is the radius of the circle. We refer to the entities who
own the NFZs asZone Ownersthroughout the rest of this
paper. If a drone passes into an NFZ, we say that the privacy
of that Zone Owner is violated.

We assume that each drone is associated with an identi�er,
similar to a vehicle license plate, which is visible by an
observer on the ground. If a Zone Owner spots a drone close to
her NFZ, she may suspect that privacy violation has occurred.
The Zone Owner will record the drone ID and report the
incident to anAuditor, which is an authorized third party,
e.g., a local Federal Aviation Administration (FAA) agent.
The Auditor uses the drone ID to recover the �ight pattern
F from the Drone Operator, then determines if the privacy
violation did occur.In our model, the burden of proof rests on
the Drone Operators to prove conclusively that their drones
could not have been present in the NFZs.

If F is insuf�cient to produce Proof-of-Alibi, the Auditor
concludes that a privacy violation has occurred. The Auditor
will then initiate punitive measures against the Drone Operator.
The punishment for privacy violation is orthogonal to the
purpose of this work, and can be speci�ed through policy or
legislation.

B. Threat Model

We consider the adversary as a dishonest Drone Operator
(or rogue drone) that wants to violate NFZ airspace without
being detected by the Auditor. Such an adversary may be small
business looking to reduce costs by taking a shortcut, or a
journalist or amateur operator attempting to acquire footage

from a restricted area [11]. To avoid detection, the adversary
will attempt to forge an innocuous route to present to the
Auditor in place of its actual illicit GPS trace. This feat may
be attempted through pre-computing a route that does not
intersect any NFZ, replaying a previously reported route, or
relaying a route from another drone. We use the termGPS
forgery attackto denote this attack in the rest of the paper.

We assume the presence of secure hardware within the
drone that provides a trusted execution environment (i.e.,
ARM Trustzone, Intel SGX). Furthermore, we assume that
an asymmetric sign key pair is generated within TEE by the
hardware manufacturer, and the private key is not known by
the Drone Operator. Side channel attacks on the enclaves [12]–
[14] are not considered in this work. While the attacker can
attempt to install malicious software on the drone platform,
we assume the correctness of the GPS hardware. We also do
not consider GPS spoo�ng attacks in which the GPS receiver
is manipulated from the ground through the broadcast of
incorrect GPS signals [15], [16]; such attacks can be mitigated
through existing defenses [17]–[20].

IV. SYSTEM DESIGN

A. Design Goals

Our system protects the privacy of Zone Owners by allowing
them to request no-�y-zones (NFZs) upon their properties. The
solution enables the drones to present trustworthy, geo-location
based proof-of-alibis (PoAs) proving that the drones do not
�y over the NFZs. The PoA will be veri�ed by a trusted third
party, known as theAuditor. Before we describe the design
decisions in detail, we list our design goals as follows:

G1 Completeness:The PoAs generated by the drone must
prove that it does not �y overany NFZ during theentire
�ight period.

G2 Low Overhead: The computation of trustworthy PoAs
should imposesmall processing overhead for the drones.

G3 Unforgeability: The Auditormust not acceptany PoA if it
is forged by Drone Operator.

B. Protocol Overview

As described in section III, our system involves three
entities: a Drone Operator, a Zone Owner and an Auditor.
Fig. 2 demonstrates the interactions among these entities. We
describe the high level protocol in this section. A summary of
cryptographic keys and data used by the protocol is presented
in Table I.

0. Drone Registration: We require that a drone should be
registered at the Auditor before operated in the �eld. The
Drone Operator will generate an asymmetric keypairD = (D + ,
D �) and provide the public keyD + to the Auditor. To enable
trustworthy report of geo-locations, we require that an asym-
metric keypair for the Trusted Execution Envirionment (TEE)
on the droneT = (T+ , T �) is generated at manufacturing
time. The TEE sign keyT � is only accessible by TEE and
the veri�cation keyT+ is known to the drone owner when the
device is merchandised. At registration, the TEE veri�cation

Notation Description Knowledge

id drone Identi�er of drone. It must be carried on the drone during operation. All parties
id zone Identi�er of NFZ. Associated with the latitude, longitude and radius of the property. All parties
T � Private TEE sign key. Used to sign GPS data in TEE. Drone TEE
T + Public TEE veri�cation key. Enables veri�cation of signed GPS data. Drone Operator/Auditor
D � Private sign key of a Drone Operator. Used to authenticate zone query messages. Associated withid drone. Drone Operator
D + Public veri�cation key of a Drone Operator. Enables veri�cation of signed zone query messages. Auditor

Table I
Notations of keys and data used by AliDrone protocol. ColumnKnowledge indicates the parties who have access to the information.

Fig. 2. An overview of system work�ow. The process starts where the Zone
Owner submits the coordinates to the Auditor (task 1). Then, Drone Operator
submits its �ight plan to the Auditor and in response receives the NFZs within
the �ight zone (task 2 and 3). After the �ight, Drone Operator provides the
proof-of-alibi, showing that it has not �own over the NFZs to the Auditor
(task 4).

key T+ should also be submitted to the Auditor. An identi�er
iddronewill be then issued to the drone. This identi�er is similar
to a vehicle license plate, which must be carried on the drone
when it operates. Therefore, an entry of registered drone can
be expressed as(iddrone; D + ; T+):
1. Zone Registration: In order to register an NFZ, a Zone
Owner submits to the Auditor the coordinates and radius of the
property, i.e.,z = (lat; lon; r), as well as a proof of ownership.
Upon request approval, the Auditor will issue an identi�er
idzone to the Zone Owner and add a new entry(idzone; z) to
the NFZ database.
2-3. Zone Query/Response:Before a drone starts navigation,
the Drone Operator should query the auditor for the NFZ
information. The query is comprised of the drone id, two
GPS coordinates(x1; y1) and(x2; y2), indicating a rectangular
navigation area, and a random nonce signed by the drone sign
key D � , i.e.,

(iddrone; (x1; y1); (x2; y2); nonce; Sig(nonce; D �)) :

The Auditor �rst checks if the query is sent from a
registered drone by verifying the signature on the nonce.
Then, it pulls a list of NFZsf z1; z2; � � � ; zm g within the

rectangle and responses with the coordinates and radii of the
zones. The drone can use the NFZ information to compute a
viable route to its destination.

4. Proof-of-Alibi Submission: During the �ight, the drone
computes the Proof-of-Alibis (PoAs) and persists the PoAs
to storage. The purpose of the PoA is to show that the
drone does not enter any NFZ during the �ight. The detailed
design of PoA is presented in section IV-C. At the end of
the �ight, the Drone Operator must submit the PoAs to the
Auditor for veri�cation. To enable real-time auditing, the drone
could alternately transmit its PoAs in real-time to the Auditor;
however, we do not pursue this solution in our work as it would
increase battery drain, violating Goal G2.

C. Trustworthy Proof-of-Alibi

In this section, we introduce the concept and design of
Proof-of-Alibi (PoA), which enables drones to generate un-
forgeable GPS traces. We �rst explain how the geo-location
information serves as a proof of privacy compliance (Goal G1).
Then, we demonstrate an extension in the trusted execution en-
vironment (Goal G3) and an optimization to reduce processing
overhead (Goal G2).

1) Possible Traveling Range:To prove that a drone does not
enter an NFZ, we show that it is physically impossible to travel
into the zones based on its geo-locations. The idea of this proof
is based on the fact that drones have a maximum traveling
speedvmax , which is restricted to 100 mph by the FAA
regulation [5]. This enables the computation of thepossible
traveling rangeusing two GPS coordinates.

Consider that the drone produces two GPS samplesS1 =
(x1; y1; t1) and S2 = (x2; y2; t2). Denote the location of the
drone at arbitrary timet 2 [t1; t2] as (x; y), the possible
traveling range can be described as an ellipseE with (x1; y1)
and(x2; y2) being the two focuses:

E(S1; S2) = f (x; y) j d1 + d2 � vmax (t2 � t1)g;

wheredi =
p

(x � x i)2 + (y � yi)2.
Suppose the drone operates near an NFZz = (x0; y0; r 0).

The GPS samples(S1; S2) can prove that the drone does not
enter zonez during(t1; t2) if the ellipse does not intersect with
the circle representing zonez. Otherwise, it suggests that the
drone may travel into zonez during [t1; t2].

During the �ight, we require the drone to collect a set of
GPS samples and de�ne the set of the samples asalibi:

alibi := f S0; S1; � � � ; Sn g:

Fig. 3. Possible traveling range and a single NFZ. The possible traveling
range should not intersect with the NFZ to produce suf�cient alibi.

Given a set of NFZsZ = f z1; z2; � � � ; zm g, we say that the
alibi is suf�cient if every pair of two consecutive GPS samples
prove impossibility of traveling into all the NFZs, i.e.,

E(Si ; Si +1) \

[

z2 Z

z

!

= ? ; 8 i < n: (1)

Otherwise, we say the alibi isinsuf�cient. Insuf�cient alibi
suggests that the drone may travel into NFZs during the �ight.
Hence, it does not show compliance with the no-�y rule.
Consider a simple case where only one NFZ is on the map
shown in Fig. 3. The minimum sampling rate that produces
suf�cient alibi should results in an ellipse that is tangent to
the NFZ.

2) TEE Enabled GPS Sampling:To ensure that such alibi
cannot be forged by Drone Operators, our solution leverages
trusted hardware to authenticate the GPS data in a Trusted
Execution Environment (TEE). We move the sampling logic
to the secure world to guarantee that the GPS data is collected
from the GPS hardware. The GPS data is signed by the TEE
sign keyT � before it leaves the secure world. We de�ne the
Proof-of-Alibi (PoA) as a series of GPS samples along with
the TEE signatures, i.e.,

PoA := f (S0; Sig(S0; T �)) ; (S1; Sig(S1; T �)) ; � � � g:

The sign key T � is only available to TEE such that a
Drone Operator in the untrusted environment cannot forge the
signatures. The veri�cation keyT+ is known to the Auditor at
registration stage, and thus the Auditor is able to detect if the
GPS data is modi�ed. Our design can be generalized to trusted
hardware platforms including Intel SGX and ARM TrustZone.
We present the an ARM TrustZone based architecture of
AliDrone in Fig. 4.

The Auditor runs an AliDrone Server. It stores the informa-
tion of registered drones and NFZs, and provides an interface
to query the NFZ information to the drone client. Upon
receiving the PoAs from drones, it veri�es the suf�ciency of
the PoAs (see equation (1)). After the PoA veri�cation, the

AliDrone Server should save the PoAs for a couple of days.
This is because a Zone Owner may report a violation after-
wards and the PoAs will serve as evidence for the accusation.

The drone client consists of three components: GPS Driver,
GPS Sampler and Adapter. GPS Driver runs in the kernel space
of the secure world. It is used to access the GPS receiver and
parse the raw GPS data into coordinates and timestamps.

GPS Sampler runs in non-privileged mode in the secure
world. It exposes an interfaceGetGPSAuth to the Adapter
to produce an authenticated GPS sample. It reads the parsed
GPS data from the underlying GPS Driver and signs the data
with the TEE sign keyT � .

The Adapter is a daemon service in the normal world. It
has access to the GPS receiver and controls the PoA sampling
rate using the adaptive sampling mechanism, which will be
introduced in section IV-C3. In addition, it is responsible for
encrypting the PoA with the public encryption key of the
AliDrone Server.

3) Adaptive Sampling:A commercial GPS receiver can
update the GPS measurements with a maximum rate of
5Hz [21]. However, performing frequent sampling in AliDrone
is expensive because signature and world-switching operations
are costly. Maintaining the maximum sampling rate has a
non-negligible amount of processing overhead on the resource
limited hardware. Therefore, an adaptive sampling mechanism
is essential to minimize the processing overhead for the drones.

As mentioned in section IV-C1, two samples(S1; S2) are
suf�cient to prove alibi from zonez if the ellipse of possible
traveling range does not intersect the zone, i.e.,

E(S1; S2) \ z = ? :

Given a traveling trace described by a series of samples
f S0; S1; � � � ; Sn g such thatt i < t i +1 , we can conclude that

E(Si ; Sj) � E (Si ; Sk); 8 i < j < k:

This implies that if the sample pair(Si ; Sk) is suf�cient, all
the intermediate samples in between are not needed in the
PoA. Denote the PoA as a set of samples selected from the
tracef Sk0 ; Sk1 ; � � � ; Skm g and let the �rst sample from PoA
be Sk0 = S0. The task of the Adapter is to �nd

ki +1 = argmax
j

(E(Sk i ; Sj) \ z = ?) ; 8 ki < j < n:

Since the Sampler only samples the current GPS information
by demand, it can be too late to recover a previous sample
when the current location already violates PoA suf�ciency.
Therefore, the Adapter must take a sample when the bound-
aries of the possible traveling range and the NFZ are close.

Consider the worst case where the drone �ies towards the
NFZ z = (x0; y0; r 0) at maximum speedvmax . Assume that
the GPS receiver has a maximum update rate ofR Hz. Let
the last sample recorded in PoA beS1 = (x1; y1; t1) and the
latest sample measured by the Adapter beS2 = (x2; y2; t2)
such that

D1 + D2 � vmax (t2 � t1) (2)

Fig. 4. AliDrone System Architecture. AliDrone enables trustworthy PoA generation on the drone by performing GPS sampling in a TEE. The GPS data is
sampled, encrypted and signed by the trusted application GPS Sampler. The Adapter runs adaptive sampling algorithm and adjusts GPS sampling rate in real
time. The Auditor runs AliDrone Server to verify the PoA uploaded by the drone.

where D i =
p

(x i � x0)2 + (yi � y0)2 � r is the distance
between the drone and the boundary ofz. The next GPS update
will be made in� t = 1

R and the difference of such distance
will be � D = � vmax

R .
The sampleS2 should be made if the next measurement

will be insuf�cient, i.e.,

D1 + D2 + � D < v max (t2 � t1 + � t):

Therefore we have

D1 + D2 < v max (t2 � t1 + 2=R) (3)

Therefore, we can conclude that a sample should be
recorded in PoA if conditions (2) and (3) are both true.

When multiple NFZs are present, we only need to prove
PoA suf�ciency for the closest zone. We present the Adaptive
Sampling algorithm in Algorithm 1. In each iteration, the
Adapter �rst samples the GPS data in the normal world by
calling ReadGPS() with the same rateR that the GPS
receiver updates the measurements. Then, it �nds the closest
zone from NFZ list. If both conditions (2) and (3) hold, it
calls GetGPSAuth() , which acquires the sample and the
signature from the GPS Sampler in the secure world.

V. HARDWARE AND IMPLEMENTATION

A. Hardware Platform

We choose ARM Trustzone [8] as our secure hardware
platform. Although Intel SGX [9] processors provide better
performance in general, they do not emulate the resource
limited computation environment of drone hardware. Similar

Algorithm 1: Adaptive Sampling Algorithm. The adap-
tation is achieved by skipping unnecessary calls of
GetGPSAuth() interface.
NextSample(R; S1; Z);
Input : R - GPS Update Rate;S1 - Last GPS Sample

in PoA; Z - NFZ list.
Output: S2 - Next GPS sample in PoA;Sig(S2; T �) -

Signature ofS2

while true do
S2 ReadGPS() ;
z FindNearestZone (S2, Z);
D1 Dist (S1, z);
D2 Dist (S2, z);
if
S2:t � S1:t � (D1 + D2)=vmax < S 2:t � S1:t + 2=R
then

S2, Sig(S2) GetGPSAuth() ;
return S2, Sig(S2; T �);

else
sleep(1=R);

end
end

to the secure enclaves in SGX, the TrustZone partitions the
software and hardware into two worlds, a normal world and
a secure world. The hardware logic ensures that the resources
in the secure world is inaccessible from the normal world.

	Introduction
	Background
	Unmanned Aerial Vehicle (UAV)
	Trusted Execution Environments
	OP-TEE

	System Model
	Physical Model
	Threat Model

	System Design
	Design Goals
	Protocol Overview
	Trustworthy Proof-of-Alibi
	Possible Traveling Range
	TEE Enabled GPS Sampling
	Adaptive Sampling

	Hardware and Implementation
	Hardware Platform
	GPS Driver & GPS Sampler
	Adapter

	Evaluation
	Field Studies
	Experimental Setup
	Airport Scenario
	Residential Scenario

	Benchmarks

	Discussion
	Limitations
	Cryptographic Operations with Long Keys
	GPS Spoofing Attacks

	Future Extensions
	3D Physical Model
	Arbitrary No-fly Zones
	Privacy-preserving Verification

	Related Work
	Drone Privacy
	Trusted Execution Environment
	Location Forgery
	Drone Routing

	Conclusion
	References

