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Abstract—Worldwide, utilities are losing billions of dollars
annually because of electricity theft. The detection of electricity
theft has been a topic of research for decades. In this paper,
we extend our prior work in the context of advanced metering
infrastructures, wherein smart meters are compromised and
made to under-report consumption. To the best of our knowledge,
this paper presents the first study of meter fraud in the context
of distributed energy resources (DERs). With an increased
penetration of DERs in modern power grids, and with the decline
in electricity prices, we show that there is incentive for electricity
generators to over-report generation. We quantify the economic
impact of cyber-attacks (on meters) that are optimal in that they
maximize fraud while circumventing detectors. In doing so, we
use consumption data from Ireland, solar generation data from
the U.S. and Australia, and wind generation data from France.

Index Terms—Smart meter, smart grid, anomaly detection,
distributed energy resource, attack, machine learning.

I. INTRODUCTION

N modern power grids, electronic meters are used by

utilities to measure both consumption and generation from
customers for billing purposes. The meters use computer
communication networks to communicate with utilities. Cus-
tomers who have generation capabilities are paid for their net
contribution of power to the grid, such that their consumption
(if any) is subtracted from their total generation.

In 2010, the Cyber Intelligence Section of the FBI reported
that smart meter consumptions were being under-reported in
Puerto Rico, leading to annual losses for the utility estimated
at $400 million [1]. In 2014, BBC News reported that smart
meters in Spain were hacked to cut power bills [2]. While those
hacking attempts involved under-reporting of consumption
by consumers, customers with generation capabilities can
similarly hack their meters to over-report their generation to
make monetary gains. In addition to their operating costs,
distributed energy resources (DERs) are associated with high
capital costs for their owners. Although the cost of installation
has been decreasing in recent years [3], it can take a long time
to recover those costs through income from generation. In this
paper, we show that there is a compelling motivation for DER
generation fraud, because it can reduce the time it takes to
recover the capital costs of DER installation by over 80%.
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The adoption of renewable energy generators has been
increasing rapidly in recent years. From 2010 to 2015, pho-
tovoltaic adoption in the U.S. grew by 46%, 43%, and 101%
for residential, commercial, and utility-scale installations, re-
spectively [4]. Globally, solar capacity increased by 28% and
wind capacity increased by 17% from 2014 to 2015 [3]. Most
capacity additions in the U.S. came from wind power (41%) in
that period [5], and by the end of 2016, wind surpassed hydro
as the largest source of renewable energy in the U.S. [6]. The
worrying trend is that demand for electricity has not grown
with the generation, and as recently as April 2017, it was
reported that wholesale electricity prices had dropped so low
that at times they were even negative [7]. Since the operating
costs of distributed energy resources (DERs) such as solar and
wind (about $15/MWh [8]) often exceed the amount that DER
owners are paid (ranging from $0 to $45/MWh [7]), there
is a real motivation for DERs to compromise their reported
generation in order to make fraudulent monetary gains and
ensure that they profit.

We restrict our attention to solar and wind, which are the
most prevalent DERs. We refer to customers who seek to make
monetary gains through consumption or generation fraud as
attackers. The attackers may be individuals or groups of indi-
viduals who own or operate electricity consumption facilities
and/or DERs. In the context of consumption, the fraud involves
under-reporting of consumption, which is equivalent to theft
of electricity, so we refer to that as electricity theft. DER
fraud involves over-reporting of generation, which also leads
to monetary gains, but we refer to such fraud as DER fraud
and not as electricity theft. We refer to both consumption and
generation fraud together as meter fraud.

In this paper we extend prior work on the design of
approaches to detect electricity theft and present the first study
of approaches to detect DER fraud. The detection approaches,
referred to as detectors, analyze smart meter readings collected
at a central location, which is presumably at the utilities’
data centers. The detectors then construct an unsupervised
model of normal consumption and generation behaviors. The
models of normal consumption/generation are unsupervised
because there are infinitely many ways in which attackers
could compromise their meter readings in order to make
monetary gains, so labeling of attacks for supervised modeling
cannot be done in a comprehensive manner. Our prior work
in [9] presents the first formal framework to classify those
attack vectors, which are false meter readings injected for
the attackers’ benefit. In this paper we present modeling
approaches that are unique to DERs, and leverage correlations
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between DERs and relevant weather data. The models are used
to detect anomalies that are indicative of meter fraud.

We evaluate the detectors in two different ways. First, we
derive the optimal attack against each detector, and thereby
quantify the detector in terms of how much fraud could be
realized while circumventing that detector (the worst-case
scenario for the detector). By design, the true-positive rate
for the detector, when evaluated against the optimal attack,
is zero. Second, we compare detectors by using attacks that
are not optimal against them. In doing so, we use receiver
operating characteristics (ROCs) to compare true-positive and
false-positive rates at different detection thresholds.

The paper is organized as follows. Related work is presented
in Section II. The system model and threat model are presented
in Section III. Prior work is summarized in Section IV, and the
datasets used in this study are described in Section V. Prior
work is extended with derivations of optimal attacks for elec-
tricity theft in Section VI, and comparative evaluations against
suboptimal attacks are presented in Section VII. A framework
for detecting DER fraud is presented in Section VIII. For
DER fraud, optimal attacks are presented in Section IX, and
suboptimal attacks are evaluated using ROCs in Section X.
We present a profit analysis for DER fraud in Section XI and
conclude in Section XII.

II. RELATED WORK

In this section, we present related work on detection and
mitigation of electricity theft. To the best of our knowledge,
this paper is the first work on DER fraud, so there is no related
work to present on that topic.

Electricity theft detection methods include those based
on well-defined attack strategies [9], [10], [11], [12], [13],
[14] and general consumption behavior anomalies [15]. In
[12], the authors evaluate a few different attack detection
algorithms for attacks in which the attackers do not change
their consumption behavior, but report lower consumption
readings by compromising their own smart meters. In [10],
we evaluated a different attack strategy wherein the attacker
steals electricity from a neighbor at no loss to the utility.
The authors of [13] evaluate support vector machines in the
context of attack strategies, such as random and constant
scaling of readings, which we first presented in [11]. Those
papers failed to capture other possible attack classes, because a
comprehensive and fundamental approach to classification was
not adopted. In [9], we filled in that gap with a framework that
provides a comprehensive classification for better defense.

In [16], [17], and [18], the authors assume that smart meters
have not been compromised, and use their readings to detect
electricity theft. They do so by calculating the total power lost
and estimating how much of the loss was due to electricity
theft. Their methods fail under the realistic scenario in which
smart meters have been compromised. Motivating factors for
attackers who steal electricity are discussed in detail in [17].

In [19], the authors describe how they simulated consump-
tion patterns of loads in households and detected changes in
those patterns to report electricity theft achieved by tapping
power lines. They reduced false-positive rates by fusing alerts

reported by multiple sensors. Their approach is similar to ours
in that they try to identify ways in which attacks can take place,
and employ learning algorithms to detect attacks. The authors
of [15], [19], and [20] all independently claim to have built
comprehensive attack trees that span all possible electricity
theft attacks. However, their attack trees all depend on existing
technologies. In contrast, [9] analyzes the fundamental neces-
sary conditions for the execution of a successful electricity
theft attack, which are equally applicable to future, unknown
technological approaches for such attacks.

It may be possible to use power grid state estimation
methods to validate voltages and currents at different buses
for detection of fraud. However, state estimation was shown
in [21] to be ineffective for detection, as it can be spoofed. The
authors of [22] discuss game-theoretic models of electricity
theft detection.

Industry has also invested in mitigating electricity theft.
Utilities such as BC Hydro and CenterPoint have implemented
tamper detection features on smart meters [23]. Unfortunately,
penetration testing on a variety of different smart meters has
shown that such features are ineffective [24], and that despite
decades of work on tamper detection schemes (the earliest
patent on those schemes was awarded in 1980 [25]), better
protections against electricity theft are needed. BC Hydro has
worked with start-up Awesense to go one step further than
tamper detection by placing distribution grid meters (which
are different from consumer smart meters) at key nodes on
BC Hydro’s distribution grid [23]. Although these efforts
have been tailored for line-tapping electricity theft, in [9] we
showed that this investment in distribution grid meters can also
be effective against cyber-intrusion-based theft attacks.

In this paper, we contribute to the state of the art and
the state of the practice by evaluating detectors to mitigate
cyber-based meter fraud. The attacks we consider are effective
despite the presence of the security measures that are currently
employed by industry. We are the first to employ and study
the Kullback-Leibler (KL) divergence in the context of fraud
detection, but this method has been used in other anomaly
detection applications in [26] and [27].

III. PRELIMINARIES

In this section, we describe the system model and threat
model used in our study.

A. System Model

Both in this paper and in prior work, we assume that meter
fraud is occurring in an electrical distribution network (as
opposed to the high-voltage transmission network). We assume
a radial topology, which can be represented as an unbalanced
n-ary tree, where n represents the maximum number of
consumers, or leaf nodes, connected to a single node. Another
common topology is the loop system, which was designed
to improve the reliability of power delivery. It is essentially
radial, as the loop is closed only during a fault (see [28]). As a
result, power to a consumer at any one time is supplied through
a single path from the distribution substation, which we refer
to as the root node of the n-ary tree. Through a series of
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transformers and protective equipment (infernal nodes), power
is supplied from the root node to the leaf nodes, which are the
consumers. This root node would typically lie in a substation
that connects the transmission (high-voltage) electric grid with
the distribution (low-voltage) electric grid.

B. Threat Model

The threat model in this paper (and in our prior work) is
as follows. The attacker compromises smart meter readings
in order to make fraudulent monetary gains. The attacker can
do so by leveraging weak authentication firmware installed
in hundreds of millions of smart meters deployed around the
world. Physical access is required to compromise the meter,
because the attacker gains entry to the firmware by means
of an ANSI optical port, which typically uses the C.12.18
communication protocol [29]. Tools, such as Termineter [30],
can be used to simplify the process of gaining access to the
meter through the optical ports. Termineter leverages the fact
that weak passwords are set for the optical interface, and those
passwords can be cracked by brute force (trying out a list
of commonly used weak passwords). A video demonstration
of Termineter is included in [30]. Unfortunately, there is no
secure mechanism in place to automatically roll out a security
patch to the millions of meters that have this firmware vulner-
ability. As that proactive approach is infeasible, we propose a
reactive approach using data-driven signal processing methods
to detect attacks by analyzing the compromised readings.

The use of the optical port on the smart meter is the most
common intrusion method, and it has been documented by the
National Electric Sector Cybersecurity Organization Resource
(NESCOR) in their publication [31], which is widely used by
utilities in the U.S. It may be possible to compromise the me-
ters through other approaches, but they may be more difficult,
because they may require access to cryptographic keys that
allow the decryption and injection of false readings into the
communication channels. The Idaho National Laboratory has
prepared a comprehensive list of vulnerabilities that an attacker
could exploit, and they involve protocols, authentication, au-
thorization, network access control, communication channels,
and endpoints [32].

C. Simulation of Attacks

As described in Section I, there are infinitely many attack
vectors that can achieve monetary gains for the attacker. In this
paper (and in [10]), we simulate attacks that are optimal for
the attacker given knowledge of a specific detector. Therefore,
our results are conservative in that they represent the worst-
case scenario for a given detector. Using this method, we are
able to compare detectors based on the worst-case gains for
an attacker for each detector. We do not have real data on
how attacks are executed in reality, but even if we did, we
believe that use of optimal attacks to quantify detectors is a
more scientific approach than relying on attack data that may
not be representative of worst-case scenarios.

IV. SUMMARY OF PRIOR WORK

This paper extends our prior work [9], [10], [11], which dis-
cusses different methods for detecting anomalies in consumer

meter readings. In this section, we present a summary of that
prior work so that this paper is self-contained. Beyond this
section, we present original work that extends the prior work.

A. Detection Framework

We presented F-DETA, a framework for detecting electricity
theft attacks, in [9]. The framework allows utilities to discover
meter fraud in the context of different settings, which include
tariff schemes used by the customer (e.g., flat, time-of-use, or
real-time pricing). An important constraint that was addressed
by F-DETA is the balance check, which is an approach used
in industry to mitigate theft. The check is performed by a
redundant meter that has been installed upstream of consumer
meters (at an internal node, such as a transformer or a bus).
Consider an electric distribution network node I to which
M + 1 consumers are connected. The consumers are the
attacker, denoted by A, and a set of M innocent neighbors
N = {N;y, Ny, ..., Nas}. Then, in a discrete time period ¢,

Dr(t) = Da(t)+ Y Dn(t) +>_ Di(t), (1)

neN leL

where D(t) refers to the true average demand during the
time period ¢. The length of the period, denoted by At, is
typically fixed at 5, 15, 30, or 60 minutes. L refers to the set
of losses/line impedances that are downstream of I. We use
D’ to denote the reported measurements taken, which may or
may not be compromised. Physically, that node may be a bus
or a transformer. The utility uses the following balance check
at node [ at time t.

Di(t) =D4(t)+ > Dh()+Y_Di(t). @
neN leL

Note that the losses and line impedances are static, so the cor-
responding demand can be easily precomputed and subtracted
out from D’ (t) to get the sum of downstream meter readings
D'y (t) + >, cn Dy (t). The balance check assumes that the
internal meter at node I is trusted, so D} (t) = Dy(t). Then,
from (1) and (2),

Da(t) = Dis(t) = D [D}(t) = Da(1)]. 3)
neN

One of the key propositions in F-DETA is that the attackers
can circumvent the balance check given in (3) by under-
reporting consumption (to lower their energy bills) as follows.
The attackers compromise both their own smart meters and
the smart meters of one or more neighbors in N. Then
the attackers under-report demand (D', (t) < Da(t)) while
simultaneously over-reporting the demand of the neighbor(s)
whose meter(s) they have compromised (D), (¢t) > D, (t) for
some n € ) so that (3) is satisfied. Since (3) is satisfied, the
attack will go undetected by utilities who use only the balance
check for detection. The attack assumes that the attackers
can compromise their neighbors’ smart meters, but not the
meter at the internal node I. This assumption is easily justified
given that most residential and commercial building meters are
installed outside the buildings and are physically accessible by
any passerby. Even if they are encased, the cases are usually
transparent and accessible by optical probes, as discussed in
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Fig. 1. Integrated ARIMA attack on a consumer. The attacker under-reports
consumption by generating false readings per a truncated normal distribution
whose maximum, minimum, average, and standard deviation are set in a
manner that ensures maximum monetary gain while avoiding detection. The
amount of electricity stolen is the difference between the actual consumption
and the attack. This illustration was taken from [9].

Section III-B. Although it may be possible for an attacker
to gain access to the meter at I, it is likely better protected
and shielded, because pole-top meters need to be encased
in weather-resilient cases. F-DETA is not dependent on the
integrity of the meter at I; it simply shows that the balance
check is an insufficient measure against theft detection.

Automated demand response to pricing signals is also
included in F-DETA. In that scenario, the attacker can influ-
ence demand by compromising price signals. In considering
automated demand response, pricing signals, and the presence
of the balance check, F-DETA identifies seven attack classes,
which compromise different types of smart meter measure-
ments in different ways. The only attacks that we will consider
in this paper are the ones in which the attackers do not change
their actual behavior patterns, but report values that are lower
than the typical consumption. Those attacks belong to classes
that are labeled 2A and 2B in [9]. That labeling system will
not be used in this paper, and we refer the interested reader
to [9] for more details on the attack classes.

B. Attacks and Detectors in Prior Work

In the rest of this section, we describe the relevant attacks
and detectors that we developed in prior work, and which we
will further investigate in this paper.

1) Integrated ARIMA Attack: In [10], we presented a spe-
cific manner in which the meter readings can be manipulated,
called the integrated ARIMA attack. Later in this paper, we
will use that attack to evaluate our detectors. Now, we will
explain how that attack was developed.

In [10], we used a prediction model to create a confidence
interval for smart meter readings. The model used recent past
readings in time to predict the range within which the next
smart meter reading should lie. As such, it was suitable for
real-time anomaly detection of smart meter measurements.

We used the Auto-Regressive Integrated Moving Average
(ARIMA) model to construct the confidence interval for the
readings. First-order differencing was applied to remove the
effects of seasonality in the data. The ARIMA model order was
determined for each consumer in the dataset separately using
the automated Hyndman-Khandakar algorithm [33]. Percentile
points on the confidence interval were chosen to act as
thresholds for anomaly detection. While attackers would be
expected to set meter readings to abnormally low values, they
would simultaneously set the readings for their neighbors to
correspondingly high values (as discussed in Section IV-A).
Therefore, a two-tailed test for anomalies was performed using
the percentile points of the detector, which we called the
ARIMA detector.

In order to circumvent the ARIMA detector, an attacker
who has obtained knowledge about the detector could set
the smart meter readings at the detection threshold. Since the
compromised readings would not cross the detection threshold,
the compromise would not be detected. The key point to be
noted is that this attack maximizes the amount of electricity
that can be stolen while avoiding detection. In that sense, the
attack, which we called the ARIMA attack, is optimal for the
attacker and the worst-case attack for the detector. By adding
checks on the average and standard deviation in addition to
the checks on the maximum and minimum values of the
individual readings from the ARIMA detector, we obtained
what we called the integrated ARIMA detector. That detector
was effective in detecting and mitigating the ARIMA attack.

The optimal attack against the integrated ARIMA detector,
which maximizes the amount of electricity that can be stolen
while avoiding detection, is what we refer to as the integrated
ARIMA attack, and it works as follows. The attacker generates
an attack vector (a set of compromised meter readings) from
a truncated normal distribution. This distribution has four pa-
rameters: the maximum value, the minimum value, the mean,
and the standard deviation. The parameters are independent
(unlike the uniform distribution, for example, for which the
mean and variance are completely determined by the minimum
and maximum values), and they can be set such that readings
generated from the distribution fall just inside the integrated
ARIMA detection boundary, thereby avoiding detection while
maximizing theft. The integrated ARIMA attack is illustrated
in Fig 1. The prediction-based confidence interval (ARIMA
detector) is not effective because the confidence interval is
based on the reported measurements as opposed to the actual
measurements. The reason is that the ARIMA detector is run at
the utility’s server, which sees only the reported measurements.

2) KLD Detector: We proposed the KLD detector in [9] as
a means to detect the integrated ARIMA attack. The detector
is based on the Kullback-Leibler divergence (KLD), and it
examines a full week of meter readings in the test set to
determine whether the set was anomalous with respect to the
expected patterns of sets of readings taken from weeks in the
training set. That is different from the approach of the ARIMA
detector, which examined one reading at a time. The integrated
ARIMA detector, however, considered a mixture of individual
readings (to produce the ARIMA max/min bounds) and sets
of readings (to compute the mean and standard deviation).
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The KLD detector was implemented for each consumer
independently as follows. For each consumer, we use D/,
to denote the training set. D/, contains M weeks of con-
sumption readings, and each week is denoted by D), where
w € {1,2,..., M}. A histogram was computed on the readings
in D using |B| bins, where B denotes the set of bins and
|.| denotes the cardinality operator. For a vector X indexed
by time ¢, let Px(b) denote the probability Prob(X (t) € b)
for b € B. For each week, w in the training set, we calculate
the KLD of D), from D7, denoted by KLD(D),, D}.,.), as
follows.

KLD(DLMD/TT) = ZPD’ (b) logQPL(b)v “4)

= " Pp, (b)

where w € {1,2,..., M}, giving us M KLD values. Those
KLD values capture the normal or non-malicious deviations
between the distribution of a week of consumption readings
D;, from the full training set D7, . We set a threshold 7 at a
specified percentile point on the list of M KLD values. For
example, it may be set on the 90" percentile point.

A test vector of consumption readings D/, is deemed to be
an attack if it deviates too much from the training distribution
D or, more specifically, if KLD(D/.,, D) > .

3) PCA-DBSCAN Detector: We were the first to propose
the PCA-DBSCAN detector in [11] to detect anomalies in con-
sumption readings, but not solely for the purpose of electricity
theft detection. The detector uses principal component analysis
(PCA) as a dimensionality reduction method, leveraging the
repetitive nature of electricity consumption across multiple
weeks. Each week is a vector of readings in a high-dimensional
space. For example, if the readings are taken every half-hour,
then one week would contain N = 336 readings for each
half-hour of the week.

Like the KLD detector, the PCA-DBSCAN detector exam-
ines anomalous sets of readings, each of which is collected
over a full week. The detection procedure is similar to that
of the KLD detector. For each consumer, a training matrix X
was constructed with M rows and N columns, where M refers
to the number of weeks in the training set, and N refers to
time-aligned columns (for example, all Mondays are aligned
across all weeks). This M x N matrix X was projected down
to an M x R matrix Y by using PCA, which ensures that
maximum variance is retained by the dimensionality reduction.
Each week of N measurements in X could then be described
by a point in the R-dimensional space of Y, where R << N.

After we reduced the dimensionality of X to obtain Y,
the points that corresponded to weeks of consumption in
Y were clustered using a density-based clustering approach
called DBSCAN [34]. That approach was suitable for anomaly
detection because it formed a single cluster around points that
were densely grouped in the R-dimensional space, while points
that were far from the cluster were marked as anomalies. The
size of the cluster was determined by the DBSCAN parameter,
€. In [11], we chose R = 2 and € = kS,,, where S,, is the
name of a statistical measure of inter-vector distances that is
robust to outliers [35]. In this paper, we evaluate this detector
on the integrated ARIMA attack for different values of R and
k. In summary, the PCA-DBSCAN approach marked weeks

of consumption readings as anomalous if they were located
far from most other weeks in the R-dimensional space.

V. DATASETS

We use four datasets to evaluate our meter fraud detectors.
The fact that the datasets are all freely available makes it
possible for researchers to replicate and extend our results.
We assume that the datasets have not been compromised by
an attacker, and use the data to model normal behavior from
which attack behavior can be distinguished. Note that the
datasets may have anomalous behavior that can lead to false
positives. The data come from meters installed at consumers
and generators in Australia, France, Ireland and the U.S.

1) CER Consumption Dataset: This is a freely available
dataset of smart meter readings collected by Ireland’s Commis-
sion for Energy Regulation (CER). The dataset was collected
at a half-hour time resolution, over a period of up to 74 weeks.
We extracted from the dataset a set of 500 consumers, all
of whom had continuous measurements reported over the 74
weeks. The consumers include 404 residential consumers, 36
small and medium enterprises (SMEs), and 60 unclassified by
CER. Only this dataset was used in our prior work. We split
the dataset into 60 weeks for training and 14 weeks for testing.
As there are 52 weeks in a year, having 52 weeks would be
the minimum training set size to ensure that all seasons of the
year are covered in the training set. In conjunction with this
dataset, we obtained time-of-use (TOU) pricing rates from the
Nightsaver plan offered by Electricity Ireland [36].

2) Ausgrid Solar Dataset: This is an openly available
dataset of electricity consumption and generation measure-
ments taken from a real deployment of 300 customers in
the Sydney area [37] who have rooftop solar panels on their
homes. Readings were taken at a half-hour time granularity
for one year. In net metering, the primary purpose of the solar
panel is to meet the customer’s own consumption needs. If
consumption exceeds the solar generation, the deficit power
is supplied by the utility grid at the prevailing retail price. If
generation exceeds consumption, the excess generation is sold
back to the utility, because the customers do not have storage
on their premises. The net generation is illustrated in Fig. 2(a).

3) NREL Solar Dataset: This dataset was created by the
National Renewable Energy Laboratory (NREL) to be repre-
sentative of solar output characteristics across the U.S. [38].
We examine the metered generation from 238 distributed
photovoltaics in California in the dataset. Those photovoltaics
have ratings ranging from 4 MW to 121 MW, and the data
for one photovoltaic are plotted in Fig. 2(b). The dataset was
produced at a 5-minute granularity for a period of one year.

4) Engie Wind Dataset: This is an openly available dataset
of wind power generation from four 2 MW turbines in Meuse,
France. The data was provided by Engie, a French utility
company. Readings were taken at a 10-minute granularity, and
we extracted a period of one year in which all four turbines
were continuously operational. One sample turbine group rated
at 16 MW is illustrated in Fig. 3.
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Fig. 2. Solar generation datasets: Heatmap illustrations of daily repeating
patterns for (a) one photovoltaic in the Ausgrid dataset (rated at 9 kW) and
(b) one photovoltaic in the NREL dataset (rated at 13 MW).
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Fig. 3. Engie wind dataset: Sample utility-scale turbine rated at 2 MW.

VI. OPTIMAL ATTACK VECTORS FOR ELECTRICITY THEFT

An optimal attack would maximize the amount of elec-
tricity stolen while going undetected. In [10], we obtained
the ARIMA attack and the integrated ARIMA attack as the
optimal attacks against the ARIMA detector and the integrated
ARIMA detector, respectively. In this section, we derive the
optimal attacks against the KLD detector and the PCA-
DBSCAN detector.

A. Optimal Attack Against the KLD Detector

In order to construct the optimal attack against the KLD
detector, the attacker (denoted by A) would need to have
access to three pieces of information: 1) the set of bins being
used, B; 2) the distribution of the training data, D’TT, over
those bins, and 3) the percentile threshold calculated on the
training data, 7. The optimal attack vector for a week of

readings, D’f, maximizes the attacker’s profit as follows.
T
D't = arg rrg,ixz ME)AL[D 4 (t) — D'y (1)] (5)
A t=1
subject to KLD(D'y, D%.,.) < T, (6)

where A(t) is the electricity price at time ¢ and At is the
time period between the collections of readings. The objective
function is the profit given in dollars ($), At is in hours (h),
D 4(t) is in kilowatts (kW), and A(¢) is in $/kWh. The space of
readings is very large (but countably finite because readings
are rounded off to the nearest watt and bounded below by
zero). Therefore the search space is exponentially large in 7.
However, we show that the problem can be reformulated as
a convex optimization problem and efficiently solved using
free solvers, like SCS [39], which comes packaged with
CVXPY [40] for Python. The trick is as follows. Instead of
solving for D', we solve for the optimal distribution of D’}
such that the KLLD from the training data remains within the
threshold 7. Once we have the optimal distribution, we can
generate D'} as per that optimal distribution.

We can restate the objective function in Equation (6) as
follows by removing all the constants.

D'} = arg nj%zix tzT; A)[Da(t) — Dy (t)] (7
T
= arg nDﬂ/An ; At) Dy (t) (8)
1 T
= arg Igan - ; AGE )

where the last equality assumes that A(t) is constant for all ¢
(we will later relax that assumption). Therefore, by minimizing
the mean of the reported readings, we can maximize the profits
for the attacker. Let the probability distribution of D (t) be
discretized into |B| bins with bin centers X,.(b) for b € B.
Let P4(b) denote the probability Prob(D’,(t) € b) for b € B.
Then the mean given in Equation (9) can be expressed in
terms of the expectation of the probability distribution as
follows: =377 D, (t) = Ycp Xrr(b)Pa(b). With that
formulation, we can use P4(b) as the optimization variable,
and that is convenient, because the KLD constraint can be
expressed directly in terms of P4(b) and the corresponding
training probabilities Pr,.(b). The equivalent convex optimiza-
tion formulation of the optimal attack against the KLLD detector
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is given as follows.

Pj = argmin > Xr,(b)Pa(b) (10)
Pa B
. Pa(b)
bject t P4(b)1 <, 11
subjec ObGZB A()OgPTT(b)_T (11)
Pa(b) =0, (12)
and Y Pa(b) =1. (13)

The first constraint ensures that the KLD value is less than
the threshold 7, and the other two constraints ensure that the
probability values are valid. X7, Pr,, and 7 are constants.
The objective function is a linear sum, and the probability
validity constraints are also linear. The KLD can be expressed
as the sum of the negative entropy function of P4 (b) (which
is convex) and a linear function of P4 (b), because log Pr,.(b)
is a constant with respect to the optimization parameter.

Py(b) _
b%:gPA(b) log Pre(h) (14)
> Pa(b)log Pa(b) = Y Pa(b)log Pro(b) (15
beB beB

Since the KLD is a sum of convex and linear functions, it
is convex. Therefore, the optimization problem is a convex
optimization problem that solves for the P4(b) values from
which the attack vector can be generated. An example of an
optimal attack for one particular consumer in the CER dataset
is illustrated in Fig. 4 with |B| = 10 and T set at the 90™
percentile of the KLD values in the training set. Notice that the
attacker is trying to under-report consumption, as evidenced by
the fact that the bin corresponding to the lowest consumption
readings has a probability associated with it in the attack
distribution that is higher than in the training distribution.
Also, the bins corresponding to larger consumption readings
have lower probabilities associated with them. The smallest
consumption value in each bin is, by design, the value at the
left edge of the bin; D’ can be generated by making copies
of the smallest value in each bin in a manner that adheres to
the optimal distribution.

The time ordering of readings D’{ generated from the opti-
mal distribution P} can be chosen to maximize the monetary
gains from fraud. Earlier, we had assumed that the electricity
price A(t) was constant for all ¢, and in that scenario the time
ordering of readings did not matter. But if A(¢) were time-
varying, then D’} could be ordered such that the smallest
values in D’y would correspond to the largest values of A(t),
and vice versa, so that Zthl A(t)D’; (t) is minimized. That is
illustrated in Fig. 5, in which TOU pricing corresponding to
the CER dataset was applied, and larger values in the optimal
attack vector were injected during off-peak periods, when the
price was low. As a result, the attacker was charged less for
larger consumption values.

B. Optimal Attack Against the PCA-DBSCAN Detector

In principle, the PCA-DBSCAN detector is very similar
to the KLD detector. M weeks in the training set, each
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Fig. 4. Distribution of the optimal attack against the KLD detector in
comparison to the training distribution.
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Fig. 5. Illustration of optimal attack against KLD with TOU pricing.

containing N consumption readings, are transformed into an
R-dimensional space, where R << N. In the CER dataset,
N = 336. Let V be an N x R matrix that performs the
PCA transformation ¥ = XV of the training set X. Note
that X is MC x N and contains the training data for all C'
consumers, and V is calculated on that full dataset. For the
sake of obtaining the detection boundary, the training data for
each consumer, denoted by D, are independently projected
into the R-dimensional space by using V. V, however, is
calculated on X, which combines the data for all consumers.

As per the approach in [11], the DBSCAN algorithm finds a
subset of the M training weeks that are not anomalous in the
vector space of Y. First, it determines core weeks, which are
points in Y for each consumer that contain M /2 neighbors in
Y that are within an e radius (as measured by the Euclidean
L2 norm). Any points in Y that lie outside of the € radius of all
core weeks are deemed anomalous, and indicative of an attack.
An example for a consumer in the CER dataset is illustrated
in Fig. 6, in which the core weeks are projected from a 336-
dimensional space to a 2-dimensional space. The safe region
is shaded in yellow and contains overlapping circles centered
at core weeks with radius e. All points outside that region are
marked as attacks. For example, the zero attack vector, which
sets all consumption readings to zero, is marked as an attack
because its projection lies far outside the safe region.

Let 1 denote the set of core weeks, a subset of the M
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Fig. 6. Core weeks and attacks projected using PCA, onto a two-dimensional
space. Points outside the yellow region, which was formed by overlapping
circles centered on core weeks, are marked as attacks. The optimal attack
circumvents detection and lies within the detection boundary.

training weeks for each consumer, and it is determined by
DBSCAN. In the example illustrated in Fig. 6, there are
M = 60 weeks in the training set, of which |n| = 52 are
core weeks. The remaining 8 weeks are possibly anomalous,
and are not used to model normal consumption behavior. The
optimal attack vector contains M = 336 readings in one week
and must project into the safe region. The objective is taken
from Equation (9), and the problem is formulated as follows.

N
D' = arg rgi/nz AODL()  (16)

A =1
subject to Dy >0, 17)
D'y < max(DY,), (18)
ID4V = DLV < e, Vn €n, (19)

where A(t) would be known beforehand in flat-pricing or
time-of-use schemes. D’y < maxz(D’,.) is an upper-bound
constraint imposed based on the maximum of the historic data
in the training set. The distance between the projected attack,
D', V, and the projected core week, D]V, is measured by
the L2 norm, and that constraint is repeated |n| times over
all the different core weeks. Since the L2 norm is a convex
function and the objective function is linear, the optimization
problem is convex and can be solved efficiently using solvers
like SCS [41]. An example of the optimal attack in comparison
to core weeks is illustrated in the lower-dimensional space
in Fig. 6 and in the higher-dimensional space in Fig. 7.
In Fig. 7, notice that the optimal attack has mostly zeroed
values, but the few non-zero values are large and ensure
that the projection lies in the safe region. In addition, the
nonzero values in the optimal attack coincide with peaks in the
consumption readings of the core weeks. That ensures that the
optimal attack vector preserves the trend in the training data.
In preserving that trend, the optimal attack vector does not
adversely affect the low-rank approximation and lie far from
the core weeks in the low-dimensional space.

Note that the optimal attack vector against the PCA-
DBSCAN detector incorporates the timing of reported meter
readings with the TOU electricity prices. It is different from
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Fig. 7. Illustration of optimal attack against PCA in the original dimension.
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Fig. 8. Distribution of how much electricity can be stolen in one week

through the use of optimal attacks against the PCA-DBSCAN detector ($18
on average) and the KLD detector ($37 on average).

the optimal attack vector against the KLD detector, which is
agnostic to the time-ordering and allows the freedom to inject
larger consumption values when the price is low. Also notice
that both optimal attack vectors require consumption to be
over-reported at certain times, in order to avoid detection.

C. Comparative Evaluation of the KLD Detector and the
PCA-DBSCAN Detector using Optimal Attack Vectors

We compare the KLD and PCA-DBSCAN detectors using
the CER dataset in terms of how much electricity can be stolen
by using the optimal attack vector against each detector. 60
weeks of training data were used to construct the optimal
attacks, as described previously in this section. Note that the
optimal attacks depend on the detection thresholds. Therefore,
a very tight threshold would not only mitigate the amount
of electricity that could be stolen through the optimal attack,
but also lead to a large false-positive rate. In this evaluation,
we chose thresholds to ensure false-positive rates of less than
7.5%, as measured on 14 weeks of test data. The results were
computed for the consumers in the CER dataset, considered
independently as potentially malicious, and histograms of
electricity values stolen by those consumers are plotted Fig. 8.
The stolen values represent the difference between the actual
consumption in the test set (D 4) and the reported consumption
through the optimal attack vector (D’{). The optimal attack
vector was replayed during the 14-week-period of the test data,
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Fig. 10. Area under the ROC curve (AUC) for KLD and PCA-DBSCAN detectors on the integrated ARIMA attack. The larger the area, the better the
detection performance. For a large fraction of consumers, the detector had near-perfect performance (close to 1).

and the stolen values illustrated in Fig. 8 are the averages of
the values taken across the 14 weeks.

The PCA-DBSCAN detector outperformed the KLD de-
tector because less electricity could be stolen through the
optimal attack against the PCA-DBSCAN detector. That is
evident from Fig. 8. Both detectors performed well in the sense
that less than $50 could be stolen per week for over 80%
of the consumers. Surprisingly, there were 7 consumers for
whom the optimal attack against the PCA-DBSCAN detector
produced losses for the attacker (average stolen value in 1
week was negative). That is because the optimal attack vector
was computed without knowledge of the test data and, for
those consumers, the consumption in the 14 weeks of the test
data happened to be less than would be expected from the 60
weeks of the training data.

VII. ROCs FOR ELECTRICITY THEFT DETECTORS

In this section, we extend prior work [9] in evaluating
the KLD detector on the integrated ARIMA attack. We also
evaluate the PCA-DBSCAN detector on the same attack and
compare its results with those of the KLLD detector. In doing

so, we use the CER consumption dataset. We find that although
the PCA-DBSCAN detector outperformed the KLD detector
in terms of the impact of optimal attack vectors, the KLD
detector outperformed the PCA-DBSCAN detector against the
integrated ARIMA attack.

The two main limitations of our prior work were that 1)
we did not sufficiently explore the parameter space of the
proposed detectors, and 2) we did not consider the false-
positive rates in evaluating the detectors. As false positives
are expensive to investigate, a utility would like to minimize
the false-positive rate. A well-known caveat in detection theory
is that true-positive rates (TPRs) trade-off with false-positive
rates (FPRs). That trade-off is illustrated by ROC curves. The
curves are generated by plotting the TPR against the FPR for
various detection thresholds. Note that TPR is nonzero in this
section because the integrated ARIMA attack is not designed
to evade the KLD detector or the PCA-DBSCAN detector.

A. ROC for the KLD Detector

For the KLD detector, two parameters need to be chosen
by a practitioner, and they determine the effectiveness of the
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detector. The first parameter is |B|, which is the number of
bins that we would like to use to describe the nonparametric
distribution of meter readings in the training set. In general,
fewer bins produce fewer true and false positives. In the
extreme case, a single bin produces 0% true and false-positive
rates because all readings lie in the same bin and one cannot
set an appropriate detection threshold. Similarly, a very large
number of bins would produce higher true and false-positive
rates, because the distribution becomes too fine-grained and
over-fits the data. The second parameter to be chosen is the
detection threshold on the distribution of KLD values. We had
used percentiles to set the threshold, and had evaluated two
choices (90" and 95" percentiles) in [9].

Fig. 9(a) illustrates the ROC curves for the KLD detector.
The TPRs and FPRs were averaged over all consumers. The
ROC curves are not monotonically increasing, because B is
based on a nonparametric distribution that is not smooth.
As a result, there might be data points in the test set that
exist in an empty bin, increasing the KLD metric because
those points were not expected from the training set. The
relationship between the TPRs and FPRs with the bin size
is more explicitly shown in Fig. 9(b). It can be seen that a
practitioner would do well to choose |B| = 5 to achieve a
good trade-off between TPRs and FPRs. With |B| = 4 and
|B| = 6 there would be no major gains or losses over the
choice of |B| = 5. In other words, the system is stable to
small perturbations around |B| = 5.

Similarly, the operator would be well-advised to pick a
detection threshold at the 90™ percentile, so that the detector
can operate at 87% TPR and 12% FPR. We believe that that
may be an acceptable FPR, but the utility could pick a different
setting that achieves their preferred trade-off. The choice of
percentile threshold is not immediately clear because the ROC
curves for the different thresholds cross in Fig. 9(a). One
commonly used approach compares ROC curves based on the
areas under the curves (AUCs). A perfect detector has an AUC
of 1. We do not see such perfect performance in the ROC
curves shown in Fig. 9, because the TPRs and FPRs were
averaged over all consumers. To illustrate the performance
of the detector for each consumer considered separately, we
provide a histogram of AUCs in Fig. 10(a). The AUCs were
computed using the composite trapezoidal rule of integration.

Note that the FPR was dramatically decreased (in many
cases by up to 20 percentage points) when the detector
was “turned off” during the two weeks spanning Christmas
and New Year’s day. That period produced the maximum
number of false positives across all consumers, likely because
consumption patterns were affected by holiday schedules. The
ROC curves in this section were calculated after the detectors
were turned off during Christmas and New Year’s day.

B. ROC for the PCA-DBSCAN Detector

The PCA-DBSCAN detector first projects the data into a
lower-dimensional space. The dimensionality of that lower-
dimensional space is a parameter that can be chosen by the
operators. A smaller value will retain less of the variance from
the original dataset. A larger value will include more noise
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Fig. 11. ROC for PCA-DBSCAN detector on the Integrated ARIMA attack.

from the dataset. Thus there is an optimal dimension for a
given dataset, and we found it to be equal to 3 dimensions for
the CER dataset, as illustrated in Fig. 11. For each dimension,
we generated the ROC curves by varying the e parameter in
DBSCAN. It is clear from Fig. 11 that 3 dimensions work best,
because the corresponding curve lies entirely above the other
curves. A histogram of AUCs across all consumers, considered
separately as potentially malicious, is plotted in Fig. 10(b).

While it was clear from the ROC curves that the best KLD
detector setting outperformed the best PCA-DBSCAN detector
setting, we were surprised to find that both detectors had
perfect performance on a large fraction of consumers, as seen
in Fig. 10. Upon investigating the consumers that performed
poorly, we found that some of them had near-zero consumption
throughout the 74-week period, while others had zero con-
sumption during the period of the test set alone. Therefore,
those consumers could not be distinguished from malicious
consumers even to the naked eye, and they would need to be
investigated by a utility. We spoke with a representative from
the Pacific Gas & Electric company in California, and he told
us that they use knowledge of move-in and move-out dates of
residents and check that low consumption readings were seen
after move-outs. If we had had access to those dates for the
consumers in the CER dataset, we might have been able to
further reduce the FPRs.

VIII. FRAMEWORK FOR DETECTING DER FRAUD

In this paper, we present the first analysis of how much
attackers, who own or operate DERs, would stand to gain
by fraudulently reporting that they generate more than they
actually do. The detection of DER fraud, in the case of solar
and wind, is different from that of consumer fraud in that
those DERs generate electricity based on weather conditions.
The dependence of those DERs on weather creates correlations
among nearby DERs that can be leveraged for detection.

The framework for detecting DER fraud is an extension
of F-DETA, which was described in Section IV-A. The meter
readings of a generator C represent the average net generation
G¢(t) € R during each time period ¢, and are measured in
kW/MW. G (t) is the reported value corresponding to G (t).
If G (t) # G¢(t), the meters are not reporting their actual
values and must be investigated.
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Generator 2
Actual Output: 10 MW
Reported Output: 8 MW

Actual Output: 8 MW
Reported Output: 10 MW

Load 1
Actual Load: 17 MW

Fig. 12. How attackers can circumvent the balance check by over-reporting
their own generation and simultaneously under-reporting another generator’s
output (or by over-reporting the load). Power losses amount to 1 MW.

Let A\(t) denote the electricity price during the time period
t, where A(t) € R. Note that the price does not necessarily
change between smart meter polling periods, and that price
updates are usually less frequent than polling reports. We
assume that in any time period ¢ the electricity price A(t)
is common to all customers.

The attackers’ monetary advantage through fraud, «, is
given by the difference between what the utility should pay
them based on the actual generation, By, and what the
utility actually pays them based on the reported generation,
Bygiiry- 1f the billing cycle contains 7" time periods, then the
attacker, A, can make a monetary gain through fraud if and
only if the following condition holds:

A N
a = By — Buiiy

T T
=D ABGABAL =D AHGAB)AL  (20)

>0,

where the units are given as follows: A is in $/kWh, G is in
kW, At is in hours, and « is in $ (dollars). The attackers’
objective is to maximize « subject to the constraint that the
attack must go undetected. Since At > 0, (20) holds only if
sgn(A(6))[G'4 (t) — Ga(t)] > 0 for some ¢, where sgn is the
sign function. The statement is evident and the proof follows
from the proof of Proposition 1 in [9]. Therefore, the attackers
must over-report their generation in order to make a monetary
gain when A(t) > 0 and under-report their generation when
A(t) < 0. We design attacks for the far more common case in
which A(t) > 0.

A naive way to detect such an attack would be to use a
variant of the balance check, described in Section IV-A, that
would use redundant meters to ensure that the total amount
generated is the total amount consumed. The balance check
is naive in that it can easily be circumvented, as follows.
Consider the schematic diagram in Fig. 12. The two generators
illustrated are logically separated. Each generator may be
composed of multiple individual generators whose values sum
up to the values shown in the figure; the same applies to
loads. DER 1 represents a group of DERs whose reported
output exceeds the actual output, while Generator 2 represents
a group of generators whose reported output is less than the
actual output. The load may also be misreported, but that is
not illustrated in the figure for simplicity. Energy is conserved
because the total actual generation is equal to the total reported
generation. That value (18 MW) is the sum of the load (17

20 : . ‘ ‘
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15 — Net generation
V72 Rating attack stolen power
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Net generation (kW)
w 5
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Fig. 13. Rating and percentile attacks illustrated for one customer in the
Ausgrid solar dataset. The shaded regions represent the stolen electricity.

MW) and losses due to electric line impedance and transformer
cores (1 MW). DER 1 effectively steals from Generation 2.

IX. OPTIMAL ATTACK VECTORS FOR DER FRAUD

As described in the attack model in Section VIII, an attacker
may commit extensive fraud by over-reporting generation by
an arbitrarily large value. In this section, we present detectors
that can mitigate such fraud. For each detector, we identify
the optimal attack vector, which maximizes the fraud while
avoiding detection. In Section XI, we will evaluate each
detector based on how much an attacker can gain using the
optimal attack that circumvents that detector.

1) Rating Attack: A rating-based detector to limit the over-
reporting of attacker generation would ensure that the reported
generation does not exceed the DER’s rating. The optimal
attack for this detector sets the generation readings at the rating
threshold. As a result, the attack vector does not exceed the
threshold. Simultaneously, the attackers maximize how much
they can steal by over-reporting their generation. This is the
optimal attack for a rating-based threshold, and we refer to it
in this paper as the rating attack.

In the case of solar, the generation is zero before sunrise and
after sunset. Therefore, in designing the rating-based detector
for solar generation, we ensured that the detection threshold
is set such that the generation can never exceed zero before
sunrise and after sunset. From sunrise to sunset, the upper
threshold is the solar panel’s rating. The amount of electricity
stolen is the difference between the rating and the actual
generation, as illustrated in Fig. 13.

In a net metering system, if a DER owner were to claim
that the net generation was equal to the rating of the panel,
they would effectively be claiming that their consumption was
zero. In doing so, they not only over-report their generation,
but also under-report their consumption, which is theft.

Unlike solar generation, wind generation of a turbine can
reach its rated capacity at any time of the day or night.
Therefore, the detection threshold would be set at the rated
capacity of the turbine throughout the 24-hour day.



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. ?, NO. ?, AUGUST 2018 12

2) Percentile Attack: The rating attack, particularly for so-
lar power, is naive in that it does not capture diurnal variations
in generation throughout the day. For solar, for example,
the output steadily increases until midday and then steadily
decreases in the evening, according to the solar irradiance.
In order to determine whether each solar output reading at a
particular time is anomalous, one approach may leverage the
diurnal patterns, and compare that reading with readings taken
at the same time on previous days. Our percentile threshold
accomplishes that by setting a threshold at the 99™ percentile
of data points seen at the same time on previous days. For ex-
ample, to determine whether a reading at 10:00 a.m. on a given
day is anomalous, we check whether that reading is greater
than the 99" percentile of generation values taken at 10:00
a.m. on previous days. Our choice of percentile point is based
on achieving an acceptable trade-off between true positives and
false positives. For the percentile-based threshold, the optimal
attack, which we refer to as the percentile attack, requires that
the attacker know where the threshold has been set. In doing
so, they would not exceed the threshold, and could maximize
how much they can steal by over-reporting their generation
while going undetected. The fraudulent gain is the difference
between the percentile threshold and the actual generation, as
illustrated in Fig. 13. That fraudulent gain is always less than
the gain that can be made through the use of the rating attack.
Therefore, the percentile-based threshold mitigates the extent
of possible fraud, relative to the rating-based threshold.

3) Correlation Attack: One way to detect attacks in the
context of DERs, like solar and wind, is to leverage their de-
pendence on the availability of sunlight and wind, respectively.
Therefore, one would expect the generations of different DERs
to be correlated. We verified that with all three DER datasets;
the results are illustrated in Fig. 14. The heatmaps in the figure
were obtained by computing the pairwise Pearson correlation
coefficients between the DERs in the datasets.

Let A be the attacker and C' be a DER used by the utility
to check whether A is anomalous. Correlation implies a linear
relationship, which is modeled as follows.

G4 (t) = mGe(t) + c+ e, (21)
where m and c are the slope and intercept obtained from
linear regression, and ¢ ~ N(0,0?) is zero-mean Gaussian
noise. It is Gaussian because linear regression inherently
minimizes the squared L2 norm of the fitting error, which in
turn maximizes the likelihood that the errors were Gaussian.
All three parameters were obtained from the training set.

We claim that G’;(t) in the test set is anomalous if the
following condition holds:

G4 (t) — (mGe(t) + )| > ko, (22)
where m, ¢, and o were obtained from the training set and

© was obtained at the same time as G'4. k is the threshold
parameter that determines the ROC for this detector. The
optimal attack, which we refer to as the correlation attack,
is achieved when A sets their generation reading as follows:

G4 (t) = min(mGy(t) + ¢+ ko, Ra(t)), (23)

where R (t) is A’s rating, which should not be exceeded. In
order to accomplish this attack, A would need to know that
the utility is using C’s readings for anomaly detection, and
A would then need to monitor C’s readings. In addition, A
would need to know k. The difficulty of obtaining all that
information may make this attack much less likely than the
previous attacks, which looked only at A’s own past readings.

4) Weather-Based Detectors: A limitation of using histor-
ical data in the previously described methods is that we need
to assume that the training data have not been tampered with.
If the data have been tampered with, then statistical learning
methods trained on that data could become biased in a way
that the attacker could escape detection.

We now discuss the use of weather data to perform detec-
tion. The assumption is that weather data can be obtained from
a completely different data source, which the attacker has not
compromised. For example, a utility could use IBM’s Deep
Thunder [42], which provides wind speed and wind direction
at turbine altitudes with a spatial resolution of 1 to 2 km. It
also provides solar irradiance data at that spatial granularity.

For a fixed wind turbine configuration, the power pro-
duced can be obtained from wind speed measurements by
using a well-known physical relationship called the power
curve. Power curves for over 200 manufacturers’ turbines are
provided in [43] as look-up tables that map wind speed to
expected power for each of those turbines. The operator could
use those data to detect anomalous deviations between every
wind turbine’s expected and reported output.

Similarly, solar generation can be predicted by using irradi-
ance data along with solar panel configuration details such
as the tilt angle (with respect to the axis perpendicular to
the surface of the earth) and azimuth angle (with respect to
true north). The NREL PVWatts calculator ([44]) estimates
the expected solar output from the photovoltaic array. If the
reported solar output significantly deviates from the expected
output, the operator must investigate the cause of the deviation,
as it may be indicative of an attack.

Since the Engie dataset contains wind power and wind
speed measurements, we created an empirical model of the
power curve, and used it to design what we call the power
curve detector. The model is simple; we calculate the prob-
ability of wind power measurements, G’A, given wind speed
measurements, S’. We then extract distribution parameters
for P(G'4]S’;), such as the median and the median absolute
deviation (MAD), and use those for anomaly detection as
follows.

|G’ (t) — median(G4|S"y)| > kMAD(G'4|S"), (24)

where P(G';|S’;) is obtained from the training data. We used
the medians and MADs because they are robust statistics,
unlike the means and standard deviations. Fig. 15 illustrates
the power curve from the training set; the anomalies are not
malicious, but are present in the dataset. If we had used means
and standard deviations, those anomalies would have skewed
the model and made it less effective for detection of anomalies
in the test set. Once again, the optimal attack for this detector
sets the generation at the detection threshold, thereby ensuring
maximum gains.
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5) KLD Attack: Although the KLD detector works exactly
the same way for DER fraud as it does for consumption fraud,
the optimal attack against the detector is slightly different. The
optimal attack described in Section VI-A involves minimizing
the average consumption subject to the KLD threshold con-
straints. In the DER fraud case, the optimal attack, which
we refer to as the KLD attack, involves maximizing the
average reported generation subject to the same KLD threshold
constraint. That is formulated as follows.

Pj = argmax Y Xr,.(b) Pa(b) (25)
Pa ieh
. Pa(b)
bject t Pa(b)1 <7, 26
subjec ObGZB A()OgPTT(b)_T (26)
Py(b) >0, (27
and Y Pa(b) =1, (28)

where P4 (b) denotes the probability Prob(G’4(t) € b) for
b € B. Note that the objective function changes, but the
constraints do not change from the consumption case described
in Section VI-A. The problem remains convex, and the attack
vector G’} is generated from the distribution given by P7. The
ordering of values in G’} is chosen such that Zthl A)GA(2)
is maximized.

6) PCA-DBSCAN Detector: We had proposed this detector
in the context of consumption readings, but we found that it
was not suitable for DER fraud detection. In order for this
detector to be successful, the generation patterns projected
onto a lower-dimensional space would have to be tightly
clustered so that density-based clustering could be used for
anomaly detection. We found that that was not true of our solar
and wind datasets, because the data were not tightly clustered
in the lower-dimensional space.

X. ROCs FOR DER FRAUD DETECTORS

We evaluate the KLD detector against the correlation de-
tector in terms of how well they detect the percentile attack.
The ROC curves for the results are presented in Fig. 16. It
can be seen that the KLLD detector narrowly outperforms the
correlation detector for both the solar and wind datasets. In
certain settings, as seen in Fig. 16(b), the correlation detector
may achieve a more desirable trade-off with a lower FPR than
the KLD detector.

The KLD detector waits until a week of readings has been
obtained and then determines that the readings have been
over-reported consistently over the week. As a result, the
percentile attack produces a probability distribution of readings
that differs greatly from the probability distribution of the
training set. As seen in Fig. 16(c) for wind, the KLD detector
achieves perfect detection performance, with an AUC of 1, at
a 99.9th percentile detection threshold. In the case of solar, its
performance (in terms of AUC) is comparable with that of the
correlation detector.

The fact that the correlation detector can work in real-time
is an advantage over the KLD detector. However, we believe
that an operator could use both detectors together, one in real-
time and one at a periodicity of one week.

The ROC curve for the power curve detector is illustrated
in Fig. 16(c) and is produced by varying k. As is evident
from the illustration, the power curve detector is inferior to
the correlation detector. For £ = 0 it does not have a high
TPR or a high FPR because it turned out that the value of the
percentile attack vector was lower than the median power for
the given speeds.
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XI. PROFIT ANALYSIS OF DER FRAUD

The values of monetary gains obtained through the use
of attack vectors that are optimal against detectors of solar
generation fraud are illustrated in Fig. 17. Those values were
calculated by multiplying the over-reported generation with the
electricity price (the Ausgrid feed-in tariff of $0.07/kWh [45]
was applied to the Ausgrid dataset; the wholesale electricity
price of $0.03/kWh was applied to the NREL dataset [46]).
As seen in Fig. 17, the value of the electricity stolen in an
average week varies linearly with the rating of the solar panel
for all the optimal attacks.

Monetary gain is the attackers’ primary incentive in the
model described in Section IV-A. However, before a gain
is made, they must recover their DER capital costs. In this
section, we quantify how long it takes for them to recover
those capital costs through the optimal attacks discussed in
Section IX. Since capital costs are often large, the ability to
speedup the return on investment through fraud may serve as
an incentive for attackers to commit that fraud.

For the Ausgrid dataset, we use the solar installation costs
given in [47]; the costs vary with the size of the installation.
For the NREL solar dataset, we obtained the cost per watt from
the commercial solar power model given in [4]. We assume 1
MW panel array increments, and use the corresponding cost
per watt of $2.03. For the Engie wind dataset, we assume a
cost of $4 million for the installation of each 2 MW turbine at
each site. That is a conservative estimate taken from the range

TABLE I
YEARS TO RECOVER DER CAPITAL COSTS

Small-Scale Utility-Scale Utility-Scale
Solar (Ausgrid) Solar (NREL) Wind (NREL)
K?tack 6.8 118237 | 47.9 | 544 | 90.1 | 37.2 | 40.8 | 48.7
ﬁff;’c'lg( 152430 | 124124124 | 76| 76|76
g;:?ck 47840149 | 17.7]207 233 | 85[9.293
g‘;{;ﬁﬂme 4780138 | 252281302 | 9093102
C()‘I’lrf::‘t’;;k 53191154 | 300 335|403 | 17.7 | 204 | 23.6

Values are formatted as ‘min | median | max’ across all DERS in each type.

of $3—4 million given in [48].

The years needed to recover DER capital costs, aggregated
across all DERs in each dataset, are given in Table 1. “Small-
scale solar” refers to residential-scale solar. For all three
datasets, it is evident that by committing fraud, attackers can
recover their capital costs much faster than they could have
if they had not committed fraud. That provides them with
an additional incentive to commit fraud. Across all types of
DERs, the rating attack reduced the time it took to recover
the capital costs by around 80% on average. Less gains were
obtained through the KLD attack in comparison to the rating
attack, but the KLD attack was more advantageous for the
attacker than the other attacks. The percentile attack benefited
solar installations less than wind installations, because solar
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generation was less erratic and approached the percentile-
based threshold more often than wind generation approached
that threshold. Therefore, the opportunity for fraud with the
percentile attack was less with solar than it was with wind. As
the correlation attack was the least beneficial to the attacker,
the correlation detector was the most beneficial to the defender.
In that sense, the correlation detector mitigates the other
attacks by forcing the attackers to wait much longer to recover
their capital costs. The hope is that the additional wait time
will disincentivize the attacker from committing fraud.

Similar to the case of consumption fraud, the KLD detector
performed the best in terms of ROCs against other attacks
(in this case the percentile attack). However, the optimal
attack against the KLD detector allowed greater gains for the
attacker in comparison to the optimal attack against the other
detectors. In that sense, the KLD detector performed the worst
in the worst-case scenario. The correlation detector performs
almost as well as the KLD detector in terms of ROCs against
the percentile attack, and it performs much better against its
optimal attack. In that sense, the correlation detector performs
the best overall in detecting and mitigating DER fraud.

XII. CONCLUSION

In this paper, we presented signal processing methods to
detect electricity theft and DER fraud. We derived optimal
attack vectors against those methods. We used ROC curves
to compare the TPRs and FPRs of those methods, allowing
utilities to choose a threshold that produces a suitable trade-off.
We used examples from wind and solar generation to illustrate
how much an attacker would stand to gain monetarily from
DER fraud. We showed that that gain can enable attackers to
decrease the time it would take them to recover the capital cost
of their solar or wind installations. We presented various detec-
tion mechanisms that could be used to detect and mitigate such
fraud. The detectors were evaluated based on how much an
attacker could possibly gain by evading them. The evaluation
was driven by freely available data from Australia (provided
by Ausgrid), France (provided by Engie), Ireland (provided
by CER), and the U.S. (provided by NREL). We hope that
our work will motivate research and development efforts to
secure advanced metering infrastructure from electricity theft
and DER fraud. Our code is freely available on GitHub [49].
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