
c© 2018 Wei Yang

ADVERSARIAL-RESILIENCE ASSURANCE FOR MOBILE SECURITY SYSTEMS

BY

WEI YANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Carl Gunter, Chair
Professor Tao Xie, Director of Research
Professor Darko Marinov
Dr. Mukul Prasad, Fujitsu Laboratories of America

ABSTRACT

As mobile phones become an increasingly critical part of our world, ensuring the security

and privacy of mobile applications (in short as apps) becomes increasingly important. For too

long, researchers have often tackled security in an attack-driven, ad hoc, and reactionary

manner with large manual efforts devoted by security analysts. In the efforts of making

security systems automated and systematic, multiple intelligent techniques, such as program

analysis and machine learning, have been introduced in the mobile security systems for better

security decision making. However, these intelligent techniques are originally proposed for

domains such as image recognition, Virtual Personal Assistants, and software testing without

considering the presence of adversaries.

In this dissertation, we present three main bodies of research on adversarial resiliency

of intelligent techniques used in mobile security systems. We first present how intelligent

techniques can be adapted for automated decision making in mobile security systems. Then

we investigate the possibility to design and implement systematic attack strategies that are

specifically adversarial to these newly-proposed intelligent techniques. Last, based on the

findings that the intelligent techniques are indeed susceptible to the adversarial attacks, we

develop techniques to further strengthen the adversarial resiliency of intelligent techniques

toward these adversarial attacks.

In particular, we use mobile malware detection as a representative of security systems

for our investigation. To show how a malware detection approach can be enhanced by

intelligent techniques such as machine learning and static program analysis, we propose

AppContext, an approach that identifies malware with 87.7% precision and 95% recall. To

show the possibility to attack intelligent techniques such as machine learning, we propose

MRV, an approach that automatically constructs more than hundreds of new malware

variants compromising state-of-the-art learning-based malware detectors. To strengthen

the adversarial resiliency against obfuscation techniques used by malware to confuse static

analysis, we propose EnMobile, which detects malware with substantially higher precision

and recall than four state-of-the-art approaches, namely Apposcopy, Drebin, MUDFLOW,

and AppContext.

ii

To my family, for their love and support.

iii

ACKNOWLEDGMENTS

I thank my advisors Professors Tao Xie and Carl Gunter. Tao has provided me with

enormous support throughout my Ph.D. study, and I have had a great privilege to work

with him for the past seven years. If it were not for Tao, I would not even come to Illinois

to finish my Ph.D.. Tao has given me the freedom to discover and explore my true research

passions, even when they fell outside of his core emphases. He has supported me in my

efforts to take our research beyond academia and make it relevant in broader contexts.

Carl has provided me his great supervision and guidance over the past four year. He is

always available to discuss research, and share his technical insights and life advice. He has

encouraged me to become a member of the research community and challenged me to be

a more effective teacher. His kindness and wisdom have motivated and inspired me a lot

through my Ph.D. study, and will be motivating and inspiring me in the future.

I would like to offer my special thanks to two other members of my thesis committee, Dr.

Mukul Prasad and Professor Darko Marinov. Mukul has been a great source of help and

advice since we collaborated on the work published in my first paper. I spent three wonderful

summers working as an intern with him. Darko constantly provides valuable feedback on

my work during my preliminary exam, final defense, and on other occasions. Both of them

are very supportive in helping me to accomplish and publish my work in this dissertation.

I would like to thank ChengXiang Zhai and Dawn Song for their generous help during my

Ph.D. study and my academic job searching. ChengXiang took the time to give me much

valuable advice on our collaborative project and job searching. Dawn invited me to spend

the last summer of my Ph.D. study working with her at UC Berkeley. She has been very

supportive throughout my stay at Berkeley.

I am extremely grateful to all my current and past group mates: Dengfeng Li, Zhengkai

Wu, Wenyu Wang, Wing Lam, Zexuan Zhong, Angello Astorga, Siwakorn Srisakaokul, Liia

Butler, Jiayi Cao, Yue Leng, Mingming Zhang, Zelin Zhao, Xusheng Xiao, Tianyu Wo, Yuan

Yao, Blake Bassett, Xiao Yu, Sihan Li, Ruowen Wang, JeeHyun Hwang, Rahul Pandita, John

Majikes, Qi Wang, Soteris Demetriou, Karan Ganju, Yunhui Long, Guliz Seray Tuncay,

Vincent Bindschaedler, Avesta Hojjati, Whitney Merrill, and Aston Zhang,.

I would like to thank other current or former Illinois students in the area of PL/FM/SE,

who spent their time and efforts in conducting technical discussion and providing advice

to me, especially Alex Gyori, Owolabi Legunsen, August Shi, Farah Hariri, Qingzhou Luo,

Milos Gligoric, Yu Lin, Lamyaa Eloussi, Peiyuan Zhao, Yi Zhang, Cosmin Radoi, Daejun

Park, Xueqing Liu, and Si Liu.

iv

Many thanks to my other collaborators, including Deguang Kong, William Enck, Lingming

Zhang, Cong Liu, Benjamin Andow, Yuetang Deng, Huoran Li, Xuanzhe Liu, Haoyu Wang,

Yao Guo, Jiaqi Guo, Haibing Zheng, Beihai Liang, Xia Zeng, Wujie Zheng, Fan Xia, Jian-

Guang Lou, Ting Liu, and Dongmei Zhang.

Many thanks to undergraduate students who I have been working with, including Ximin

Lin, Evan N. Johnson, Dean Lin, Sherry Wu, Xiang Li, Chaeyun Jung, Shelby Doty, Yurui

Cao, Lucas J. Hsiung, Jerry R. Guo, and Rittika Adhikary. I learned a lot while mentoring

them. We have together built a great research environment.

I would like to thank many friends who helped me during my Ph.D. study: Ling Chen,

Da Young Lee, Xin Zhang, Yitao Hu, Xuan Tang, Bin Liu, Alex Zhong, Jie Luo, Zhengyang

Jin, Yu Feng, Yonghwi Kwon, Weihang Wang, and Cheng Zhang.

I would like to thank my undergraduate advisor at SJTU, Jianjun Zhao. Without him, I

would never have the motivation or opportunity to start my Ph.D. study. He also provided

me help and advice every time I met him during my Ph.D. study years.

Finally and above all, my girlfriend, Yan, tirelessly and patiently supported me during my

Ph.D. study years. I thank her from the bottom of my heart; it simply would not be possible

without her constant love and unwavering support. I am extremely grateful to my parents

for supporting me through all these years. I could not thank them enough for everything

they have done for me.

I apologize to those who have helped me but are not explicitly mentioned here. You all

have my gratitude for your help.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis Statement . 2
1.2 Contributions . 4
1.3 Dissertation Organization . 5

CHAPTER 2 BACKGROUND . 6
2.1 Security Threats in Mobile Apps . 6
2.2 Android Malware Detection . 8
2.3 Mobile App Vulnerabilities . 9
2.4 Text Analytics for Mobile Security . 10

CHAPTER 3 DIFFERENTIATING MALICIOUS AND BENIGN MOBILE APP
BEHAVIORS USING CONTEXT . 12
3.1 Overview . 12
3.2 A Motivating Example . 14
3.3 Context of Security-Sensitive Behavior . 16
3.4 Approach . 19
3.5 Results . 24
3.6 Conclusion . 30

CHAPTER 4 ADVERSARIAL-RESILIENT STATIC ANALYSIS: ENTITY-
BASED CHARACTERIZATION AND ANALYSIS OF MOBILE APPS 31
4.1 Overview . 31
4.2 A Motivating Example . 35
4.3 Entity-based Characterization . 38
4.4 Entity-based Static Analysis . 43
4.5 Evaluation . 48
4.6 Discussion . 54
4.7 Conclusion . 55

CHAPTER 5 MALWARE DETECTION IN ADVERSARIAL SETTINGS: EX-
PLOITING FEATURE EVOLUTIONS AND CONFUSIONS IN MOBILE APPS 57
5.1 Overview . 57
5.2 MRV Design . 59
5.3 RTLD Feature Model . 64
5.4 Mutation strategy synthesis . 67
5.5 Program Mutation . 68
5.6 Testing on mutated apps . 73
5.7 Experiment . 73
5.8 Results . 76

vi

5.9 Conclusion . 81

CHAPTER 6 RELATED WORK . 83

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 89

REFERENCES . 94

vii

CHAPTER 1: INTRODUCTION

The increasing popularity of smartphones has made them a target for malware. App

markets that distribute software (i.e., applications, in short as apps) to smartphones leverage

both automated and manual app analyses to detect malware (e.g., Google Bouncer [1] and

Apple App store [2]). To improve the effectiveness of app analysis, existing research proposes

approaches that extract features from apps and compare those features against predefined

sets of signatures or patterns of malicious or privacy-infringing behaviors, such as method

calls, permissions, and information flows [3, 4, 5, 6, 7, 8, 9, 10].

Similar to PC malware, mobile malware has begun taking steps to evade detection by

camouflaging as benign apps [11]. For example, an app can hide malicious intentions by

using APIs that are appropriate for its expected functionality. As another example, an

app may present itself as a messaging app that sends SMS messages when the user clicks

the “send” button. However, it also sends SMS messages containing the user’s contact

information in the background without notifying the user. Since both of these apps use the

same SMS APIs, existing automated tools that consider method calls and information flows

are unlikely to distinguish between these cases. Notably, the key difference between these

two apps is that the malicious app uses the SMS APIs under an unexpected context.

In this dissertation, we present three main bodies of research on adversarial resiliency

of intelligent techniques used in mobile security systems. We first present how intelligent

techniques can be adapted for automated decision making in mobile security systems. Then

we investigate the possibility to design and implement systematic attack strategies that are

specifically adversarial to these newly-proposed intelligent techniques. Last, based on the

findings that the intelligent techniques are indeed susceptible to the adversarial attacks, we

develop techniques to further strengthen the adversarial resiliency of intelligent techniques

toward these adversarial attacks.

This dissertation showcases the three main bodies of research on a specific problem:

using contextual information in the mobile system to automate security decision making.

Contextual information is information used to describe the contexts of a security-sensitive

behavior (e.g., who initiate the behavior, when the behavior happens, what factor controls

the triggering of the behavior). The motivation to use contextual information in making

security decision is to improve the usability of the security system. We want to automate the

security decision making rather than bothering the user every time when security-sensitive

behaviors occur.

The first observation that we have on this problem is that malicious behaviors may share

1

the same security-sensitive operations as benign behaviors, and the differentiating factors

to distinguish malware and benign apps are the contexts under which the security-sensitive

operations happen. Chapter 3 (AppContext) illustrates our malware detection techniques

and findings based on such observation.

In Chapter 3, we identify contexts as differentiating features and present a technique to

extract contexts. However, we do not know which context feature can distinguish malware

from benign apps. In AppContext, we feed all context feature values as feature vectors to

train a machine learning model and the resulting machine learning model is used to decide

which feature vector corresponds to malware.

In Chapter 4 (EnMobile), we take an alternative route to extract contexts and leverage

the extracted contexts. We recognize entities in external environments of an app, and the

app’s interactions with such entities, as the key to comprehensively characterizing contexts

of security-sensitive behaviors in mobile apps. We develop an entity-based static analysis

to precisely extract such contexts. Then, to leverage contexts in detecting malware, instead

of using a machine learning model, we propose a signature language that characterizes an

app’s interactions with external entities, and compile a malware signature for each malware

family to detect malware.

After using both learning-based techniques and signature-based techniques to capture dis-

tinguishing context features, we come to question the robustness of the proposed approach.

We make our second observation: a context-based detection system could identify the dif-

ferentiating contexts between current malware and benign apps. However, some of the iden-

tified differentiating contexts might not be robust. Malware authors can easily change these

contexts while maintaining malicious behaviors. We name these contexts as differentiating

features but inessential features for malicious behaviors.

Contexts can be differentiating features but inessential features for many reasons. For

example, malware payloads usually copy/paste code from one payload to another. By doing

so, although a machine learning model could identify that some specific patterns occur in

malware much more often than in benign apps. These patterns are there only due to the

copy-paste practices but being inessential for malicious behaviors. Chapter 5 introduces

MRV, which leverages such observation and develops two major attacks to automatically

mutate malware to evade existing malware detection.

1.1 THESIS STATEMENT

The thesis statement is three-pronged:

2

• (1) Adopting intelligent techniques in existing mobile security systems can enhance the

accuracy of security decision making.

• (2) It is possible to design and implement systematic attack strategies that are specifically

adversarial to these newly-proposed intelligent techniques.

• (3) It is possible to further strengthen the adversarial resiliency of intelligent techniques

toward these adversarial attacks.

In this dissertation, we first investigate how intelligent techniques can be adapted for au-

tomated decision making in a mobile security system. Specifically, we propose an approach,

AppContext, to detect malware based on the insight that the context of a security-sensitive

behavior is a strong indicator of the maliciousness of the behavior. AppContext includes a

static-analysis technique for context extraction, which accurately identifies activation condi-

tions and guarding conditions for security-sensitive behaviors, and an abstraction to model

the contexts of security-sensitive behaviors based on the two unique characteristics of mal-

ware (activation conditions and guarding conditions). AppContext uses machine learning

techniques to further leverage the extracted context features to detect malware.

Then, to investigate the possibility to systematically attack existing intelligent techniques,

we propose Malware Recomposition Variation (MRV), which includes two practical attacks

(feature evolution attack and feature confusion attack) to effectively mutate existing malware

for evading detection. We develop a transplantation framework capable of inter-method,

inter-component, and inter-app transplantation to automatically mutate app features. We

evaluate the robustness of detection models and the differentiability of selected features of

malware detectors by systematically and automatically applying proposed attacks to existing

malware detectors. We also propose and evaluate three defense mechanisms to strengthen

the robustness of malware detectors against MRV attacks.

Last, to investigate the possibility to strengthen the adversarial resiliency of intelligent

techniques, we propose a static-analysis approach named EnMobile, to derive the entity-

based characterization by analyzing bytecode of a given app, including identifying entities

and entity references, extracting provenance information for flows, and matching against

signatures in the face of segmented flows. We identify malware interaction patterns with

entities and provenance information of the interactions as a corner stone of comprehensively

characterizing mobile malware, especially carefully-designed evasive malware. We also pro-

pose a novel signature-specification language, based on this characterization, that enables

security analysts to create robust, abstract specifications.

3

1.2 CONTRIBUTIONS

To confirm the thesis statement, this dissertation makes the following main contributions:

• The dissertation presents a new abstraction to model the contexts of security-sensitive

behaviors based on the two unique characteristics of malware (activation conditions and

guarding conditions). Such abstraction of the contexts should be detailed enough to re-

flect the intentions of security-sensitive behaviors, but not too redundant to include all the

low-level detailed information about system states. Our context definition is based on the

observation that activating conditions (e.g., events triggering the execution of payloads)

and guarding conditions (e.g., environmental attributes controlling the execution of pay-

loads) are the key elements of context information to differentiate malicious behaviors and

benign behaviors. Thus, we define the context for a security-sensitive behavior as a tuple

containing an activation events (the event that triggers the security-sensitive behavior),

and a series of context factors (environmental attributes controlling the execution of the

security-sensitive behavior).

• The dissertation introduces a novel approach for malware detection, AppContext, which

statically analyzes the security-sensitive behaviors in an Android app. To extract activa-

tion events, AppContext chains all inter-component communications (ICCs) [12] within

the app and constructs an extended call graph (ECG) to infer activation events. To com-

pute context factors, AppContext combines the control flows of all components from entry

points triggered by activation events to the method calls that trigger security-sensitive

behaviors in a reduced inter-procedure control flow graph (RICFG) [13], and leverages in-

formation flow analysis [14] to identify the environmental attributes that affect the control

flows.

• The dissertation presents entity-based characterization of mobile app behaviors. Such

characterization summarizes malware interaction patterns with entities and provenance

information of the interactions; such characterization is a corner stone of comprehensively

characterizing mobile malware. Introducing the concept of entity allows security analysts

to express entity interactions in an end-to-end fashion, making it much more independent

of specific realizations of that interaction, and hence more robust. We also propose a

novel signature-specification language, based on this characterization, that enables secu-

rity analysts to create robust, abstract specifications. Security analysts can specify an

information flow by just using the two end-point entities without enumerating all possible

intermediate-point entities (e.g., files, databases).

4

• The dissertation introduces the first approach that conducts semantic analysis of existing

malware to systematically construct new malware variants for malware detectors to test

and strengthen their detection signatures/models. In particular, we use two variation

strategies (i.e., malware evolution attack and malware confusion attack) following struc-

tures of existing malware to enhance feasibility of the attacks. Upon the given malware,

we conduct semantic-feature mutation analysis and phylogenetic analysis to synthesize

mutation strategies. Based on these strategies, we perform program transplantation to

automatically mutate malware bytecode to generate new malware variants.

1.3 DISSERTATION ORGANIZATION

The main parts of this dissertation are organized as follows.

Chapter 2. Background. This chapter introduces three main types of security threats

in mobile apps and related techniques in addressing corresponding security issues.

Chapter 3. Differentiating Malicious and Benign Mobile App Behaviors Using

Context. This chapter introduces AppContext, an approach of static program analysis that

extracts the contexts of security-sensitive behaviors to assist app analysis in differentiating

between malicious and benign behaviors.

Chapter 4. Adversarial-resilient Static Analysis: Entity-based Characteriza-

tion and Analysis of Mobile Apps. This chapter introduces EnMobile, which includes

new characterization of mobile-app behaviors and entity-based static analyses to accurately

characterize an app’s interactions with entities.

Chapter 5. Malware Detection in Adversarial Settings: Exploiting Feature

Evolutions and Confusions in Mobile Apps. This chapter introduces Malware Re-

composition Variation (MRV), an approach that conducts semantic analysis of existing mal-

ware to systematically construct new malware variants for malware detectors to test and

strengthen their detection signatures/models.

5

CHAPTER 2: BACKGROUND

Along with the boom of Android apps come severe security challenges. Existing techniques

fall short when facing emerging security problems in Android apps, such as zero-day or

polymorphic malware, deep and complex vulnerabilities, and untrustworthy app descriptions.

To fight against these threats, we propose a semantics/context-aware approach, and design

and develop a series of advanced techniques.

2.1 SECURITY THREATS IN MOBILE APPS

Android has dominated the smartphone market and become the most popular operating

system for mobile devices. In the meantime, security threats in Android apps have also

quickly increased. In particular, four major classes of problems, malware, program vul-

nerabilities, privacy leaks, and insecure app descriptions, bring considerable challenges to

Android app security. Although a lot of research efforts have been made to address these

threats, they have fundamental limitations and thus cannot solve the problems.

2.1.1 Malware Attacks

Malware steals and pollutes sensitive information, executes attacker-specified commands,

or even totally roots and subverts the mobile devices. To fight against malware, a signature-

based approach extracts malicious behaviors as signatures (such as bytecode or regular

expression) while a more complicated machine-learning-based approach learns discriminant

features from analyzing semantics of malware. Unfortunately, existing automated approaches

for Android malware detection and classification can be evaded both in theory and practice.

One major challenge for both signature-based approaches and learning-based approaches

is to form an informative feature set for the signature or detection model. To address

the challenge, existing approaches of malware detection tend to include as many features

as possible. For example, Drebin [15], a recent approach of malware detection, uses the

feature set containing 545,334 features. A recent study [16] shows that such large feature

set has numerous non-informative or even misleading features. The extracted features are

thus associated with volatile application syntax, rather than high-level and robust program

semantics. As a result, these approaches are also susceptible to evasion.

6

2.1.2 Software Vulnerabilities

Apps may also contain security vulnerabilities, such as privilege escalation [17], capabil-

ity leaks [6], permission re-delegation [18], component hijacking [19], and inter-component

communication vulnerabilities [12, 20, 21, 22]. These vulnerabilities are largely detected

via automatic static analysis [17, 18, 19, 12, 20, 21, 22] to guarantee the scalability and

satisfactory code coverage. However, static analysis is conservative in nature and may raise

false positives. Therefore, once a potential vulnerability is discovered, it first needs to be

confirmed; once it is confirmed, it then needs to be patched. Nevertheless, it is fairly chal-

lenging to programmatically accomplish these two tasks because there is a need of automated

interpretation of program semantics. So far, upon receiving a discovered vulnerability, the

developers have no choice but to manually confirm whether the reported vulnerability is

real. It may also be nontrivial for the (often inexperienced) developers to properly fix the

vulnerability and release a patch for it. Thus, these discovered vulnerabilities may not be

addressed for long time or not addressed at all, leaving a big time window for attackers to

exploit these vulnerabilities.

2.1.3 Untrustworthy Descriptions

Unlike traditional desktop systems, Android provides end users with an opportunity to

proactively accept or deny the installation of any app to the system. As a result, it is

essential that the users become aware of each app’s behaviors so as to make appropriate

decisions. To this end, Android markets directly present the consumers with two classes

of information regarding each app: (1) permissions requested by the app and (2) textual

descriptions provided by the developers. However, neither can serve the needs. Permissions

are not only hard to understand [18] but also incapable of explaining how the requested

permissions are used. For instance, both a benign navigation app and a spyware instance

of the same app can require the same permission to access GPS location, and yet use it for

completely different purposes. While the benign app delivers GPS data to a legitimate map

server upon the user’s approval, the spyware instance can periodically and stealthily leak the

user’s location information to an attacker’s site. Due to the lack of context clues, a user is not

able to perceive such differences via the simple permission enumeration. Textual descriptions

provided by developers are not security-centric. There exists very little incentive for app

developers to describe their products from a security perspective, and it is still a difficult

task for average developers to write dependable descriptions. Besides, malware authors

deliberately deliver misleading descriptions so as to hide malice from innocent users. Previous

7

studies [23, 24] have revealed that the existing descriptive texts are deviated considerably

from requested permissions. As a result, developer-driven description generation cannot be

considered trustworthy.

2.2 ANDROID MALWARE DETECTION

Existing automated approaches of Android malware detection and classification fall into

two general categories: (1) signature-based and (2) machine-learning-based. Signature-

based approaches [5, 25] look for specific patterns in the bytecode and API calls, but they

are easily evaded by bytecode-level transformation attacks [26]. Machine-learning-based

approaches [15, 27, 16, 28] extract features from an app’s behavior (such as permission

requests and critical API calls) and apply standard machine learning algorithms to perform

binary classification. Because the extracted features are associated with application syntax,

rather than program semantics, these detectors are also susceptible to evasion.

2.2.1 Signature-based Mobile Malware Detection and Analysis

Many of the existing Android anti-malware products use signature-based approaches for

malware detection. Signature-based approaches extract syntactic or semantic features [25]

to find signature(s) that matches with an existing database. DroidRanger [5] proposed

permission-based footprinting and heuristics-based schemes to detect new samples of known

malware families and identify certain behaviors of unknown malicious families, respectively.

Risk- Ranker [3] developed an automated system to uncover dangerous app behaviors, such

as root exploits and assess potential security risks. Signature-based approaches become

ineffective if variants of existing malware are generated through polymorphism.

2.2.2 Learning-based Mobile Malware Classification

Many efforts have also been made to automatically classify Android malware via machine

learning. Peng et al. [27] proposed a permission-based classification approach and introduced

probabilistic generative models for ranking risks for Android apps. Juxtapp [29] performed

feature hashing on the opcode sequence to detect malicious code reuse. DroidAPIMiner [30]

extracted Android malware features at the API level and provided light-weight classifiers to

defend against malware installations. DREBIN [15] took a hybrid approach and considered

both Android permissions and sensitive APIs as malware features. To this end, it performed

broad static analysis to extract feature sets from both manifest files and bytecode programs.

8

It further embedded all feature sets into a joint vector space. As a result, the features

contributing to malware detection can be analyzed geometrically and used to explain the

detection results. Despite the effectiveness and computational efficiency, these machine-

learning-based approaches extract features from solely external symptoms and do not seek

an accurate and complete interpretation of app behaviors.

2.3 MOBILE APP VULNERABILITIES

Although the permission-based sandboxing mechanism enforced in Android can effectively

confine each app’s behaviors by only allowing the ones granted with corresponding permis-

sions, a vulnerable app with certain critical permissions can perform security-sensitive be-

haviors on behalf of a malicious app. It is so called confused deputy attack. Mobile security

vulnerabilities can present in numerous forms, such as privilege escalation [17], capabil-

ity leaks [6], permission re-delegation [18], component hijacking [19], and inter-component

communication vulnerabilities [12, 20, 21, 22].

Prior work primarily focused on automatic discovery of these vulnerabilities. Once a

vulnerability is discovered, it can be reported to the developers and a patch is expected.

Some patches can be as simple as placing a permission validation at the entry point of an

exposed interface (to defeat privilege escalation and permission re-delegation attacks), or

withholding the public access to the internal data repositories (to defend against content

leaks and pollution).

2.3.1 Component Hijacking Vulnerabilities

Component hijacking may fall into the latter category. When receiving a manipulated

input from a malicious Android app, an app with a component hijacking vulnerability may

exfiltrate sensitive information or tamper with the sensitive data in a critical data repository

on behalf of the malicious app. In other words, a dangerous information flow may happen

in either an outbound or inbound direction depending on certain external conditions and/or

the internal program state. A prior effort has been made to perform static analysis to

discover potential component hijacking vulnerabilities [19]. Static analysis is known to be

conservative in nature and may raise false positives. For instance, static analysis may find a

viable execution path for information flow, which may never be reached in actual program

execution; static analysis may find that interesting information is stored in some elements

in a database, and thus has to conservatively treat the entire database as sensitive. As a

result, upon receiving a discovered vulnerability, the developers have to manually confirm

9

whether the reported vulnerability is real. However, it is nontrivial for average developers

to properly fix the vulnerability and release a patch.

2.3.2 Bytecode Rewriting

In principle, these aforementioned patching techniques can be leveraged to address the

vulnerabilities in Android apps. Nevertheless, to fix an Android app, a specific bytecode

rewriting technique is needed to insert patch code into the vulnerable programs. Previous

studies have utilized this technique to address various problems. I-ARM-Droid [31] rewrote

Dalvik bytecode to interpose on all the API invocations and enforce the desired security

policies. Aurasium [32] repackaged Android apps to sandbox important native APIs so as

to monitor security and privacy violations. Livshits and Jung [33] implemented a graph-

theoretic algorithm to place mediation prompts into bytecode program and thus protect

resource access. However, due the simplicity of the target problems, prior work did not

attempt to rewrite the bytecode programs in an extensive fashion. In contrast, to address

sophisticated vulnerabilities, such as component hijacking, a new machinery has to be devel-

oped, so that inserted patch code can effectively monitor and control sensitive information

flow in apps.

2.3.3 Instrumentation Code Optimization

The size of a rewritten program usually increases significantly. Thus, an optimization

phase is needed. Several prior studies attempted to reduce code instrumentation overhead

by performing various static analyses and optimizations. To find error patterns in Java

source code, Martin et al. [34] optimized dynamic instrumentation by performing static

pointer alias analysis. To detect numerous software attacks, Xu et al. [35] inserted runtime

checks to enforce various security policies in C source code, and remove redundant checks via

compiler optimizations. As a comparison, due to the limited resources on mobile devices,

there exists an even more strict restriction for app size. Therefore, a novel approach is

necessary to address this new challenge.

2.4 TEXT ANALYTICS FOR MOBILE SECURITY

Recently, efforts have been made to study the security implications of textual descriptions

for Android apps. WHYPER [23] used techniques of natural language processing to identify

the descriptive sentences that are associated to permissions. It implemented a semantic

10

engine to connect textual elements to Android permissions. AutoCog [24] further applied

machine learning techniques to automatically correlate the app descriptions to permissions,

and therefore was able to assess description-to-permission fidelity of apps. These studies

demonstrate the urgent need to bridge the gap between the textual descriptions and security-

related program semantics.

2.4.1 Automated Generation of Natural Language Description

There exists a series of studies on software description generation for traditional Java

programs. Sridhara et al. [36] automatically summarized method syntax and function logic

using natural language. Later, a similar approach [37] was proposed to improve the method

summaries by also describing the specific roles of method parameters and integrating pa-

rameter descriptions. Such approach offered heuristics to generate comments and describe

the specific roles of different method parameters. A further approach [38] was proposed

to automatically identify high-level abstractions of actions in code and described them in

natural language. The approach can also identify code fragments that implement high-level

abstractions of actions and express them as a natural language description.

In the meantime, Buse and Weimer [39] leveraged symbolic execution and code summa-

rization techniques to document program differences, and thus synthesize succinct human-

readable documentation for arbitrary program differences. Moreno et al. [40] proposed a

summarization approach that determines class and method stereotypes and uses them, in

conjunction with heuristics, to select the information to be included in the class summaries.

The goal of these approaches is to improve the program comprehension for developers. As

a result, these approaches focused on documenting intra-procedural program logic and low-

level code structures. On the contrary, they did not aim at depicting high-level program

semantics and therefore could not help end users to understand the risk of Android apps.

11

CHAPTER 3: DIFFERENTIATING MALICIOUS AND BENIGN MOBILE
APP BEHAVIORS USING CONTEXT

3.1 OVERVIEW

A fundamental difference between malicious and benign apps is that their design principles

are different. The principles guiding the design of benign apps are to meet requirements

from users. However, two basic principles [41] guide the design of most malware are to (1)

trigger the execution of their malicious payload (i.e., the part of malware carrying malicious

behaviors) frequently to seek maximal benefits; (2) evade detection to prolong their lifetime.

Guided by these principles, mobile malware leverages two major features of mobile platforms

as below.

Frequent occurrences of imperceptible system events. Unlike traditional software,

where events typically come from standard user inputs (keyboards and mice), a large portion

of behaviors in mobile apps are driven by events from the mobile system and its sensors [42].

Compared to UI-triggered events, which rely on the user to perform a specific sequence of

UI interactions in a specific app, system events are much more frequently triggered. Thus,

malware often leverages system events to increase the chances of invoking its malicious

payloads [4]. Moreover, system events can occur when the user is not using the app or

the device itself, malicious behaviors triggered by system events can easily evade the user’s

attentions, concealing the signs and traces of the malicious behaviors.

Informative external-environment states. Mobile apps can access numerous at-

tributes of the external environment (e.g., locations and system time). These attributes

often convey useful information about the current states of the environment. Such environ-

ment states are frequently exploited by malware to actively control the execution of malicious

behaviors. For example, the DroidDream [43] malware family suppresses its malicious be-

haviors during the day and invokes its malicious payload only at night. Since app reviewers

or automated tools, such as Bouncer [1], can analyze apps for only a short period of time

and with limited variations of environmental conditions, it is very likely that the reviewers

and the tools cannot detect the malware when the environmental conditions that trigger the

malicious behaviors are not met.

Based on the above-mentioned fundamental differences between malware and benign apps,

we propose that the context in which a security-sensitive behavior occurs is a strong indicator

of whether the security-sensitive behavior is malicious or benign. Malware executes its

malicious payloads only under certain unique contexts to reach a balance between prolonging

its life time and increasing the chance of being invoked. Such contexts are unique because

12

a balance can be reached only when malicious behaviors are invoked frequently enough to

meet the needs (e.g., a certain number of clicks per day to improve search engine rankings

of a website), but not too frequently for reviewers/users or tools to notice the abnormal

behaviors of the app. On the contrary, most of the contexts for benign behaviors are user

interactive, and thus are exploited less frequently by malware.

Expressing contexts in mobile apps is a non-trivial task. In mobile apps, various elements

could be used to describe the contexts in which security-sensitive behaviors occur. However,

due to the complex event-driven nature of mobile apps, expressing the contexts using all the

factors determining the invocation of security-sensitive behaviors would incur huge overhead

in extracting the context information and extra burden in differentiating benign behaviors

from malicious ones. Consider the example that a security-sensitive behavior can occur only

when an app component enters into the lifecycle method that invokes the behavior. Android

apps are component-based and each component has a lifecycle [44]. Any factor changing the

component’s state will determine the invocation of the lifecycle method, thus determining the

invocation of the security-sensitive behavior. Since there are a large number of these factors,

such as messages sent by other components, remote procedure calls by other components,

UI operations of users, and system events, incorporating all these factors into the definition

of context would make the analysis for extracting contexts expensive and bring noisy data

in differentiating benign behaviors from malicious ones.

To express contexts concisely and yet capture the essence to reflect intentions, we propose

an abstraction of the contexts. Such abstraction of the contexts should be detailed enough to

reflect the intentions of security-sensitive behaviors, but not too redundant to include all the

low-level detailed information about system states. Our context definition is based on the

observation that activating conditions (e.g., events triggering the execution of payloads) and

guarding conditions (e.g., environmental attributes controlling the execution of payloads)

are the key elements of context information to differentiate malicious behaviors and benign

behaviors. Thus, we define a context for a security-sensitive behavior as a tuple containing

an activation events (the event that triggers the security-sensitive behavior), and a series of

context factors (environmental attributes controlling the execution of the security-sensitive

behavior).

Although our context abstraction reduces the burden in inferring context information, we

still need to address two challenges posed by mobile apps. First, inferring activation events

requires the analysis of the entry points of the app. Unlike desktop programs that have

only one entry point for a program execution (i.e., the main function), a mobile app usually

has multiple entry points due to its event-driven nature. Also, not all entry points of an

app are triggered by external events, and some of them are triggered by inter-component

13

communications (ICCs) [12] within the app. It is possible that the program execution path

from the entry point triggered by an activation event to the invocation of a security-sensitive

behavior goes through a chain of components of the app. Existing analysis can identify only

the entry point of each component, and thus cannot be directly applied to infer activation

events. Second, computing context factors requires the analysis of control flows from the

activation events to the invocations of the security-sensitive behaviors. The ICCs in apps

complicate the analysis because a conditional statement controlling the execution of ICCs

may further control the security-sensitive behaviors in the target component of ICCs.

To address these challenges, we propose AppContext, an approach that statically analyzes

the security-sensitive behaviors in an Android app. To extract activation events, AppContext

chains all ICCs within the app and constructs an extended call graph (ECG) to infer

activation events. To compute context factors, AppContext combines the control flows of all

components from entry points triggered by activation events to the method calls that trigger

security-sensitive behaviors in a reduced inter-procedure control flow graph (RICFG) [13],

and leverages information flow analysis [14] to identify the environmental attributes that

affect the control flows.

To leverage the extracted contexts for differentiating malicious behaviors and benign ones,

we transform these contexts as features and use machine learning techniques, such as support

vector machine (SVM) [45], to classify security-sensitive behaviors as malware or benign

ones. We use machine learning techniques because the reasoning about the maliciousness

of a behavior is vague and subjective by nature. Simply using a static threshold (e.g., the

frequency of contexts) to differentiate malicious and benign behaviors does not perform well

because it is difficult to determine a proper threshold. For many subtle cases, machine

learning techniques are desirable to detect malware by taking multiple factors into account

and making decisions based on rich data sets statistically.

3.2 A MOTIVATING EXAMPLE

To illustrate our approach, we use a simplified malware example named MoonSms. Moon-

Sms is a repackaged app that carries both benign functionality and injected malicious Droid-

Dream [43] payloads. The benign functionality provides a variety of festive greetings for SMS

messages. Thus, it is rational that MoonSms requests the SEND SMS permission. Figure 3.1

shows that SmsManager.sendTextMessage (i.e., an API method that uses the SEND SMS

permission) is invoked under three contexts. Each invocation of this method is a security-

sensitive behavior of the app.

The first invocation of SmsManager.sendTextMessage occurs when the user clicks the

14

ActionReceiver.OnReceive()

Date date = new Date();
If(data.getHours>23 || date.getHours< 5){
 ContextWrapper.StartService(MainService);
…

MainService.OnCreate()

DummyMainMethod()

SendTextActivity$4.onClick()

SplashActivity.OnCreate()

SmsManager.sendTextMessage()

long last = db.query(“LastConnectTime");
long current = System.currentTimeMillis();
If(current – last > 43200000){
 SmsManager.sendTextMessage();
 db.save(“LastConnectTime”, current);
…

SendTextActivity$5.run()

MainService.b()

ContextWrapper.StartService()

(a) Part of the MoonSms’s call graph

(b) Code snippet of MoonSms’s manifest file

Figure 3.1: Motivating Example in MoonSMS App

“Send” button in an activity component named “SendTextActivity”. When the “Send”

button is clicked, its onClick event handler spawns a new thread that invokes SmsMan-

ager.sendTextMessage.

The second invocation of SmsManager.sendTextMessage occurs when the signal strength

of the device changes. When the signal strength changes, the system broadcasts an In-

tent containing the “SIG STR” action. MoonSms registers a broadcast receiver component

named “ActionReceiver” (Lines 8-12 in Figure 3.1(b)) to receive this Intent. When this In-

tent is broadcasted, ActionReceiver is activated and its onReceive method begins execution.

ActionReceiver’s onReceive method starts a service component named “MainService” by

invoking the startService API method (when the current time is between 11 pm and 5 am),

which begins executing MainService’s onCreate lifecycle method. Finally, MainService’s on-

Create method invokes another method named b, which calls SmsManager.sendTextMessage.

The third invocation of SmsManager.sendTextMessage occurs when MoonSms is launched.

When the MoonSms is launched, its main activity component, “SplashActivity” (Lines 1-6 in

Figure 3.1(b)), begins execution in its onCreate lifecycle method. SplashActivity’s onCreate

method invokes SmsManager.sendTextMessage when the current time is at least 12 hours

after the “LastConnectTime” is saved in a database.

15

In the preceding example, the first invocation is not malicious because reviewers can

analyze the content on the screen and confirm that the security-sensitive behavior is expected

to occur. However, the second and third invocations cannot be justified by the functionality

that MoonSms is expected to provide. By inspecting the behaviors, we find that the second

and third invocations are malicious because these invocations send SMS to a confirmed

malicious server.

This example demonstrates that the contexts of security-sensitive behaviors are essential

to differentiate between benign and malicious behaviors, especially when the benign function-

ality provided by apps may rationalize the requested permissions, and the security-sensitive

method calls allowed by the requested permissions can also be used by malicious functional-

ity. AppContext focuses on exposing the contexts of security-sensitive behaviors. We refer

back to this example in the rest of the chapter to illustrate how AppContext formalizes the

abstraction of contexts of security-sensitive behaviors and extracts these contexts from app

binary code.

3.3 CONTEXT OF SECURITY-SENSITIVE BEHAVIOR

In this section, we formally define the context of a security-sensitive behavior.

We consider a security-sensitive behavior as an invocation of a security-sensitive

method under a certain context. A security-sensitive method is a method that meets at

least one of the following three requirements: (1) Permission-protected methods. Some

methods in the Android API require permissions to be invoked. Such methods usually ac-

cess security-sensitive resources and data (the detailed list of the methods is specified in

PScout [46]). (2) The methods that is either a source method or a sink method (output

channel) of an information flow. An information flow consists of a source from which the

security-sensitive data may originate and a sink to which the data may be sent (the detailed

list of sources and sinks are specified in Susi [47]). Sources and sinks are not always protected

by permission; for example, FileOutputStream.write is a sink method to write the data to a

file but does not require Android permissions to be invoked. A permission-protected method

may not be a source/sink method; for example, ContextWrapper.setWallpaper is protected

by permission SET WALLPAPER, but is neither a source nor a sink. (3) Reflection meth-

ods [48] and dynamic code-loading methods [49]. Resolving reflection or dynamic loading

methods in static analysis is a known difficult problem with fundamental limitations [50].

For this reason, we do not attempt to resolve these methods, but rather treat them as being

security sensitive. In doing so, we are being conservative, because these methods may result

in invoking other security-sensitive methods. There are a few methods in the Android API

16

allowing apps to load and invoke code at runtime that has also been leveraged by existing

malware [4] (a detail list is listed on our project website [51]).

Our definition of context (Definition 4.6) includes two important characteristics that

determine the invocations of security-sensitive method calls: activation events (Definition

4.2) and context factors (Definition 4.5). Such definition represents a set of essential

elements for decision making in app inspection.

The activation events are the external events that trigger the security-sensitive methods.

The external events include UI events (events triggered by interactions on apps’ graphical

user interfaces), SYSTEM events (events initiated by the system-state changes such as

receiving SMS), and HARDWARE events (events triggered by the interactions on the device

interfaces, such as pressing the HOME or BACK button). Activation events connect security-

sensitive behaviors to the behaviors’ “initiator” in the external environment (e.g., users or

system), as the events are triggered when the external environment changes or the mobile

system reaches a certain state.

To infer activation events of security-sensitive method calls, we analyze the entry points

(e.g., ActionReceiver.OnReceive() and SendTextActivity$4.onClick() in Figure 3.1(a)) of call

graph that contains the security-sensitive method calls. In an Android app, not all entry

points are triggered by activation events, and some of entry points can be triggered only

by inter-component communications. For example, MainService.OnCreate() is triggered by

startService() in the component ActionReceiver. An analysis needs to trace back a chain

of entry-point methods executed before the invocation of the security-sensitive methods to

identify the entry points that can be used to infer activation events.

To assist the analysis to locate entry points triggered by activation events, we first define

an extended call graph that connects all the ICCs in an app.

Definition 4.1. An extended call graph ECG = (N,E) for an app p is a directed graph

in which each node n ∈ N denotes a method in p, and each edge e(a, b) ∈ E denotes either

a calling relationship from a to b or a in one component A calls b in another component B.

An entry point of the ECG is a node ne that has no incoming edges (i.e., for each nodes

n ∈ N , e(n, ne) /∈ E).

An extended call graph (ECG) is a call graph with edges representing ICCs. The

entry point of ECG can be triggered by activation events. For example, Figure 3.2 shows

part of MoonSms’s ECG. Compared to the corresponding call graph (CG) shown in

Figure 3.1(a), the ECG has an ICC edge from ActionReceiver.OnReceive to MainSer-

vice.OnCreate, connecting the component ActionReceiver to component MainService. ECG

enables our approach (Section 3.4) to link the security-sensitive method call (SmsMan-

ager.sendTextMessage) to the entry point ActionReceiver.OnReceive, and the activation

17

ActionReceiver.OnReceive()

MainService.OnCreate()

SendTextActivity$4.onClick()

SplashActivity.OnCreate()

SmsManager.sendTextMessage()

SendTextActivity$5.run()

MainService.b()

Figure 3.2: ECG of CG shown in Figure 3.1(a)

event (signal strength changes) can be further inferred from the entry point. We next define

the activation event.

Definition 4.2. An activation event actne,nk
of a method call nk is the event that triggers

the entry point ne in an extended call graph ECG = (N,E) and there exists a call path

P = nen1n2...nk such that e(ne, n1) ∈ E and for i = 1, 2, ..., k, 1 ≤ k, e(ni−1, ni) ∈ E.

Activation events are identified by their action types, which can be inferred from entry

points. Specifically, the action types of UI events are their corresponding operation types

(e.g., click, long click), the action types of system events are state changes that trigger

the events (e.g., signal strength changes), and the action types of hardware events are the

component lifecycle phases that the events lead to (e.g., onPause, leaving the component;

onResume, re-entering the component).

The context factors are environmental attributes that control the execution of security-

sensitive method calls. The values of context factors can affect control flows from entry points

triggered by activation events to security-sensitive method calls. To precisely describe the

control flows in an Android app, we adopt and simplify the definition of an inter-procedure

control-flow graph (ICFG) from Harrold et al. [13] and define a reduced inter-procedure

control-flow graph (RICFG).

Definition 4.3. Given an ICFG, an entry point ne, and a method call nk, a reduced

inter-procedure control-flow graph RICFGne,nk
is a subgraph of ICFG that contains all the

paths from ne to nk.

For example, Figure 5.9(a) shows an RICFGne,nk
where the entry point ne is ActionRe-

ceiver.OnReceive() in the ECG (shown in Figure 3.2) and the security-sensitive method call

nk is sendTextMessage.

Apps usually obtain the values of the environmental attributes by using certain Java/An-

droid API methods (e.g., currentTimeMillis(), getInstalledApplications()). We denote such

API methods as environment-property methods. We next define control dependence among

statements and use control dependence and environment-property methods to define context

18

factors.

Definition 4.4. In a program, if a statement ns controls whether a statement n is

executed, n is control dependent on ns.

Definition 4.5. Given an RICFGne,nk
and a set of conditional statements Sne,nk

in

RICFGne,nk
that nk is control dependent on, a context factor fne,nk,si is an environmental

attribute whose value is used in a conditional statement si where si ∈ Sne,nk
.

The context factors are computed by analyzing the information flows (data dependence)

from environment-property methods to conditional statements that control the execution of

security-sensitive method in the RICFG. Based on these definitions, we formally define a

context :

Definition 4.6. A context Cne,nk
for method call nk is a tuple consisting of the activation

event actne,nk
and the set of context factors {fne,nk,si |si ∈ Sne,nk

} where Sne,nk
is the set of

conditional statements in RICFGne,nk
.

3.4 APPROACH

We next present AppContext, our approach that extracts the values of elements in the

context definition defined in Section 3.3. First, AppContext constructs a call graph from

an app’s binary and performs static analysis to locate its security-sensitive behaviors. Next,

AppContext identifies activation events by the entry points of the computed call graph, and

converts the call graph into an ECG by using ICC information. Then, AppContext constructs

RICFGs for each security-sensitive method calls in the ECG and traverses each RICFG to

find conditional statement sets. Next, AppContext finds context factors whose values are

used in conditional statements via information flow analysis and then generates the complete

contexts using identified activation events and context factors. Finally, AppContext classifies

the security-sensitive behaviors by using the features of the extracted contexts.

3.4.1 Locating Security-Sensitive Behaviors

AppContext locates security-sensitive method behaviors by constructing call graphs and

locating security-sensitive method calls within the call graphs (we leverage Flowdroid’s call

graph building [52]; please check their paper [14] for details). Security-sensitive method calls

are divided into three groups by the information used to identify them, as illustrated below.

First, the permission-protected API methods, source or sink methods, reflection methods,

and dynamic code-loading methods are all identified by using a method signature. If a

19

method matches a method signature in this group, AppContext extracts and saves the

method name, permission, and the entry points for later analysis.

Second, the methods that read or write security-sensitive Content Providers are identified

by the URIs of the content providers. To access a content provider, the URI designating the

recipient content provider is passed to a ContentResolver class (Section 2). Only the method

calls using the URIs of security-sensitive content providers are security sensitive. The list of

URIs designating security-sensitive content providers is provided in PScout [46]. If the URI

parameter of a method is in the URI list, AppContext saves the URI, permission, and the

entry points for later analysis.

Finally, the methods that send or receive security-sensitive Intents are identified by the

Intent-action strings. An app can call sendBroadcast or registerReceiver with Intent action

strings to send or receive specified Intent messages. The list of Intent-action strings requiring

permissions to send or receive is provided in PScout [46]. If the intent parameter in the

method is in the list, AppContext saves the Intent-action string, permission, and the entry

points for later analysis.

3.4.2 Identifying Activation Events

As discussed in Section 3.3, the activation events are represented by their action types.

Action types can be extracted from the app’s entry points. AppContext identifies activation

events by analyzing two types of entry points. (1) For system events handled by intent

filters and hardware events, their entry points are lifecycle methods. If the components of

the lifecycle methods have intent filters specified for system Intent messages, the entry points

are invoked by system events. Otherwise, the entry points are invoked by hardware events.

(2) For both system events captured by event-handling methods and UI events, their entry

points should be event-handling methods.

Algorithm 3.1 presents the analysis used to extract activation events for the given security-

sensitive method calls. The analysis returns a list of activation events (E) for each security-

sensitive method call. The analysis takes security-sensitive method calls and their corre-

sponding entry points as input. An entry point belongs to one of two above-mentioned

categories: lifecycle methods and event-handling methods.

For the first category of entry points, lifecycle methods, the analysis first decides whether

the activation event could be a system event captured by intent filters (Line 6). If the

component that the lifecycle method belongs to has intent filters, for each intent filter, the

attributes in the intent filters are used to represent the activation events of the contexts.

For each activation event, AppContext create a tuple and saves activation event along with

20

Algorithm 3.1: IdentifyActivationEvent
Inputs : B: A set of contexts without context factors and activation events (i.e., tuples consisting of

security-sensitive method calls and their entry points in call graphs)
CG: The call graph of the whole app
A: App binary code

Outputs: E: A set of contexts without context factors (i.e., tuples consisting of security-sensitive method calls, their
activation events, and corresponding entry points)
ECG: The extended call graph of the whole app

1 begin
2 E ← ∅
3 foreach b ∈ B do
4 entrypoint← getEntrypoint(b)
5 if isLifeCycleMethods(entrypoint) then
6 if hasIntentF ilters(entrypoint, A) then

// System events (by intent filters)

7 Filters← getF ilters(entrypoint, A)
8 foreach filter ∈ Filters do
9 E.addF ilter(b, filter)

10 end

11 end
12 ICC ← findICCs(CG, entrypoint)
13 if ICC 6= ∅ then

// adding ICC edges

14 CG.add(ICC)
// Recursively invoke the algorithm

15 E ← replaceEntryPoint(b, CG)
16 E.addAll(identifyActivationEvent(E,CG,A))

17 end
18 else

// Hardware events

19 E.addLifeCycle(c)

20 end

21 end
22 if isEventHandler(entrypoint) then
23 E.addHandler(c)
24 end

25 end
26 ECG← CG
27 return E
28 end

the method call and the entry point in the tuple to the E list for later analysis (Line 9).

The analysis then decides whether the lifecycle method can be invoked by ICC calls

(e.g., startService, sendBroadcast) (Line 13). If there are method calls invoking the lifecycle

method, the analysis adds ICC edges to the CG (Line 14), and replaces entry points of the

ICC calls with the original entry points (Line 15). Then Algorithm 3.1 is invoked recursively

with the augmented CG (i.e., ECG) and new entry points to cover all activation events.

The activation events are then saved in the tuples for later analysis (Line 16).

If the lifecycle method cannot be invoked from app code, then the security-sensitive

method call is triggered by hardware events. We use the attributes of the lifecycle methods

to represent the activation events, and save the activation events in the tuples for later

analysis (Line 19).

For the second category of entry points, event-handling methods, the analysis uses the

21

ActionReceiver.OnReceive()

MainService.OnCreate()

Entry

If(data.getHours>23 || date.getHours< 5)

StartService(MainService)

Date date = new Date();

b();

MainService.b()

SmsManager.sendTextMessage()

true
ActionReceiver.OnReceive()

MainService.OnCreate()

MainService.b()

SmsManager.
sendTextMessage()

(a) (b)

Figure 3.3: An RICFG (a) and its corresponding ECG subgraph (b)

If(data.getHours>23
|| date.getHours< 5)

If(current – last > 43200000)

Date date = new Date(); db.query(“LastConnectTime")

System.currentTimeMillis()

Conditional Stmt

Information Flow

Environment-property
Method

Calendar SystemTime DataBase

Context Factors
SmsManager.sendTextMessage()

Figure 3.4: Context factors of MoonSms in Figure 3.1

attributes of the UI event-handling methods or system event-handling methods to represent

the activation events, and save the activation events in the tuples for later analysis (Line

23).

3.4.3 Extracting Context Factors

After computing the ECG and activation events for a security-sensitive method call,

AppContext constructs and traverses the RICFGs to extract context factors. As shown in

Section 3.3, the RICFGs need to be constructed based on the ECG. Thus, for each security-

sensitive method call, AppContext identifies the ECG’s entry points that can lead to the

invocation of the method. Then AppContext obtains the ICFG of the app by connecting the

CFG of each node on the ECG. Based on the ICFG, AppContext constructs the RICFGs

from each entry point to the security-sensitive method call. For each RICFG, AppContext

traverses the RICFG to identify the conditional statements on which the security-sensitive

method is control-dependent. Finally, AppContext saves the set of extracted conditional

statements with the security-sensitive method call and the corresponding activation events.

Figure 3.4 presents the analysis used to extract context factors. For each conditional

statement extracted in the previous step, AppContext tracks the information flow from the

environment-property methods (Section 3.3) to the conditional statement. The sources of

22

Table 3.1: Feature categories for classification

Features of Behavior Information
Permission Security-sensitive method call

Features of Activation Event
Hardware event System event UI event

Features of Context Factors
List of environmental attributes

the information flows indicate which context factors control the invocation of the security-

sensitive behaviors. In the MoonSms example, the context factors are Calendar information,

system time, and database information. By combining the context factors with correspond-

ing activation events of the security-sensitive method calls, AppContext generates the com-

plete context tuples.

3.4.4 Classifying Security-Sensitive Behaviors

Leveraging the extracted contexts to classify security-sensitive behaviors as malicious

and benign, we formulate the detection of malicious behaviors as a classification problem.

AppContext leverages a supervised learning approach to train a classifier to compute the

conditional likelihood of a security-sensitive behavior being malicious versus benign given

context features. Specifically, AppContext uses a support vector machine (SVM) as the

classifier because SVM is very resilient to over-fitting even with a large number of values.

Classification is performed using a set of features. A feature is a function that associates

a training example with a value, i.e., a function evaluates a certain single domain-specific

criterion for the example. AppContext leverages the list of features in Table 3.1 for classifying

security-sensitive behaviors. The list consists of the features about the security-sensitive

behavior itself, and the features describing the contexts of the behavior: the activation

events and the context factors. With this list of features, AppContext generates a feature

vector for each context of a security-sensitive behavior.

Table 3.2 shows an example of feature vectors. For features describing behavior infor-

mation (i.e., Permission, Method Call), the feature values are the name of the permission

or method. For methods such as source/sink, reflection, or dynamic loading methods that

do not have corresponding permissions (i.e., do not require permissions to be invoked),

the permission names are predefined strings such as “SOURCE”, “SINK”, “REFLEC-

TION”, “DYNLOADING”. For features describing activation events, the feature values

are the action types (Section 3.3) of the events. For features describing the context factors

23

Table 3.2: Feature vectors for MoonSms example

Permission Method Call Hardware System UI F3* F4* F5* ... F142

SEND SMS sendTextMessage N/A SIG STR N/A 1 0 0 ... 0
SEND SMS sendTextMessage EnterApp N/A N/A 0 1 1 ... 0
SEND SMS sendTextMessage N/A N/A Click 0 0 0 ... 0
* F3 = Calendar, F4 = System Time, F5 = Database

(F1, F2, ..., F142), the feature values are either “1” (the context contains the context factor)

or “0” (the context factor is not part of the context).

3.5 RESULTS

To evaluate the effectiveness of AppContext and using context information to detect

malware, we have conducted three evaluations.

We seek to answer the following research questions:

• RQ1: How effective is AppContext in identifying malware? How does AppContext com-

pare to the approach without context information in terms of the effectiveness of malware

identification?

• RQ2: How do activation events and context factors in our context definition contribute

to the effectiveness of malware identification?

• RQ3: How accurate is our static analysis in inferring contexts?

3.5.1 Study Subjects

Our subject apps include 846 Android apps in total (633 benign apps, 202 malicious apps,

and 11 open-source apps). To collect malicious apps, we randomly select 130 malicious apps

from a malware dataset collected by Zhou et al. [4], 30 malicious apps from the VirusShare

dataset [53], and 50 malicious apps from the Contagio dataset [54]. We also select 17

malicious apps identified by VirusTotal [55] that were posted on Google Play in 2013 but

were later removed by Google. Our final malware dataset contains 202 malicious apps. These

malicious apps cover the majority of existing Android malware families from 2011 to 2014,

which are rapidly evolving to circumvent detection by various mobile security software.

To collect benign apps, we download the top 500 apps for each category from Google Play

as of January 2013. Because FlowDroid runs out of memory on large apps, to ensure that

24

enough apps can be analyzed without errors, for each category, we randomly select 20 apps

under 5 MB and 20 apps without size restriction from these top 500 apps. We also exclude

the apps identified as malware by VirusTotal and the apps that cause FlowDroid to throw

exceptions or timeout. The final benign dataset contains 633 apps. To collect open-source

apps, we randomly select 15 apps from F-Droid [56]. Among these 15 apps, we exclude 4

apps that do not have security-sensitive behaviors. Our open-source dataset contains 11

apps.

We apply AppContext to extract contexts from the subject apps. AppContext runs on a

desktop with 3.4 GHz Intel Core i7 processor and 8 GB of memory. We set the timeout of

AppContext as 80 minutes, and AppContext exceeds the timeout limit for 162 apps, which

are then excluded from the later study. For the 846 apps being used as subjects, AppContext

takes on average 647 seconds to finish the analysis of one app.

3.5.2 RQ 1: Overall Effectiveness

To answer RQ1, we label the extracted contexts from the subject apps, and perform a

ten-fold cross-validation to evaluate the overall effectiveness of AppContext. To make a fair

comparison with the existing approaches that do not use context information, we apply the

supervised learning approach using all the features of AppContext, and then apply the same

supervised learning approach using the features containing only the behavior information

shown in Table 3.1 (i.e., security-sensitive method calls and permissions). The results are

shown in Table 3.3 and Table 4.4, respectively (the second and third rows).

Labelling security-sensitive method calls. Because there is no ground truth for

determining a security-sensitive method call as malicious or benign, as a best-effort solution,

we systematically label security-sensitive method calls as malicious based on the existing

malware signatures [25, 57, 55]. Specifically, we label a security-sensitive method call as

malicious if the class/package name of the method call matches any class/package name that

we collected from the existing malware signatures. We label the rest of security-sensitive

method calls as benign.

We collect class/package names from malware signatures of three sources. (1) Ap-

poscopy [25] includes a list of semantic signatures for existing malware along with a tool

to check apps’ binaries against the signatures. We run all of the subject apps using a tool

that we reproduced based on Apposcopy and record the names of the packages and classes

that match the signatures. (2) We use class names in Androguard’s signature database [57].

(3) The VirusTotal [55] service inspects malware by using a number of antivirus software

and reports the family that the malware belongs to. We identify the malware family that

25

each of our malicious apps belongs to using VirusTotal, and we identify the package/class

names of the malicious payloads from the online technical reports provided by the antivirus

software vendors for each malware family.

Cross Validation. We use the labeled behaviors (i.e., method calls) both as training

and test data in a ten-fold cross-validation [58], which is a standard approach for evaluating

machine-learning techniques. It works by randomly dividing all data into 10 equally sized

buckets, training the classifier on 9 of the buckets, and classifying the remaining bucket for

testing. This process is repeated 10 times, with each of the 10 buckets used exactly once as

the testing data. We report the average precision and recall in Table 4.4.

Results. We evaluate the effectiveness of AppContext in identifying both malicious be-

haviors and malicious apps. An app is identified as a malicious app if any of its security-

sensitive method calls is identified as malicious. Table 3.3 and Table 4.4 show that App-

Context (the row of Complete Context) has higher precision and recall in both identifying

malicious behaviors and identifying malware than the existing approach that does not use

context information (the row of Behavior Information). We next present two major reasons

that cause such misidentification.

First, AppContext misidentifies a number of security-sensitive method calls triggered by UI

events and without context factors. This result suggests that compared to system events and

hardware events, UI events have less indication of the maliciousness of a security-sensitive

method call.

Second, a few method calls are incorrectly identified as malicious because we mistakenly

label similar benign behaviors as malicious. In malicious payloads, a small number of

security-sensitive method calls may not have malicious intentions, such as MediaPlayer.pause

protected by the WAKE LOCK permission in malicious payloads. However, as we label all

security-sensitive method calls in a malicious payload, AppContext incorrectly identifies such

benign method calls as malicious. This result suggests that the identification results can be

improved if the training set for the classifier is labeled more accurately.

We also evaluate the effectiveness of AppContext in identifying malicious reflective calls

or dynamic code-loading method calls. AppContext shows high precisions and recalls in

identifying malicious method calls. AppContext correctly identifies 872 out of 922 malicious

method calls but also misidentifies 180 benign method calls as malicious (i.e., 82.9% precision,

94.5% recall). AppContext correctly identifies 710 out of 787 malicious dynamic code-loading

method calls but misidentifies 137 benign method calls as malicious (i.e., 83.8% precision,

90.2% recall). For all 56 malicious apps using root exploits (which are commonly launched

by dynamic code loading [4]), only one malicious app (i.e., AsRoot) was not identified

by AppContext. As the detailed behaviors of reflective calls and dynamically-loaded code

26

Table 3.3: Malicious security-sensitive behaviors identified by AppContext

Features Used P(%) R(%)

Complete Context (C) 94.8 84.8

Behavior Information (B) 79.0 37.3

Activation Events (E) 83.2 49.5

Context Factors (F) 90.6 71.2

B & E 88.0 71.3

B & F 90.2 76.9

E & F 92.5 77.3

Table 3.4: Identification of malware by AppContext

Features Used TP FP FN P(%) R(%)

Complete Context (C) 192 27 10 87.7 95.0

Behavior Information (B) 169 78 33 68.4 83.6

Activation Events (E) 163 78 39 67.6 80.6

Context Factors (F) 150 26 52 85.2 74.2

B & E 193 63 9 75.3 95.5

B & F 180 46 22 79.6 89.1

E & F 187 27 15 87.3 92.5

TP = True Positive, FP = False Positive, FN = False Negative

P = Precision, R = Recall

were unobtainable in static analysis, such results show the advantage that AppContext

can differentiate benign and malicious security-sensitive method calls without knowing the

detailed behaviors being triggered.

3.5.3 RQ2: Effectiveness of Activation Events and Context Factors

RQ2 evaluates the effectiveness of both activation events and context factors in identifying

malicious app behaviors. To answer RQ2, we use only partial features listed in Table 3.1

to train the classification model. We apply the same supervised learning approach used in

RQ1 with the features being the activation events (the row of Activation Events), context

factors (the row of Context Factors), behavior information and activation events (the row of

B & E), behavior information and context factors (the row of B & F), and activation events

and context factors (the row of E & F), respectively. The results are shown in Table 3.3 and

Table 4.4.

Results. We evaluate the effectiveness of activation events by comparing the result of the

analysis using activation events (the rows of Complete Context, B & E, and E & F) to the

result of the analysis not using activation events (the rows of B & F, B, and F) in Table 3.3

and Table 4.4. The comparison shows that adding the features of activation events to the

27

analysis improves both the precision and recall of the identification results. We find that

the improvements are mainly because activation events help effectively identify malicious

method calls that have no context factors. The activation events in some of these malicious

method calls are often used by benign apps to update the UI to inform users that certain

events have occurred. For example, UMS DISCONNECTED is used to inform users that

the device has been disconnected from USB mass storage, SIG STR is used to inform users

that the phone signal strength changes, and ACTION POWER CONNECTED is used to

inform users that external power has been connected to the device. Because these events are

seldom used in benign apps to trigger security-sensitive method calls, the activation events

can effectively differentiate benign and malicious behaviors with no context factors.

We also evaluate the effectiveness of context factors by comparing the results of the

analysis using context factors (the row of Complete Context, B & F, and E & F) with

the result of analysis not using context factors (the row of B & E, B, and E). The result

shows that the analysis using context factors has relatively higher precisions (over 90% for

identifying malicious behaviors and around 80% for identifying malware). We find that

the improvement in the precision is mainly because context factors effectively help identify

the malicious behaviors whose activation events are UI events. We also find that context

factors can disambiguate the malicious and benign intentions for certain vague cases when

security-sensitive method calls are protected by commonly-used resources (e.g., Internet).

For example, we find that some of benign apps and malware will both connect to servers

(URL.openConnection) after the apps start, and thus the activation events and behaviors for

both apps are the same. However, the context factors of malware include data from an Intent

message (Intent.getExtras) and data from the Internet (URL.openStream), suggesting that

whether the apps connect to the server or not is determined by whoever sends the Intent

message or the Internet data. Such context factors demonstrate the command & control

nature of certain families of malware.

In addition, context factors also reflect controls of security-sensitive method calls in benign

apps. For example, we find that a few benign apps and malware obtain device information

(TelephonyManager.getDeviceId etc.) after the apps start. The difference between two types

of apps is that the benign apps invoke getDeviceId only when auto logins are successful (i.e.,

the context factors for getDeviceId include information from the database or the Internet).

But malware directly sends device information to the server (i.e, no context factors).

Finally, we further evaluate the effectiveness of contexts by running analysis using features

of activation events and context factors (the row of E & F). The precision and recall of the

analysis are comparable as the precision and recall of the analysis using complete context.

Such results suggest that contexts can identify a number of malicious method calls without

28

knowing the detailed behaviors being triggered, consistent with the analysis result for be-

haviors that invoke reflection or dynamic code-loading methods. Both results indicate that

the maliciousness of a security-sensitive method call is more closely related to the behavior’s

intention (reflected via contexts) than the type of the security-sensitive resources that the

behavior accesses.

3.5.4 RQ3: Accuracy of Static Analysis

To evaluate the effectiveness of the extracted contexts, we dynamically verify whether

the security-sensitive method is invoked by triggering the activation events and configuring

context factors based on the contexts. The execution path triggered by the activation events

may vary when the context factors are assigned different values. In this evaluation, we use

only open-source apps as the subjects. The main reason is that these apps come with source

code, which can be used to easily infer the correct values of context factors in controlling the

execution of the security-sensitive method calls. AppContext is applied on 11 open-source

apps to extract contexts and the analysis time is logged.

To verify the correctness of context factors, we analyze the source code to check whether

a security-sensitive method call is control dependent on each context factor. If the control

dependence exists, we determine the values of the context factors that lead to the execution

of the security-sensitive method call. We then configure the external environment based on

the inferred values of context factors and trigger the activation events of 88 security-sensitive

behaviors of these apps.

We use the activity manager through the Android Debug Bridge (ADB) to simulate

system events, and manually simulate hardware and UI events. We configure the values

of each context factor by changing configuration of emulators. Then, we use the profiler of

the activity manager to log the executions of the apps. To monitor the execution traces, we

start the profiler before firing the activation events and stop the profiler 5 seconds afterwards.

The preceding evaluation process has some limitations. The profiler cannot trace the

invocations of the onCreate or onDestoy methods, because the profiling must be started after

the creation of an app’s process and be stopped before the destruction of the app’s process.

We also exclude events that cannot be simulated through ADB such as error events (e.g.,

triggering the onError method in MediaPlayer.OnErrorListener) and the context factors

whose value we cannot manipulate such as data from URL connection).

Results. Table 3.5 shows our evaluation results. Among the 88 generated contexts, we are

able to confirm 82 contexts (i.e., 93.2% accuracy). Six contexts cannot be verified because the

activation events could not trigger the security-sensitive method calls. The context factors

29

Table 3.5: Effectiveness of context extraction

App # Context # Verified Context Time(sec)

11 88 82 291

of all the contexts whose activation events could trigger the security-sensitive method calls

are accurate. The average analysis time is 291 seconds, which is acceptable for the app

reviewing process. Note that the evaluation result is conservative since the inferred values

for context factors may not be accurate.

3.6 CONCLUSION

In this chapter, we introduce AppContext, an approach of static program analysis that

extracts the contexts of security-sensitive behaviors to assist app analysis in differentiating

between malicious and benign behaviors. We implement a prototype of AppContext and

evaluate AppContext on 202 malicious apps from various malware datasets, and 633 benign

apps from the Google Play Store. AppContext correctly identifies 192 malicious apps with

87.7% precision and 95% recall. Our evaluation results suggest that the maliciousness of a

security-sensitive behavior is more closely related to the intention of the behavior (reflected

via contexts) than the type of the security-sensitive resources that the behavior accesses.

30

CHAPTER 4: ADVERSARIAL-RESILIENT STATIC ANALYSIS:
ENTITY-BASED CHARACTERIZATION AND ANALYSIS OF MOBILE

APPS

4.1 OVERVIEW

Malware detection based on behaviors represents a prominent class of malware-detection

approaches where characteristics of known malware samples are used as a basis of iden-

tifying new malware [25, 4, 59, 60, 61, 62, 63, 64]. These approaches typically work in

two phases: malicious-behavior characterization and malicious-behavior detection. The

behavior-characterization phase is used to derive a specification of the malicious behav-

iors, which may either be manually specified as malware signatures or automatically mined

as malware models in a suitable representation. In the behavior-detection phase, techniques

of static or dynamic program analysis are used to analyze a given mobile app for possible

matches against the specified signatures or mined models.

Limitations of existing approaches. Existing malware detection approaches [25, 65,

14, 22, 66, 67, 28, 68, 15, 30, 25] (based on specified signatures or mined models) suffer from

the overfitting problem (i.e., tailored to be capable of detecting only the malware samples

used for deriving the signatures or models) for two main reasons: limited expressiveness and

limited accuracy.

Limited expressiveness. The existing approaches primarily use information-leaking

dataflows within the app as the basis of a malicious behavior. This characterization is

ill-equipped to capture the roles of each party (e.g., initiator) for the malicious behavior

and the provenance of the malicious behavior (e.g., who controls the flows). So the existing

approaches typically fail to capture malicious behaviors initiated and controlled by malicious

servers, such as initiating spams or launching denial-of-service attacks. Without a proper

characterization for these behaviors, the existing approaches turn to easily mutable features

(shared across malware samples of the same family) such as network addresses or other

string constants to detect these behaviors, allowing malware developers to easily change

these features to evade detection.

Limited accuracy. Using implementation-specific structures (e.g., API methods, objects),

the existing approaches fail to accurately express common malicious behaviors consisting of

interactions between the malware and entities in its environments. For example, a malware

signature can be specified to express a GingerMaster malware sample’s malicious behavior

segmented into four phases: (1) the app retrieves and preprocesses a phone number from

the telephony manager (entity A); (2) the app writes the preprocessed phone number into a

31

temporary file (entity B); (3) the app reads the preprocessed phone number from the same

temporary file (entity B); (4) the app sends the preprocessed phone number to a (malicious)

server (entity C). For Phases 2 and 3, the existing approaches can recognize that the app

interacts with some files (i.e., the type of entities) based on the app’s invoking API methods

on a Java File object, but cannot recognize that the file in Phase 2 is indeed the same as

the file in Phase 3.

Therefore, the existing approaches can produce false positives by matching the malware

signature with a benign app where the preprocessed phone number is saved to a file, and

non-sensitive information being read from a different file is sent to a server. In addition, the

GingerMaster malware family has seven variations (i.e., different implementations) during

the period from 2011 to 2013 [69]. Malware samples of these variations can either (1) skip

Phases 2 and 3 by directly sending the preprocessed phone number to the malicious server or

(2) replace the temporary file entity in Phases 2 and 3 to be a temporary database. Thus, the

existing approaches can also produce false negatives (by including in the malware signature

the specific behavior of Phases 1-4).

To address such significant limitations of the existing approaches, in this chapter, we

present a novel approach, EnMobile, consisting of techniques for malware-behavior charac-

terization and detection, respectively.

Malware-behavior characterization. Our approach is motivated by the finding [4,

69, 15] that more than 90% of current mobile malware have a command-and-control (C&C)

architecture, where the malware receive and respond to commands from an external ac-

tor, e.g., a remote server. Thus, our approach directly characterizes the underlying C&C

structure of the malware. In particular, EnMobile improves the existing malware-behavior

characterization in two main aspects.

Entity-based characterization. Without using implementation-specific structures or easily

mutable features (e.g., API methods, objects) in an app, EnMobile expresses the app’s

behaviors in terms of interactions among entities. Entities are a host of actors on the mobile

platform including mobile system components (e.g., the telephony manager, SMS manager,

contacts provider), local on-device resources (e.g., files, databases), other mobile apps and

libraries, human users, and network locations, etc. EnMobile recognizes entities through

their identities (e.g., files with different names are different entities).

Furthermore, introducing the concept of entity allows security analysts to express entity

interactions in an end-to-end fashion, making it much more independent of specific realiza-

tions of that interaction (e.g., specifics in Phases 2 and 3), and hence more robust. For

example, for the malware family of the example sample, security analysts can specify the

information flow from the telephony manager (entity A) to the malicious server (entity C)

32

by just using the two end-point entities (entities A and C) without enumerating all possible

intermediate-point entities (e.g., files, databases).

Flow-provenance predicates. Going beyond using information-leaking dataflows within the

app, EnMobile enriches interactions among entities with provenance information. Prove-

nance in our context refers to who controls the flow, and why, i.e., the specific intended

purpose of the flow [28, 70, 71, 72]. For example, the existing approaches may produce an

information flow (file → sendTextMessage). Such flow can match both the behavior of

sending contents of a file out through SMS (a benign action of sending predefined messages)

and the behavior of specifying which phone numbers that the SMS should be sent to (a ma-

licious action of sending premium messages). To address such issue, we propose a set of data

flow predicates (Section 4.3.1) to reflect the purpose (e.g., passing configuration parameters

vs. purely transmitting information to another entity) that an information flow within an

app can serve for, a set of control flow predicates (Section 4.3.1) to present the ownership of

information flows (i.e., the entities that initiate/control the information flows).

Malware-behavior detection. As the entity-based characterization is more abstract

than the existing approaches using implementation-specific features, EnMobile includes vari-

ous static analyses enabling the instantiation of the characterization (i.e., extracting program

information from malware samples and matching such information against the signatures)

in the following two main aspects (besides supporting flow-provenance predicates).

Identification of entities and entity references. In order to characterize an app’s behaviors

directly in terms of its interactions with entities of the app, one challenge is to extract the

correspondence between an in-program object (named as an entity reference) and the entity

with which the object may interact in a given execution context (e.g., calling context). To

infer the entities that each Java object can point to, we develop an identity-propagation

algorithm that conducts a flow- and context-sensitive analysis extended from taint analy-

sis [14]. Such algorithm addresses two main issues. First, multiple objects could point to

the same entity. Second, a given program object can interact with different entities under

different execution contexts.

Matching against signatures. As discussed earlier, malware typically perform malicious

behaviors segmented into multiple phases (e.g., downloading, preprocessing), storing inter-

mediate computation results in temporary files or databases. Such segmentation gives rise to

multiple segments of information flow, punctuated with interactions with entities (e.g., files

or databases). These segments would need to be “stitched together” in order to be properly

matched against a signature specified to characterize the end-to-end interaction. To address

the challenge, we propose a flow-sensitive stitching algorithm to ensure that the connected

information flows are feasible in the actual execution.

33

This chapter makes the following main contributions:

• Characterization. We identify malware interaction patterns with entities and prove-

nance information of the interactions as a corner stone of comprehensively characterizing

mobile malware. We also propose a novel signature-specification language, based on this

characterization, that enables security analysts to create robust, abstract specifications.

• Detection. We design static analyses to derive the entity-based characterization by

analyzing bytecode of a given app, including identifying entities and entity references,

extracting provenance information for flows, and matching against signatures in the face

of segmented flows.

• Implementation and Evaluations. We present a practical implementation of our

approach and evaluate its effectiveness, on a set of 6614 apps consisting of malware (from

Genome [4] and Drebin [15]) and benign apps (from Google Play). Our results show

that EnMobile achieves substantially higher precision and recall than four state-of-the-art

approaches.

Related Work. Existing malware detection approaches characterize malware behaviors

by features that commonly exist in malware but not in benign apps. These approaches

include mining (MUDFLOW [65]), clustering (CHABADA [66]), classification (AppCon-

text [28]), graph matching (Astroid [68], Apposcopy [25]), and natural language processing

(AsDroid [73], WHYPER [23]) etc. However, non-essential features (e.g., component type,

file name, unrelated information flows) in code clones are often mistaken by these approaches

as discriminative features. Copy-paste practice is prevalent in malware industry, resulting

in many code clones in malware samples [74]. Because the same code snippet has appeared

in many malware samples, these approaches may regard those non-essential features in code

clones as major discriminant factors (because the same pieces of code snippet have appeared

in many malware samples but not in benign apps). EnMobile provides security analysts a

way to directly characterize malware behaviors through the high-level interactions among

entities instead of leveraging a specific implementation difference in the malware.

EnMobile also falls into the general category of information flow analysis. Much work has

been proposed to enhance static analysis of mobile apps [75, 76, 77, 22, 78, 20, 79, 80, 81, 82,

83, 19, 84, 85]. Information flow analysis tracks whether privacy-sensitive data (i.e., sources)

flows to outgoing channels or sensitive outlets (i.e., sinks). EnMobile complements existing

information flow analysis by adding entity-based characterization to the information flow.

AAPL [77] uses enhanced data flow analysis techniques to increase the number of data flows

that can be detected by information flow analysis and then uses the peer-voting mechanism

34

1 TrickMe controls three behaviors via commands from a C&C server:
2 B1: Sending the user’s SMS to the C&C server through Internet
3 B2: Performs click fraud based on coordinates provided by the C&C server
4 B3: Downloading malicious payloads from downloading servers whose addresses are specified by

the C&C server, and renaming the downloaded files based on the names provided by the C&
C server.

Figure 4.1: Natural language description of Malware TrickMe

1 public void onCreate(Bundle b) {
2 ...
3 String v0 = ”http://www.malicious.com”;
4 URL url = new java.net.URL(v0); //<url, CON 1>
5 HttpURLConnection n = url.openConnection(); //<n, CON 1>
6 f s = new File(”server.xml”); //<f s, FILE 1>
7 f c = new File(”commandFile”);//<f c, FILE 2>
8 f info = new File(”infoFile”);
9 f n = new File(”coordinateFile”); //<f n, FILE 3>

10 f d = new File(”downloadFile”);
11 f f = new File(”fileNameFile”);
12 read(f s, n); // Reading message from n to f s
13 parse(f s, f c, f n, f d, f f); //Parsing f s into four files
14 readSMS(f info); ... }

Figure 4.2: onCreate method of MainActivity

to lower the false positive rate to report illegitimate information leakages. AAPL fails to

handle obfuscation techniques such as string encryption (by using constant propagation

analysis) and produces high false positives (by matching all sources with all potential sinks).

EnMobile resolves these two limitations by precisely computing the identity of an entity.

SPARTA [86] and FlowDroid [14] are two general information flow analysis frameworks.

SPARTA enables the flow-policy checking by providing an integrity type system to annotate

source code with information-flow type qualifiers. FlowDroid is a static taint analysis tool

for Android apps based on Soot [87] and Heros [88]. EnMobile complements SPARTA and

FlowDroid by analyzing all types of data flows to detect malicious behaviors that are not

information leakage (e.g., bot-driven C&C behaviors).

4.2 A MOTIVATING EXAMPLE

We illustrate our approach using a simple malware example TrickMe, shown in Figure 4.2,

Figure 4.3, and Figure 4.4, which is derived from several real pieces of malware. Its C&C

35

1 public void onStop() {
2 ...
3 for(String command: readLine(f c)){
4 if(command.equals(”click”)){
5 float [] axis = getAxis(readLine(f n));
6 MotionEvent down = MotionEvent.obtain(...,0, axis[0],axis[1],0);
7 MotionEvent up = MotionEvent.obtain(...,1, axis[0],axis[1],0);
8 ...
9 Activity adActivity = ...; //<s,AdsPlatform>

10 Webview adView = adActivity.findViewbyID (...);
11 adView.dispatchTouchEvent(down);
12 adView.dispatchTouchEvent(up);
13 }
14 if(command.equals(”sendInfo”)){
15 sendFile(”http://www.malicious.com”,f info);
16 }
17 if(command.equals(”install”)){
18 String [] filename = readLine(f f);
19 int i = 0;
20 for(String url: readLine(f d)){
21 File f i = new RandomAccessFile(filename[i++],”rw”);
22 read(f i, new java.net.URL(url).openConnection());
23 }}}...}

Figure 4.3: onStop method of MainActivity

1 public String [] readLine(File file){ //<file, FILE 2>, <file, FILE 3>
2 FileReader r = new FileReader(file); //<r, FILE 2>, <r, FILE 3>
3 BufferedReader br = new BufferedReader(r);//<br, FILE 2>, <br, FILE 3>
4 String line = br.readLine(); ...
5 return line; }

Figure 4.4: readLine method of MainActivity

36

structure comes from Geinimi [89], its downloading behavior mimics Answerbot [90], and its

information leakage behaviors follow BeanBot [91]. TrickMe has three malicious behaviors

driven by a remote malicious server as described in Figure 4.1. All three behaviors reside in

an Activity component MainActivity, the MAIN Activity component of TrickMe, which is

invoked when the malware is launched.

TrickMe receives commands and prepares necessary information for future malicious be-

haviors in the onCreate method of MainActivity (Figure 4.2). It first opens a network

connection to a malicious server (Lines 3 - 5), and reads a message from the server to

file server.xml (Line 12). It then parses the server.xml into the four files commandFile,

coordinateFile, downloadFile, and fileNameFile (Line 13). Finally, it reads a list of SMSs

into file infoFile (Line 14).

In the onStop method of MainActivity (Figure 4.3), TrickMe launches one of three differ-

ent malicious behaviors based on different commands received earlier from the server. On

command sendInfo it sends the content of infoFile to the server, on command click it com-

putes and clicks on the X-Y coordinates computed based on the numbers in coordinateFile

to incur click fraud [92], and on command install it downloads malicious payloads from

URL addresses listed in downloadFile, and names the downloaded files according to the list

of names in fileNameFile. The downloaded payloads are used by TrickMe to launch other

malicious behaviors.

Comparison of signatures in Apposcopy and EnMobile. In a signature-based

scheme for malware detection, such as Apposcopy [25], security analysts can specify the

control-flow and data-flow properties shown in Figure 4.5 as the signature for the TrickMe

malware.

The activity(a) predicate declares an activity component a. The icc(SYSTEM, a, MAIN,

) predicate states an inter-component communication from the system to the activity a

and the content of the communication is a “MAIN” intent message. The flow(a, SMS, a,

file) predicate represents an information flow from source SMS in component a to sink file

in component a (Figure 4.2, Line 14).

Although the specified predicates do represent valid information flows and triggering events

in TrickMe, they are insufficient for representing the unique characteristics of the malware,

and therefore may be unable to differentiate malware from a benign app. For example, a

benign SMS manager app can sync the app’s configuration with a server (BufferedReader

 URLConnection), (URLConnection file), and back up SMSs (SMS file) where

indicates an information flow. Such an app also possesses the same control-flow and data-

flow properties as TrickMe, as per Apposcopy’s characterization, and would therefore be

indistinguishable from TrickMe.

37

1 activity(a), icc(SYSTEM, a, MAIN,),
2 flow(a, URLConnection, a, file),
3 flow(a, BufferedReader, a, URLConnection),
4 flow(a, BufferedReader, a, file),
5 flow(a, SMS, a, file)

Figure 4.5: Characterization of TrickMe in Apposcopy [25]

Figure 4.6 presents the signature of TrickMe specified by security analysts in EnMobile.

EnMobile allows to accurately characterize TrickMe in three perspectives. First, EnMobile

allows to designate the entities that certain behaviors may be attributed to, and thereby

precisely characterize the purpose of the behaviors. For example, a unique behavior of

TrickMe is its use of the “command” read from “commandFile” sent from the C&C server,

to direct the launching of different malicious behaviors. Identifying and implicating the

entity of the remote C&C server, rather than the local file “commandFile” (as the existing

approaches would do), are key to recognizing the true nature of this behavior.

Second, EnMobile allows to stitch segments of the end-to-end flow behavior exhibited

by TrickMe. For example, the signature in Apposcopy includes only the benign-looking

flows (SMS file) and (BufferedReader URLConnection), while EnMobile infers these

flows as segments of a larger, and potentially malicious flow (i.e.,Transmit*(s, n 2) of

UploadMessage in Figure 4.6 indicating the behavior of sending SMSs to a web server).

Third, EnMobile detects malicious behaviors other than information leakage. EnMobile

captures several non-leakage behaviors in TrickMe (click fraud, downloading and renaming

file). Such detection needs a more nuanced characterization of information flows. As our

results show (Sec. 4.5.3), characterization can significantly impact the accuracy of malware

detection.

4.3 ENTITY-BASED CHARACTERIZATION

Broadly, EnMobile aims to characterize an app in terms of its relevant interactions with

entities. To this end, it tracks and precisely characterizes information flows associated with

the security-sensitive behaviors of an app. We next illustrate some preliminaries before

presenting characterization in EnMobile.

Security-sensitive Behavior. A security-sensitive behavior is an invocation of

a security-sensitive method. We consider two types of methods as security sensitive:

permission-protected methods and other source/sink methods that read/write information.

38

Permission-protected methods are API methods that require permissions to access security-

sensitive resources and data. We use the list of permission-protected methods specified in

PScout [46], and the list of source/sink methods specified in Susi [47]. Further, we follow

PScout [46] to label each security-sensitive method call with one of a small set of abstract

actions (e.g.,SEND, RECEIVE, READ, WRITE), based on its overall behavior. These action

labels are used in our characterization (Section 4.3.1).

Entity. An entity is an external resource that an app interacts with during its execution.

Entities may include network locations (e.g., URLs or phone numbers) external to the device

running the app, such as the URL of a C&C server. They may also include on-device

intermediate storage sites (e.g., files, databases) or specific Android system resources (e.g.,

the SMS Manager), with which the app may interact during execution. Entities form the

sources (providing information) or targets/sinks (consuming information) of information

flows to/from the app. An entity is defined by a tuple: < entity type, entity identifier >.

Entity type. The type identifies the category of entity, such as a file or a network location

(File, UrlConnect), as well as the type of communication channel of the app with the entity,

such as an SMS communication with a phone number (SmsTarget) and a phone call to a

number (PhoneTarget).

Entity identifier. The identifier is the name or address of the entity, such as a filename,

a URL, or a phone number, which together with the entity type can be used to uniquely

identify the entity. In EnMobile, entity identifier values are stored and propagated in the

program via (primitive-type or string-type) constants or symbolic expressions (involving

variables provided by the external input, e.g., network message, user input).

Entity reference. An entity reference is an in-program object or variable that serves

as a proxy of the entity within the app and through which the app communicates with the

entity. For example, variable f s, in Figure 4.2, Line 6, is a reference of a File entity with

identifier “server.xml”. An entity may have multiple references. Conversely, a single object,

such as the Android SMS Manager, may instantiate different entities (e.g., SMSs to different

phone numbers) at different points during the app’s execution.

4.3.1 Language Specification

We propose a language to characterize an app based on its interactions with entities. One

use of such characterization is to write signatures for recognizing malware. Figure 4.6 shows

a signature characterizing the TrickMe example.

The characterization is a set of Datalog rules. Each rule, of the form: head :- predicate1,

predicate2, ... , is a horn clause, defining a predicate head as the conjunction (logical

39

1 TrickMe(a) :− Download(a), SendMessage(a), UploadMessage(a)
2

3 ClickAds(a):− Connection(n), AdsPlatform(s), SysUIEvent(e),
4 Config∗(n, s, TOUCH), Control∗(n, s, TOUCH), Trigger(e, s, TOUCH).
5

6 Download(a) :− Connection(n), SysUIEvent(e), Connection(n i),
7 Initiate∗(n, n i), File(f i), Initiate∗(n, f i), Transmit(n i, f i),
8 Trigger(e, f i, WRITE), Control∗(n, f i, WRITE).
9

10 UploadMessage(a) :− Connection(n), SysUIEvent(e), Connection(n 2),
11 SmsInbox(s), Transmit∗(s, n 2), Control∗(n, n 2, WRITE),
12 Trigger(e, n 2, WRITE).

Figure 4.6: Characterization of TrickMe in EnMobile

Table 4.1: App-behavior description language

Type Syntax Definition

Event SysEvent(v), UiEvent(v), v: event of appropriate type
Predicate SysUiEvent(v) (one of three event types: System event, UI event, or System UI event)

Entity Entity(e), File(e), UrlConnect(e), e: entity of appropriate type
Predicate SmsTarget(e), SmsInbox(e) (partial list of potential entity types)

Transmit(esource, etarget) esource: source entity, etarget: target entity
Transmit*(esource, etarget) Transmit*(es, et) :- Entity(ei), Transmit*(es, ei), Transmit(ei, et)

Data-flow Config(esource, etarget, a) esource: source entity, etarget: target entity, a: target entity’s action
Predicate Config*(esource, etarget, a) Config*(es, et, a) :- Entity(ei), Transmit*(es, ei), Config(ei, et, a)

Initiate(esource, etarget) esource: source entity, etarget: target entity
Initiate*(esource, etarget) Initiate*(es, et) :- Entity(ei), Transmit*(es, ei), Initiate(ei, et)

Control-flow Trigger(vtrigger, etarget, a) vtrigger : triggering event, etarget: implicated entity, a: security sensitive action
Predicate Control(econtrol , etarget, a) econtrol: controlling entity, etarget: controlled entity, a: security sensitive action

Control*(econtrol, etarget, a) Control*(ec, et, a) :- Entity(ei), Transmit*(ec, ei), Control(ei, et, a)

AND) of one or more other predicates (e.g.,predicate1). A predicate is a relation name

with variables or constants as arguments.

Table 4.1 provides an informal specification of our proposed language. It consists of four

kinds of predicates, namely event, entity, data-flow, and control-flow predicates, described

next.

Event predicate. Event predicates declare relevant events, as one of three types: System,

UI, or System UI events. A system event is one initiated by the system-state changes, e.g.,

receiving an SMS, a UI event is triggered by interactions on an app’s graphical user interface,

and a system UI event is triggered by the interactions on the device interfaces, such as

pressing an app’s icon on the system’s screen to launch the app. This categorization follows

previous work on Android testing [28].

Entity predicate. Entity predicates declare specific entities, each of a specific type, with

which the app interacts during its execution. For example, in Figure 4.6, File(f) denotes a

40

file entity f. Table 4.1 lists a few examples of currently recognized types.

Data-flow predicates

We make the observation that the intent of an information flow can be determined based on

a specific parameter of the sink method that it flows into. The reason is that each parameter

of a (sink) method plays a specific role in executing its behavior. Thus, our characterization

categorizes each parameter of a sink method into one of three types: (1) transmit parameters,

which receive data to be written to a target entity, (2) config parameters, which are used to

configure security-sensitive behaviors, and (3) initiate parameters, which carry identifiers,

e.g., the file name, to initialize a target entity. Based on this characterization, information

flows can also be categorized as Transmit, Config, or Initiate, and represented using the

corresponding predicates as explained below. To implement this characterization, we pre-

compile lists of transmit, config, initiate parameters and their corresponding methods for

common entities in the Android SDK, as a one-time effort for Android.

Predicate Transmit (Transmit*). The Transmit predicate encodes data transmission

from a source entity esource to a target entity etarget, where the app reads information

from esource and writes it to etarget. An information flow satisfies a Transmit predicate

if it flows into a designated transmit parameter of a sink method. For example, in the

TrickMe characterization (Figure 4.6), predicate Transmit(n i, f i) encodes the behavior

of downloading payloads from given URLs (n i) to files (f i).

We also define the predicate Transmit*(esource, etarget), to represent information transi-

tively flowing from esource to etarget through a sequence of Transmit flows. For example, the

Transmit*(s, n 2) (Figure 4.6) encodes the behavior of reading an SMS from SMSInbox s,

storing it into file “f info” (Line 14, Figure 4.2) and subsequently forwarding it to a given

URL n 2 (Line 15, Figure 4.3).

Predicate Config (Config*). This predicate encodes information flows from a source

entity esource to target entity etarget initiated exclusively for configuring the behavior of

a security-sensitive action a performed by etarget. Similar to Transmit, the definition is

extended to define predicates Config*, as per Table 4.1. For example, in the TrickMe

malware, the number saved in the “coordinateFile” is used to configure the behavior of

dispatchTouchEvent (Lines 4-7 in Figure 4.3), as the content in the “coordinateFile” is

from network connection n, the configuration relationship is represented by Config*(n, s,

TOUCH).

Predicate Initiate (Initiate*). This predicate represents behavior where the entity

identifier (e.g., a file name) of a target entity etarget is read from a source entity esource and

41

Table 4.2: Identity propagation logic

Statement Type Format Flow Functions Propagation Description

Entity Initialization x = new(ainit, a0, ..., an), n ∈ N i© Iout
s
= Iin ∪ x, ainit ∈ Iin Indicative parameter → Left-hand side (LHS)

Assign x = y ii© Iout
s
= Iin ∪ x , y ∈ Iin Right-hand side (RHS) → LHS

Identity Setter x.set(y) iii© Iout
s
= Iin ∪ x , y ∈ Iin Tainted parameter → Caller object (e.g., y→x)

Call c.m(a0, ..., an), n ∈ N iv© Iout
s
= Iin ∪ {a′

i}, ∀ai ∈ Iin Caller parameter → Callee (Context switching)

Return return y; x = c.m(a0, ..., an), n ∈ N v© Iout
s
= Iin ∪ x , y ∈ Iin Returned object → LHS

flows into an initialization statement used to instantiate etarget. Initiate can be extended to

predicate Initiate*, as defined in Table 4.1. In the TrickMe signature (Figure 4.6), predicate

Initiate*(n, f i) represents behavior that file f i is instantiated using its identifier read

from file “filenameFile” (Lines 13-16, Figure 4.3), which itself is downloaded from network

connection n (Lines 11-14, Figure 4.2).

Control-flow predicates

These predicates capture the “who” of security-sensitive behaviors, i.e., which entity or

event controls them, a key determinant of the maliciousness of behaviors.

Predicate Trigger. The Trigger predicate asserts that a given security-sensitive behav-

ior is triggered by a certain event. Specifically, predicate Trigger(Vtrigger, etarget, A) is true

if event Vtrigger triggers the execution path to a method call performing an action A (e.g.,

upload information), where etarget (e.g., URL connection) is the target entity whose reference

in the program makes the security-sensitive method call. For example, the onStop method

of TrickMe (Figure 4.3), which can be triggered by a System UI event such as pressing the

HOME button, contains three specific behaviors. The three Trigger(e,*,*) predicates in

Figure 4.6 capture this triggering relationship.

Predicate Control. The Control predicate asserts that a security-sensitive action a,

performed by a reference of entity etarget, is control-dependent on another entity econtrol.

Specifically, predicate Control(econtrol , etarget, a) is true if and only if there exists an

information flow from a reference of econtrol to a conditional statement guarding the execution

of a security-sensitive method call, performing action a. Control can also be extended to

predicate Control*, as defined in Table 4.1. In the TrickMe example, the command sent from

URLConnection n controls the three malicious behaviors. The predicates Control*(n, *,

*) in Figure 4.6 encode this control relationship.

42

Transformation
Strategy Synthesis Transformation

Testing

End

Detection

Next
Level?

Pass

Fail

Pass

Fail

Restore
Y

N

Figure 4.7: Overview of EnMobile

4.4 ENTITY-BASED STATIC ANALYSIS

In this section, we present how EnMobile matches an Android program against the given

malware signatures specified with the entity-based characterization. Figure 5.5 presents

the overview of EnMobile. EnMobile takes the bytecode of an app as input and outputs

an entity-based characterization of the app’s data and control flows, expressed in terms of

the predicates defined in Section 4.3.1. At the meta level, such process takes four steps:

(1) identify entities (i.e., entity type and entity identifier); (2) map entities to program

objects (i.e., entity references); (3) extract entity-based flow facts through analysis on entity

references and augment the extracted flow facts with provenance information; (4) match the

flow facts against the malware signatures.

4.4.1 Identifying Entities and Entity References

For the purpose of analysis, EnMobile categorizes entity references into two types: initial

entity reference and alias entity reference. Normally identifying an entity reference depends

on a parameter (e.g., file name) in the statement that initializes the reference. We call such

a parameter as an indicative parameter. If an indicative parameter is constant or external

input (e.g., user input, network message), we term the entity reference initialized by the

parameter as initial entity reference. If an indicative parameter is a variable that in turn

points to the initial entity reference (e.g., variable file and r in Lines 2-3, Figure 4.4), we

term the entity reference initialized by the parameter as alias entity reference.

For brevity, we use only entities related to the SMS-sending behavior in TrickMe as

examples to illustrate the techniques in the rest of the section. For each entity reference

involved in sending SMS, we use red comments in Figure 3.1 to show the pair of the entity

reference (i.e., variable) and the entity that the reference points to. For example, in TrickMe,

43

url, f s, f c, f info, f n, f d, f f in Figure 4.2 are initial entity references, while n in

Figure 4.2 and r, br in Figure 4.4 are alias entity references.

Identifying entities. EnMobile identifies entities via initial entity references. In partic-

ular, EnMobile identifies the entity type through the Java types of initial entity references.

For example, in Figure 4.2, f s has java Type File indicating the entity type as file.

EnMobile extracts the entity identifier through the indicative parameter of the initial entity

reference. An indicative parameter can either be constant or external input. For a constant

identifier, EnMobile records the constant value as the identity of the entity. For an external-

input identifier, EnMobile computes a symbolic expression as the identity of the entity. The

symbolic expression is computed by a combination of sources of the variable (constant or

user input) and the propagation paths from the sources to the variable. The reason why we

choose to compute the symbolic expression instead of using constant propagation analysis

to infer the actual value of the identifier is to deal with the situations where the identifier

value goes through an encryption scheme.

Mapping entities to entity references. Initial entity references are naturally mapped

to entities after identifying the entities. Mapping alias entity references to corresponding

entities is still challenging for two main reasons. First, multiple references could point to

the same entity. In Figure 4.4, r and br point to the file entity referred to by file. The

identity of the entity can be propagated from one reference to another as one reference is

used to initialize another object. Second, an entity reference may point to different entities

under different execution contexts. In Figure 4.4, r and br can point to “commandFile”,

“coordinateFile”, or “downloadFile” in different executions.

We develop an identity propagation algorithm to compute the entities that each alias entity

reference points to. For a given initial entity reference, the identity propagation computes a

set of entity references that point to the same entity as the initial entity reference; we refer

to this set as reference set. The idea of identity propagation extends the idea of the taint

propagation. The identity taints are generated at each initial entity reference. Any entity

reference being tainted points to the same entity as the initial entity reference of the taint.

Table 4.2 informally presents the flow functions used in the identity propagation algorithm.

A flow function of a statement maps the set of dataflow facts in that hold before the

statement to the set of dataflow facts out that hold after the statement. Here a dataflow

fact is the reference set of identities. In identity propagation, the flow function maps Iin

(i.e., reference set before the statement) to Iout (i.e., reference set after the statement). In

our implementation, I is a set of pairs <var, entity-ID>. We categorize program statements

that can propagate identity taints into five types: entity initialization statement, assignment

statement, identity setter method (i.e., method that sets the identity of an entity), normal

44

method (i.e., method except entity initialization and identity setter methods), call statement,

and return statement. Each type of statements is represented as a type of edges in “exploded

supergraph” [93] of IFDS framework. We conservatively assume that reference sets remain

the same for other edges (e.g., edges do not belong to any of these five statement types)

in the exploded supergraph [93]. Note that we omit formal details (e.g., object sensitivity,

context sensitivity) in the table. After the reference set has been calculated for each identity,

EnMobile iterates through all identities and merges the reference sets if two identities are

identical (i.e., two identities with the same identifier value and same type).

In the TrickMe example, n in Figure 4.2 and r, br in Figure 4.4 are alias entity references.

The identity taint CON 1 is generated from url and propagated to n by applying i© 1. For

r and br, the identity File 2 first propagates from Line 3 in Figure 4.3 to variable file on

Line 1 in Figure 4.4 by applying iv©. Then the identity further propagates to r and br by

applying i©. Note that identity File 3 also propagates (Line 5 in Figure 4.3) to file, r, and

br. However, because our analysis is context-sensitive, the later information-flow analysis is

able to tell that the variable command on Line 3 in Figure 4.3 is tainted by the information

from File 2, and variable axis[] on Line 5 in Figure 4.3 is tainted by the information from

File 3.

We perform two customizations in our information flow analysis. First, the sources of our

identity propagation are based on a certain type of variables (i.e., certain primitive type or

string type of variables in initialization methods) instead of certain methods (i.e., source

methods). So in addition to method matching, identity generation requires an additional

checking on method parameters. Second, the identity propagation is field-insensitive through

certain methods (e.g., initialization methods, setter methods). For example, in an identity

setter method, an identity taint propagates from the method parameter directly to the

receiver object rather than to the class field that is assigned by the taints in the setter method.

To address such difference, we feed predefined knowledge (e.g., initialization methods and

parameters of entities) to help EnMobile perform identity propagation according to the

high-level semantics.

4.4.2 Augmenting with Provenance Information

We omit the description of extracting flow facts through entity references given that this

process is a standard information-flow analysis. In this section, we illustrate how we augment

the extracted flow facts with provenance information in two steps.

1URL is used to initialize a new HttpURLConnection object in the implementation of
HttpURLConnectionImpl.

45

Figure 4.8: Malicious server configures TrickMe to perform click frauds

Classifying the type of information flows. In this step, we classify the type of flows

based on the three types of data flows defined in Section 5.3. To differentiate the type

of data flows, EnMobile needs to track which parameter of the sink method is tainted

in the computation. EnMobile first performs traditional information flow analysis and

takes the computed flows and sink variables as input, and checks them with the predefined

method signatures to determine whether the information flow is transmit, config, or initiate.

EnMobile takes lists of method signatures that contain the information of transmit, config,

and initiate parameters in the methods. For each information flow, EnMobile derives the

flow type based on the sink variable that the information flows into. For example, in the

SmsManager.sendTextMessage method, the first parameter (destinationAddress) indicates

that the flow is a config flow, and the third parameter (text) indicates that the flow is a

transmit flow.

Computing control-flow predicates. To connect Event Vtrigger to Target Entity etarget,

we first locate the security-sensitive method called by references of etarget. Each security-

sensitive method corresponds to an action of the entity (e.g., SEND for sendTextMessage).

Then, we analyze the call path’s entrypoints that lead to the method calls. The entrypoints

are the top nodes in the call graph of the app. EnMobile follows the inter-component

communications to link the Etarget’s method call to the entrypoints, and the events Etrigger

can be further inferred from the entrypoints.

To compute control dependencies among entities. EnMobile tracks information flows from

entities to conditional statements through inter-procedure control-flow graphs. The value

of a conditional statement decides which program branch to take in runtime executions,

and thus decides invocations of methods on one of the program branches. For a given

method M invoked by an entity etarget (M corresponds to Action A), EnMobile computes

the information flows from all entities to conditional statements (that control the invocations

of M). If an information flow from an entity econtrol to the conditional statements exists,

then econtrol controls the Action A of etarget (i.e.,Control (econtrol, etarget, A) holds).

46

Table 4.3: Differentiating Malware and Benign Apps

Apps #T #AE #AA
EnMobile(%) Base1(%) Base2(%) Appo(%)

M. B. M. B. M. B. M. B.
Benign 2716 1717 1592 1.0 99.0 0.9 99.1 4.8 95.2 59.1 40.9
Malware 5098 4897 4062 97.2 2.8 92.2 7.8 97.3 2.7 67.6 32.4
#T: Total #apps; #AE: #apps analyzable by EnMobile; #AA: #apps analyzable by Apposcopy
M.: % analyzed apps. predicted as malicious; B.: % analyzed apps. predicted as benign

4.4.3 Matching Against Signatures

To perform malware detection, EnMobile compares the set of flow facts P(M) extracted

from an app M , using the aforementioned analysis, against a pre-compiled library of signa-

tures of known malware. Specifically, for a malware signature S (as a set of predicates) from

the malware library, the comparison checks whether the predicates in S are a subset of the

flow facts (also as a set of predicates) in P(M), modulo renaming of variables. In the pro-

cess of signature matching, EnMobile enumerates all feasible combinations of the segmented

flows to match the end-to-end characterizations in the signatures. EnMobile determines the

feasibility of combinations of segmented flows by incorporating the flow-sensitive information

(i.e., taking into account the order of the statements) in the extracted flow facts. For exam-

ple, in Figure 4.8, for the flow from ESource to ESink to occur, the flow 1© from URLConnection

to InputStreamReader must precede flow 2© from FileReader to FileOutputStream, which

must precede flow 3© from FileReader to AdActivity. Basically, whether two flows can be

connected depends on the order between the sink of the previous flow and the source of the

next flow (i.e., the read from the entity should happen after the write to the entity).

We simplify this flow stitching problem to a graph reachability problem in which we

transform the inter-procedure control-flow graph into a directed graph. The direction of the

edges represents the order of the execution. For each sink in the computed flows, EnMobile

searches in other flows of the same entity to check whether the sink can reach sources of

these flows. If a source is reachable to the sink, then the flow B that the source belongs

to can be connected with the flow A that the sink belongs to. We name B as a reachable

flow of A. EnMobile maintains a list of reachable flows for each computed flow for further

computation. Note that although EnMobile incorporates the Android lifecycle model into

the flow computations, EnMobile considers only the sequential execution across Android

components (i.e., no clicks on back button) to lower false positives. Also, EnMobile does not

consider constraints on the order of user-event callback methods (e.g., onClick). EnMobile

assumes that user-event callback methods for the same Activity component can be triggered

in any order.

47

Table 4.4: Identification of malware by variations of AppContext, MUDFLOW, Drebin,
and Apposcopy

AppContext Drebin
MUDFLOW Apposcopy EnMobile

O. S. O. S.

P.(%) 95.42 76.52 98.47 92.80 97.61 74.48 99.64
R.(%) 97.65 95.15 97.48 89.21 53.46 67.60 97.24
P. = Precision, R. = Recall, O.= Result with Original Training Sample

S.= Result with Smaller Number of Training Sample

4.5 EVALUATION

We evaluate EnMobile in characterizing malware behaviors, by investigating the following

research questions:

RQ1: How effective is EnMobile in characterizing malicious behaviors in existing malware?

RQ2: How do entity-identity analysis and richer data flow predicates in entity-based char-

acterization contribute to the effectiveness of malicious-behavior identification?

RQ3: What is the effectiveness of EnMobile compared to other state-of-the-art approaches

of malware detection?

4.5.1 Evaluation Setup

Evaluation Subjects. Our subject set consists of a malware dataset and a benign app

dataset. Our malware dataset starts with all malware from the Genome [4] and Drebin [15]

malware datasets, which are commonly used in malware detection research [65, 25, 66, 73,

22, 28]. The Malware Genome dataset comprises 1, 260 malware samples organized into 49

malware families and the Drebin dataset comprises 5, 560 malware samples organized into

178 malware families. We remove families containing fewer than 20 malware samples as well

as malware samples duplicated across Genome and Drebin, yielding 27 families with 5, 098

malware samples in total. To collect benign apps, we download a total of 2, 700 apps (100

randomly selected apps for each of the 27 categories) from Google Play, as of December 2016.

We implement EnMobile using several third-party static analysis frameworks, including

Soot [94], FlowDroid [14], and AppContext [28]. To isolate and remove the effects of potential

limitations of these frameworks on our conclusions, we further pre-run EnMobile on the

complete subject set and filter out any apps that cause any of the third-party frameworks to

48

throw exceptions or time out. This step gives us a final analyzable dataset of 4897 malware

samples and 1717 benign apps.

Given the large number of unanalyzable benign apps (999), we reassess the distribution

of our final benign app dataset. We find that it retains 52 to 77 apps in each Google Play

category (originally 100); the size range (42KB to 51, 192KB) of a final app’s file and the

size range (16KB to 8, 829KB) of a final app’s classes.dex file (bytecode without resource

files) remain the same compared to the original dataset. This distribution suggests that our

benign app dataset remains broadly representative of real benign apps even after removing

unanalyzable apps. All runs of EnMobile have been performed on a desktop with 4 Intel

Xeon 3.2 GHz E3-1225 processors and 16 GB of memory with a timeout of 20 minutes per

app (the same default timeout set by Apposcopy [25]).

Malware Signature Library. For the purpose of this evaluation, we develop a library

of malware signatures, one per family, for each of the 27 malware families (Table 4.5) in

our dataset. For each malware family, we develop a signature characterizing that family in

the signature language introduced in Section 4.3.1 using a small set of malware samples and

benign apps. For a given malware family, this set consists of 10 randomly selected malware

samples from the family and 100 randomly selected benign apps. To compose the malware

signature, we first collect the security-sensitive behaviors (i.e., data-flow and control-flow

facts) that commonly exist in the malware samples and then remove the behaviors that

match with benign behaviors. The signature-creation procedure entails fewer than six man-

hours of effort per new malware signature, as a one-time effort for each malware family.

4.5.2 RQ1: Entity-Based Characterization

To evaluate the effectiveness of EnMobile’s entity-based characterization on our malware

dataset, we run EnMobile on all malware samples and benign apps except those that we

used to develop the malware signatures, and perform two evaluations.

In the first evaluation, we record which malware family signatures (if any) each app

matches2. Ideally, each malware sample should match its family’s signature and no other

signatures. Note that this classification problem is qualitatively harder than simply classify-

ing a given app as malware or benign, and the true test of the accuracy of a signature-based

approach, such as EnMobile. Column “EnMobile” in Table 4.5 shows the results of this

evaluation. Here, for a given malware family, false negative rate (FN) refers to (among all

samples in the malware family) the percentage of malware samples that are not matched

2Despite being theoretically possible, no apps end up matching multiple signatures in our current evalu-
ation.

49

by EnMobile to that family’s signature. Conversely, false positive (FP) refers to (among all

benign apps and malware of other families) the percentage of apps that are (incorrectly)

matched by EnMobile to this family’s signature. As shown in Table 4.5, EnMobile can

effectively classify malware instances into their appropriate families with on average 2.2%

false negatives and around 0.05% false positives (shown as 0.1% in the table due to limited

significant digits). For most malware families, EnMobile has under 5% false negatives and

0.1% false positives.

The second evaluation assesses the effectiveness of EnMobile and other approaches, in

broadly differentiating malware from benign apps (vs. the family-based classification in

Table 4.5), i.e., classifying malware as malware (vs. benign) and benign apps as such (vs.

malware). As shown in columns “EnMobile” in Table 4.3, here too EnMobile performs quite

well, correctly classifying over 97% of the malware and 99% of the benign apps. Further on

manually inspecting the 1% (i.e., 17 out 1717) benign apps being classified as malware, we

find that 8 apps actually possess malicious or highly suspicious behaviors. For example, a

popular app (com.genericsnippet.funnyecards) contains code to download/execute payload

from an unknown server3 and contains a potentially unwanted library (MobClix). The other 9

benign apps misclassified by EnMobile contain some interesting suspicious-looking behaviors;

for example, an app that turns a deprecated smartphone into a baby camera, sending SMS to

parents whenever the phone signal changes. In future work, we plan to use app descriptions

to check whether such suspicious behaviors are in fact desirable.

4.5.3 RQ2: Entity Identities and Flow Predicates

Two of the key contributions of EnMobile are (1) its entity-based characterization, built

on top of entity-identity analysis (Section 4.4.1), and (2) the rich set of data-flow predicates

(Section 4.3.1) to identify malicious intents. In this evaluation, we assess the effectiveness

of these specific features by comparing EnMobile against two baseline versions: EnMobile

without entity-identity analysis (Base1), and EnMobile without rich data-flow types (Base2).

Note that the core information flow analysis in both Base1 and Base2, and indeed in EnMobile

itself, is at least as precise as the type and/or API-based information flow analysis in previous

work [65, 25, 14, 20, 22], albeit implemented in our own framework.

EnMobile without entity identities (Base1). To realize Base1, we turn off the entity-

identity analysis in EnMobile. Specifically, the analysis retains the type of the entities, but

ignores the identities of the entities in the flows. Note that we still need to perform identity

3We find that the app removes this behavior in its recent versions, potentially confirming this behavior
as malicious or unwanted.

50

propagation to some extent to infer the entity type for some entity references. Of course,

without entity identities, stitching segmented information flows cannot be performed either.

For fair comparison, we also modify EnMobile’s malware signature library to make it

suitable for Base1. Specifically, in each of the signatures, we remove entity identities but

retain entity types. Further, we study malware reports from major anti-virus vendors as

well as flows extracted by EnMobile to identify (segmented) information flows common to a

majority of the samples in a malware family. We replace the original data-flow predicates,

representing a connected flow in the signature, with a set of predicates representing each of

the segmented flows. When no flows match a majority of the malware samples, we use flows

with the best (highest) match.

Table 4.5 (evaluating characterization of malware by family) and Table 4.3 (evaluating

basic malware detection of malware vs. benign) show a comparison of EnMobile (column En-

Mobile in both tables) to Base1 (column Base1). The results show that Base1, i.e.,EnMobile

without entity identities, produces more false negatives for most malware families (7.1% on

average vs. 2.2% for EnMobile) as well as in overall malware detection (7.8% vs. 2.8% in

Table 4.3).

One main reason is that different samples in a malware family typically have different im-

plementations of the same end-to-end flow through varied sets of segmented flows. Without

the benefit of the entity-identity analysis, and the flow stitching that it enables, no single

signature can characterize all samples of a malware family, even with the preceding custom

retrofitting of the signature library for Base1. These results demonstrate the benefit of our

entity-identity analysis for accurate malware characterization.

EnMobile without types of data flows (Base2). To realize Base2, we simply

represent the three types of data flows as a single basic information flow, in both the

signatures and in the extracted flow facts for each app. We then perform signature matching

based on the extracted flow facts and signatures.

As shown in Tables 4.5 and 4.3, Base2 produces more false positives for some malware

families and incorrectly marks more benign apps as malware than EnMobile (4.8% vs. just

1% in Table 4.3). The reason is that the signatures lacking our provenance information incur

wrong matching of data flows. For example, the analysis may match a Transmit flow (e.g., a

flow sending an SMS) with a possible Config flow (e.g., flows specifying the SMS recipient’s

number).

51

4.5.4 RQ3: Comparison with Related Approaches

We compare EnMobile with three related state-of-the-art approaches: one signature-

based approach (Apposcopy [25]) and three learning-based approaches (MUDFLOW [65],

AppContext [28], and Drebin [15]).

Comparison with a signature-based approach (Apposcopy). Apposcopy leverages

a list of manually-specified signatures (e.g., Figure 4.5) to match malware samples. Because

Apposcopy provides signatures for only several malware families in our dataset, we use the

following methodology to generate the best possible Apposcopy signatures uniformly for all

malware families. We generate Apposcopy signatures for each family by two means: (i)

we follow the same procedure as in creating EnMobile’s signatures to manually create the

signature based on 10 malware samples and 100 benign samples; (ii) We run Astroid [68], an

automatic signature generator for Apposcopy, 10 times for each family. Each time Astroid

randomly selects five samples from the malware family and produces a signature. We pick the

best signature (in terms of the least total number of FP and FN) from among the preceding

11 signatures to report the results. All runs of Apposcopy are on the same machine as

EnMobile with the same timeout threshold per app (20 minutes).

The last two columns (“Appo”) of Tables 4.5 and 4.3 report the results of Apposcopy

in detecting malware. As shown in Table 4.5, Apposcopy performs much worse than En-

Mobile for most of the malware families, especially the malware families whose most mal-

ware samples are from the Drebin malware database. Such effectiveness worsening is likely

due to the evolution of malware. For example, in the Kmin malware family, the function-

ality of a receiver com.km.HoldMessage in some malware samples is replaced by a service

com.km.charge.CycleServic in some other malware samples. This kind of evolution changes

the type of the Android component hosting the malicious behavior. Such changes can easily

evade Apposcopy’s detection because Apposcopy’s signatures heavily rely on the internal

component structure (including a component’s type) to characterize malware. However, En-

Mobile does not suffer from the same issue because such structural changes do not affect the

end-to-end communications among entities.

Another issue that we observe by investigating the FN and FP produced by Apposcopy

is that Apposcopy fails to characterize the essential malicious behavior shared across all

samples in a malware family. For example, in the Jifake malware family, the only flow

expressed through Apposcopy’s signature is sending the current system time through SMS.

However, some malware samples in Jifake do not possess such behavior. In fact, the behavior

of installing another app is universal in this malware family. The incapability of Apposcopy

to characterize such installation behavior results in high false negatives in this malware

52

family.

Comparison with learning-based approaches. We also compare EnMobile with

state-of-the-art learning-based detection approaches: AppContext [28], Drebin [15], and

MUDFLOW [65].

Both AppContext and Drebin require a large number of malware samples as training data

to train a machine learning model, but many malware families have very few known samples

(only 42% of malware families have more than 5 samples [68]). So in addition to evaluate

AppContext and Drebin4 following traditional ten-fold cross-validations (O. in Table 4.4),

we also evaluate their effectiveness on a smaller training set (S. in Table 4.4) by following

the evaluation methodology used in Astroid [68]. Following such evaluation methodology,

instead of training malware from all families as a whole, we perform the training and testing

family by family. For each malware family, the training set consists 10 randomly selected

samples from the family, all samples from other malware families, and a similar number of

benign apps as in the original training set. The testing set consists of the rest of samples

from the malware family and the rest of benign apps. We report the average results of all

families in Table 4.4).

MUDFLOW detects malware by identifying abnormal information flows for each category

of sensitive sources. To produce the input that MUDFLOW accepts, we use FlowDroid [14]

to extract information flows from all of our subjects. We feed the extracted information

flows with the SUSI category [47] of sources and sinks of these information flows and the

permission list of each app to MUDFLOW to compute the final result.

Table 4.4 shows the effectiveness of the existing approaches and EnMobile. As shown in the

table, EnMobile outperforms all the existing approaches. Note that although AppContext

and Drebin reach similar effectiveness as EnMobile when training with the original dataset

(i.e., 90% training data and 10% testing data), their effectiveness downgrades a lot when

using a smaller number of training samples. This result is especially impressive for EnMobile,

considering that the difference between the smaller and original training datasets comes from

much reduced malware samples in a single malware family. The downgrade indicates the

overfitting nature of these learning-based approaches. Such result suggests that EnMobile

can be a great substitute for learning-based approaches for malware detection when security

analysts have access to only a small number of malware samples. EnMobile also outperforms

MUDFLOW by much higher recall. The advantage of EnMobile over MUDFLOW lies in

4Since Drebin is not open source, we leverage the public feature vectors of 2,742 malware and 58,097
benign apps produced by Drebin to evaluate the effectiveness of Drebin in detecting malware. To establish
a fair comparison, we randomly select feature vectors of 3,000 benign apps to make Drebin’s dataset possess
similar distribution (i.e., percentages of malware and benign apps) as our dataset.

53

detecting those malware samples that have C&C behaviors or behaviors of dynamic code

loading (e.g., BaseBridge). Because of the dynamic nature of such behaviors (i.e., the loaded

code is unknown before the execution), traditional information-flow analysis often fails to

detect these behaviors. Via the entity-based characterization, EnMobile can accurately

identify the controlling entity of the downloading behavior and the command-and-control

nature of the malware. Thus, EnMobile can outperform the existing approach by accurately

identify these malware samples without requiring to know the details of dynamically loaded

code.

4.6 DISCUSSION

Limitations. Intentional obfuscations of the entity identity may sabotage our analysis.

For example, creating an alias entity by using symbolic links (e.g., Ink, Shortcut), or us-

ing different copies of the same encryption scheme to encrypt the entity identity. In these

cases, the malware may evade detection of EnMobile. However, since these camouflage at-

tempts have clear patterns and are likely to be suspicious, other techniques such as dynamic

analysis [95] can be used to complement EnMobile. Attackers can also hide malicious be-

haviors matched by our signature into dynamic loaded code to evade EnMobile’s detection.

However, security analysts can leverage EnMobile to further characterize the behaviors of

dynamic code loading to detect the evolved malware. In our evaluation, signatures char-

acterizing dynamic code loading can successfully match malware of corresponding families

(e.g., basebridge).

Threats of Validity. The tuning of malware signatures could affect the results of the

evaluation. To prevent EnMobile’s signatures from being overfitting for our subjects, when

constructing the malware signatures, we strictly constrain ourselves in analyzing no more

than 10 malware samples per family. Also, EnMobile is based on behavioral signatures

rather than syntactic structures used in much of previous work [25, 15], and doing so further

mitigates against overfitting. To avoid creating unfair signatures for Apposcopy, we further

use Astroid [68] to generate signatures with different numbers of malware samples as input.

We compare these signatures and demonstrate that our signatures selected for Apposcopy

performs better.

54

4.7 CONCLUSION

We have presented EnMobile, a novel approach for accurately characterizing mobile apps’

interactions with entities. We have demonstrated a practical application of EnMobile for

detecting malware. Our results suggest the effectiveness of EnMobile in characterizing differ-

ential characteristics of malware and benign apps, and robustness of EnMobile’s specification-

driven signature (i.e., based on intrinsic definitions of malware) over implementation-driven

ones (i.e., based on features of low-level program structures). We envision a number of

applications of EnMobile: with increasing uses of IoT apps, EnMobile can be extended for

characterizing broader interactions between the physical world and apps; for human-assisted

app auditing, entity-based characterization can enhance security analysts’ understanding of

app behaviors.

55

Table 4.5: Categorization of Malware by EnMobile

Malware Family #T
EnMob(%) Base1 (%) Base2 (%) Appo(%)

FN FP FN FP FN FP FN FP

ADRD 91 0.0 0.0 2.3 0.0 0.0 0.0 36.4 0.0
AnserverBot 184 0.6 0.1 2.2 0.0 0.6 0.4 0.0 0.0
BaseBridege 331 10.4 0.2 33.4 0.2 10.4 0.5 50.0 0.1

Boxer 27 0.0 0.2 7.4 0.2 0.0 0.2 25.9 0.4
DroidDream 97 0.0 0.1 4.4 0.1 0.0 0.2 3.1 8.5

DroidDreamLight 46 1.1 0.0 1.1 0.0 1.1 0.0 0.0 0.0
DroidKungFu 668 1.8 0.0 5.1 0.0 1.6 0.7 8.1 0.0
ExploitLotoor 70 10.4 0.1 17.9 0.1 10.4 0.4 85.0 1.9

FakeDoc 132 2.3 0.1 11.0 0.1 2.4 0.2 6.3 0.3
FakeInstaller 925 1.8 0.0 5.8 0.0 1.8 0.1 68.4 0.1
FakeRun 61 0.0 0.1 4.9 0.1 0.0 0.3 11.1 0.0
Gappusin 58 8.6 0.0 12.0 0.0 8.6 0.1 58.6 0.0
Geinimi 94 0.0 0.2 4.4 0.2 0.0 0.9 0.0 0.0

GingerMaster 342 3.8 0.1 7.1 0.1 3.8 0.2 70.4 0.0
GoldDream 70 0.0 0.0 1.6 0.0 0.0 0.0 3.2 0.0

Hamob 28 4.5 0.0 18.1 0.0 4.5 0.0 3.7 5.7
Iconosys 152 0.6 0.0 2.6 0.0 0.6 0.2 69.7 0.0

Imlog 43 0.0 0.0 0.0 0.0 0.0 0.0 76.7 29.1

Jifake 29 0.0 0.0 3.4 0.0 0.0 0.0 50.0 0.5
KMin 148 3.7 0.1 5.9 0.1 3.7 0.1 34.7 19.1

MobileTx 69 0.0 0.1 8.8 0.1 0.0 0.6 31.9 0.0
Opfake 613 0.8 0.0 5.6 0.0 0.8 0.1 33.7 19.2

Pjapps 58 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
Plankton 625 2.1 0.0 3.7 0.0 2.1 0.2 32.1 3.0
SendPay 59 6.9 0.0 8.6 0.0 6.9 0.0 22.4 7.9
SMSreg 41 0.0 0.0 9.8 0.0 0.0 0.3 16.2 44.6

YZHC 37 0.0 0.0 3.6 0.0 0.0 0.1 0.0 5.2

Average 188.8 2.2 0.1 7.1 0.1 2.2 0.2 29.5 5.4
#T = Total number of apps, EnMob = Enmobile, Appo = Apposcopy

FN = False negative rate, Base1 = EnMobile without entity identity

FP = False positive rate, Base2 = EnMobile without data-flow types

56

CHAPTER 5: MALWARE DETECTION IN ADVERSARIAL SETTINGS:
EXPLOITING FEATURE EVOLUTIONS AND CONFUSIONS IN MOBILE

APPS

5.1 OVERVIEW

To fight against malware, a signature-based technique extracts malicious behaviors as sig-

natures (such as bytecode or regular expression) while a more complicated machine-learning-

based technique learns discriminant features from analyzing semantics of malware. One ma-

jor challenge for both signature-based and learning-based malware detection approach is to

form an informative feature set for signature or detection model. To address challenge, ex-

isting malware detection tends to include as many features as possible. For example, Drebin,

a recently published malware detection work [15], uses the feature set containing 545,334

features. Recent study [16] shows that such large feature set has numerous non-informative

or even misleading features. Therefore, in this chapter, we investigate the question: can a

malware be mutated to evade detection by changing its feature values while maintaining its

malicious behaviors1? More formally, we name such “mutations of malware based on feature

values” as Malware Recomposition Variation (MRV).

A key observation made in our research is that, features, which abstract concrete malicious

behaviors, are fragile, and they could be easily mutated (i.e., changed). The susceptibility

of such features makes it possible to evade detection if malware are properly mutated [96,

97, 98]. Our research suggests that features that are unique to malware are not necessary

needed for forming malicious behaviors. Such result is mainly due to two factors.

First, learning-based detectors often confuse non-essential features (i.e., features that are

not essential for forming malicious behaviors) in code clones as discriminative features. Copy-

paste practice is prevalent in malware industry which result in many code clones in malware

samples [74]. Because the same code has appeared in many malware instances, learning-

based detectors may regard non-essential features (e.g., minor implementation detail) in

code clones as major discriminant factors (because the same pieces of code appeared in many

malware samples but not in benign apps). Learning-based detector place higher weight on

these features not because these features are essentail to malicious behaviors but because

these features appeared in malware much more frequently than in benign apps. Adversaries

could simply leverage such fact to mutate some of these non-essential features with higher

weight in detecting model to evade detection.

1We define malicious behaviors as the invocations of security-sensitive method calls in malware,
more specifically the invocations of permission-protected methods in Android.

57

Second, the features essential to malicious behaviors are different for each malware family.

Almost all existing learning-based malware detection using a universal feature set to detect

malicious samples for all malware families. However, based on recent research result [99]

mined from 1,068 research papers and malware documents, each malware family associates

with a distinct set of malware behaviors and concrete features. Using a universal set of

features for all malware families would result in a large number of non-essential features

to characterize each family. Furthermore, as previously mentioned, if these non-essential

features are unique in some malware samples, the trained detection model can be evaded by

mutation the value of the non-essential features.

In this work, we focus on synthesizing mutation strategies (i.e., what kind of features we

should mutate to evade detection) and automating program transformation (i.e., how to

apply mutations on malware bytecode to ensure the robustness of the app while preserving

malicious behaviors). Different from existing work [96, 97, 98], we explore the capability

of attackers in a more realistic attacking scenario: the attackers can feed any app as the

input to the detector and know the binary detection result (i.e., detected as malware or not)

without any additional information.

There are three major challenges to conduct MRV.

Evading Malware Detectors. To evade a malware detection model, an adversary

need to identify the non-essential features and compute the mutated feature value that

can evade detection. This usually requires an adversary to possess internal knowledge and

understanding of malware detectors. Unfortunately, generally an adversary may have little

(or even no) knowledge about the malware-detection model (such as features and algorithms).

Moreover, the particular knowledge to a single malware-detection model is too specific and

conducting MRV is unlikely to succeed, especially if the model (e.g., the one in VirusTotal)

is based on combining multiple techniques.

Preserving Malicious Behaviors. The mutated malware should maintain the original

malicious purposes and therefore simply converting malware’s feature values to another app’s

feature values is likely to break the malicious . For example, the malicious behaviors are

usually designed to be triggered under certain contexts (to avoid user attention and gain

maximum profits [28]), and the controlling logic of the malware is too sophisticated (e.g.,

via logic bombs and specific events) to be changed.

Maintaining the Robustness of Apps. The mutated malware should be robust enough

to be installed and executed in mobile devices. Automatically mutating an app’s feature

values is likely to break the code structures and therefore cause the app to crash at runtime.

To tackle these challenges, MRV employs two mutation strategies, Malware Evolution

Attack and Malware Confusion Attack (Section 5.4), that generally reflects the susceptibil-

58

𝑉𝑉

𝐵𝐵 𝑀𝑀
𝐷𝐷

𝑀𝑀𝑀

Figure 5.1: A feature vector space V , the feature vectors of existing benign apps B, the feature
vectors of existing malware M , the feature vectors can be detected by detection model D, the
feature vectors of all potential malware M ′ and their relationships.

ity of a detection technique to the mutations of malware feature values. To applying the

mutation strategies without breaking the dependencies and functionalities in the program,

we develop a new technique, inspired by program transplantation [100] to reuse the exist-

ing implementations of desired features instead of randomly mutating or synthesizing the

code. In particular, we develop a transplantation framework capable of inter-method, inter-

component, and inter-app transplantation2. By leveraging the existing implementations, this

technique enables systematic and automatic mutations on malware samples while aiming to

produce a well-functioning app.

Main Contributions. This work makes the following main contributions.

• Observation. We identify differentiability of selected features and robustness of detec-

tion models as two fundamental limitations of malware detection, from which we demonstrate

the feasibility of producing effective attacks (Sec. 5.2).

• Attacks. We propose malware recomposition variation (MRV) to produce two attack

types (feature evolution attack and feature confusion attack) to effectively mutate existing

malware for evading detection (Sec. 5.4).

• Framework. We develop a transplantation framework capable of inter-method, inter-

component, and inter-app transplantation to automatically mutate app features (Sec. 5.5).

5.2 MRV DESIGN

5.2.1 Limitations of Malware Detection

MRV leverages two fundamental limitations of malware detection: differentiability of

selected features and robustness of detection model. To better illustrate the limitations,

we model the vector space of features used by any given malware-detection technique as V

(shown in the Venn diagram in Figure 5.1).

2Transplanting a feature in one app/component/method (i.e., donor) to a different app/compo-
nent/method (i.e., host).

59

1 public class User extends Application{
2 public String androidid;
3 public String tel;}

Figure 5.2: User class of DougaLeaker malware

The differentiability of selected features can be represented by the intersection of the

feature vector space (denoted as B) for the existing benign apps and that (denoted as M) of

the existing malware. In an ideal case, if the selected features are perfect (i.e., all differences

between benign apps and malware are captured by features), no malware and benign apps

should be projected to the same feature space, i.e., B ∩M = ∅. Such perfect feature set,

however, is difficult or even impossible to get in practice. For example, to detect a malware

that loads a malicious payload at runtime, a malware detector could use the name of the

payload file as a feature for the detection. Unfortunately, the name of the payload file can be

easily changed to a common file name used by benign apps to evade the detection, therefore

resulting in false negatives. If the detector removes such a feature in fighting malware,

the detector produces false positives by incorrectly catching benign apps that may have

behaviors of dynamic code loading. In either way, the selected feature set is imperfect to

differentiate such malware and benign apps.

The robustness of a detection model can be represented by the difference between the

feature vectors (denoted as M ′) of all potential malware and the feature vectors (denoted as

D) that can be detected by the detection model3. Such difference can be denoted as M ′ \D.

A perfect detection model should detect all possible malicious feature vectors (i.e., M ′). In

practice, detection models are limited in detecting existing malware because it is hard to

predict the form of potential malware (including zero-day attacks). In this work, we argue

that a robust malware-detection model should aim to detect malware variants produced

through known mutations. Such mutations should employ not only syntactic and semantic

obfuscation techniques, but also feature mutations based on analyzing the evolutions of

malware families.

3We safely assume that for a reasonable malware-detection model, D ⊆ M ′. A reasonable
malware-detection model produces false positives on a benign app only because the feature vector
of the benign app is shared by some malware.

60

1 public class MainActivity extends Activity{
2 public void onCreate(android.os.Bundle b){
3 super.onCreate(b);
4 this.requestWindowFeature(1);
5 User u = (User) getApplication();
6 u.androidid = Settings.Secure.getString(getContentResolver(), ”android id”);
7 u.tel = getSystemService(”phone”).getLine1Number();
8 if(isRegisterd(u.androidid)){
9 Cursor cursor = managedQuery(ContactsContract.Contacts.CONTENT URI, 0, 0, 0, 0);

10 while (cursor.moveToNext() != 0) {
11 this.id = cursor.getString(cursor.getColumnIndex(” id”));
12 this.name = cursor.getString(cursor.getColumnIndex(”display name”));
13 this.data = new StringBuilder(String.valueOf(this.data)).append(”name:”).append(this.name).

toString();
14 }
15 cursor.close();
16 }else{
17 startService(new Intent(getBaseContext(), MyService.class));
18 }
19 }
20 this.exec post(this.data);}} //sending contacts through HttpPost

Figure 5.3: MainActivity of DougaLeaker malware

61

5.2.2 Threat Model

We assume that an attacker has only black-box access to the malware detector under

consideration. Under such assumption, the attacker can feed any malware sample as the

input to the detector and know whether the sample can be detected or not, but the attacker

has no internal knowledge (e.g., detection model, signature, feature set, confidence score)

about the detector. The attacker is capable of manipulating the malware’s binary code,

but has no access to the malware’s source code. We assume that the attacker has access

to the existing malware samples (i.e., samples that are correctly detected by the malware

detector), and the goal of the attacker is to create malware variants with the same malicious

behaviors, but can evade the detection.

5.2.3 Overview of MRV

We propose Malware Recomposition Variation (MRV), the first work that systematically

reconstructs new types of malware using decompositions of features from existing malware

to evade detection. Fig 5.5 illustrates the whole framework used to generate app mutants.

MRV first performs mutation-strategy synthesis (Sec. 5.4) including both feature evolution

attack and feature confusion attack, and then MRV leverages program transplantation to

mutate the existing malware (Sec. 5.5) where program testing and malware detection are

used to find the survival app mutations. Note that MRV is an iterative process. When MRV

finishes the initial round of mutation, the evasive sample set and detected sample set get

updated. The update of evasive samples enable the generation of new mutation strategy

(trough confusion attack). The update of detected samples provides new candidates to

produce evasive malware. Note that the set of evasive samples at the beginning of first of

iteration is empty, MRV generate the initial set of evasive samples through evolution attack,

1 public class MyService extends Service{
2 public int onStartCommand(Intent intent, int flags, int startId){
3 User u = (User) getApplication();
4 String text = ”android id = ” + u.androidid + ”; tel =” + u.tel;
5 Date date = new Date();
6 if(date.getHours>23 || date.getHours< 5){
7 android.telephony.SmsManager.getDefault().sendTextMessage(this.number, null, text, null, null);
8 }
9 return;}}

Figure 5.4: MyService of DougaLeaker malware

62

Feature Mutation

Testing

Pass

Detection
Pass

Fail

Fail

End

Detected
samples

Evasive
samples

Mutation Strategy Synthesis

evolution
attack

confusion
attack

Figure 5.5: Illustration of mutant construction in evolution MRV. Key steps: (1)
mutation-strategy synthesis; (2) program mutation/feature mutation; (3) program testing.

then iteratively generate new evasive samples through confusion attack.

Feature evolution attack is based on the insight that reapplying the feature mutations

in malware evolution can create new malware variants that may evade detection (i.e., the

feature vectors fall into the area of M ′ \D). As Figure 5.5 shows, the attack mutates feature

values iteratively at each level (following the sequence of temporal feature, locale feature,

and dependency feature).

Feature confusion attack is based on the insight that malware detection usually performs

poorly in differentiating the malware and benign apps with the same feature vector. As

discussed earlier, if we simply mutate malware feature vectors to benign feature vectors (i.e.,

feature vectors in space B), such mutation would generally break or weaken the malicious

behaviors (i.e., turning the malware into benign apps). So our design decision is converting

malware with unique malicious feature vectors (i.e., M \ (B ∩M)) to possess the feature

vectors shared with benign apps (i.e., B ∩ M). Because some malware already possess

such feature vectors, we could leverage the program transplantation technique to transplant

the existing implementation to the host malware. Using program transplantation greatly

decreases the likelihood of breaking the original malicious behaviors in the host malware.

Instead of mutating an individual feature value iteratively at each level, feature confusing

attack mutates the whole feature vector.

Use Cases. Although we present our techniques as attacks to malware detection, the

techniques can also be used in assisting the assessment or testing of existing malware-

detection techniques, to enable the iterative design of a detection system. The main idea

is to launch feature evolution attack and feature confusion attack on each revision of the

detection system, so that security analysts can further prune their selection of features in the

next revision. Feature evolution attack can be used to evaluate the robustness of a detection

model. The more robust the detector model is (i.e., the larger D is), the more difficult for

63

1 public class User extends Application{
2 public String androidid;
3 public String tel;}

Figure 5.6: User class of DougaLeaker malware

1 public class MainActivity extends Activity{
2 public void onCreate(android.os.Bundle b){
3 super.onCreate(b);
4 this.requestWindowFeature(1);
5 User u = (User) getApplication();
6 u.androidid = Settings.Secure.getString(getContentResolver(), ”android id”);
7 u.tel = getSystemService(”phone”).getLine1Number();
8 if(isRegisterd(u.androidid)){
9 Cursor cursor = managedQuery(ContactsContract.Contacts.CONTENT URI, 0, 0, 0, 0);

10 while (cursor.moveToNext() != 0) {
11 this.id = cursor.getString(cursor.getColumnIndex(” id”));
12 this.name = cursor.getString(cursor.getColumnIndex(”display name”));
13 this.data = new StringBuilder(String.valueOf(this.data)).append(”name:”).append(this.

name).toString();
14 }
15 cursor.close();
16 }else{
17 startService(new Intent(getBaseContext(), MyService.class));
18 }
19 }
20 this.exec post(this.data);}} //sending contacts through HttpPost

Figure 5.7: MainActivity of DougaLeaker malware

a mutated malware to evade detection (i.e., the smaller M ′ \D can be). The detail of each

step is elaborated in subsequent sections. Feature confusion attack can be used to evaluate

the differentiability of selected features. The more differentiable a feature is, the less the

opportunity is for a malware to confuse the detector (i.e., smaller B ∩M is desirable).

5.3 RTLD FEATURE MODEL

In this work, we characterize semantic features using our proposed RTLD feature model,

which aims to reflect the essential malicious behaviors while balancing between the compu-

tational efficiency and accuracy. The RTLD feature model is a general model summarizing

the essential features (i.e., security-sensitive resources) and contextual features (e.g., when,

64

where, how the security-sensitive resources are obtained and used) commonly used in mal-

ware detection.

The RTLD model covers four main aspects: Resource (what are the security-sensitive

resources obtained by malicious behaviors), Temporal (When are the malicious behaviors

triggered), Locale (Where do the malicious behaviors occur), and Dependency (How are the

malicious behaviors controlled).

We use the simplified code snippet of the DougaLeaker malware4 shown in Figure 3.1

to illustrate the feature model. The code snippet shows two malicious behaviors of the

DougaLeaker malware. First, the malware saves the Android ID and telephone number of

the victim device to global class User when the app starts (Lines 5-7 in Figure 4.2). Then,

the malware reads the contacts on the victim device (Lines 8-13 in Figure 4.2) and sends the

contacts to a malicious server (Line 20 in Figure 4.2). The malware also starts a service that

sends the Android ID and telephone number to the malicious server through text messages

between 11PM and 5AM.

The resource features describe the security-sensitive resources exploited by malicious

behaviors while the dependency features further represent how the malicious behaviors are

controlled. We locate resource features by constructing call graphs and identifying call

graph nodes of the security-sensitive methods (including methods for accessing permission-

protected resources and methods for executing external binaries/commands). We compile

the list of security-sensitive methods based on PScout [46] and construct the call graphs

using the SPARK callgraph algorithm implemented in Soot [101]. The call graphs represent

the invocation relationships between the app’s entrypoints and permission invocations. We

save the entrypoints of the call graphs in this step to trace back to the other features in

4MD5 of the malware is e65abc856458f0c8b34308b9358884512f28 bea31fc6e326f6c1078058c05fb9.

1 public class MyService extends Service{
2 public int onStartCommand(Intent intent, int flags, int startId){
3 User u = (User) getApplication();
4 String text = ”android id = ” + u.androidid + ”; tel =” + u.tel;
5 Date date = new Date();
6 if(date.getHours>23 || date.getHours< 5){
7 android.telephony.SmsManager.getDefault().sendTextMessage(this.number, null, text, null,

null);
8 }
9 return;}}

Figure 5.8: MyService of DougaLeaker malware

65

later steps. For the DougaLeaker example, we can locate the HttpPost method invocation

(not shown in Figure 3.1) in exec post and sendTextMessage method invocation (Line 7 in

Figure 5.8) in onStartCommand in the call graph. Due to space limit, we omit many details

here. For the detailed algorithm that we used for extracting RTLD features, please refer to

our accompanying technical report [102].

The temporal features describe the contexts when the malicious behaviors are triggered.

To extract temporal features, we identify three categories of temporal features based on

the attributes of their entrypoints. (i) For system events handled by intent filters, their

entrypoints are lifecycle methods. The components of the lifecycle methods should have

intent filters specified. (ii) For both system events captured by event-handling methods and

UI events, their entrypoints should be event-handling methods. (iii) For lifecycle events,

their entrypoints are lifecycle methods, and these lifecycle methods have not been invoked

by other events (due to inter-component communication).

The locale features describe the program location where the malicious behavior occurs.

The location of the execution is either an Android component (i.e., Service, Activity and

Broadcast Receiver) or concurrency constructs (e.g., AsyncTask and Handler). Malicious

behaviors get executed when these components are activated. Due to the inter-component

communication (ICC) in an Android program, the entrypoint component of a malicious

behavior could be different from the component where the behavior resides in.

The locale features in general reflect the visibility of a task (i.e., whether the execution

of the task is in the foreground or background) and continuity (i.e., whether the task is

once-off execution or a continuous execution, even after exiting the app). For example, if a

permission is used in a Service component (that has not been terminated by stopService),

then the permission use is running in the background, and also it is a continuous task (even

after exiting the app).

The dependency features describe the control dependencies of the invocation of the ma-

licious behavior. A control dependency between two statements exists if the truth value

of the first statement controls whether the second statement gets executed. Malware fre-

quently leverage external events or attributes to control malicious behaviors. For example,

the DroidDream malware leverages the current system time to control the execution of its

malicious payload. It suppresses its malicious payload during the day but allows the payload

executions at late night when users are likely sleeping.

We construct inter-procedure control-flow graph (ICFG) to extract dependency features.

Based on the ICFG, we construct the subgraphs from each entrypoint to the resource feature

(i.e., security-sensitive method call). For each subgraph, we traverse the subgraph to identify

the conditional statements that the security-sensitive method invocation is control-dependent

66

on. The value of a conditional statement is used to decide which program branch to take in

runtime executions, and thus decide whether a security-sensitive method invocation on one

of the program branches can be executed or not. We say that such conditional statement

controls the invocation of the method. Finally, we save the set of extracted conditional

statements as dependency features with the resource features and the corresponding loca-

tion/temporal features. Figure 5.9 shows the ICFG of the onCreate and onStartCommand

methods. As shown in the Figure, the sendTextMessage method in onStartCommand (Line

7) is controlled by the conditional statement on Line 6 in onStartCommand and the con-

ditional statement on Line 8 in onCreate. On the other hand, the exec post method in

onCreate is not controlled by any conditional statement, and thus the security-sensitive

behavior in exec post does not have any dependency feature.

5.4 MUTATION STRATEGY SYNTHESIS

We present our techniques of synthesizing strategies to mutate program features based on

two scenarios: black-box scenario and informative scenario. In black-box scenarios, adver-

saries have no knowledge about malware-detection techniques (e.g., features, models, algo-

rithms). So instead of developing targeted malware to evade specific detection techniques,

we propose a more general defeating mechanism called evolution attack: mimicking and

automating the evolution of malware. Such defeating mechanism is based on the insight that

the evolution process of malware reflects the strategies employed by malware authors to

achieve a malicious purpose while evading detection. In informative scenarios, adversaries

know the type of algorithms used in the detection, and therefore we develop the targeted

attack called confusion attack. The main idea of malware confusion attack is to mimic the

malware that can generally evade detection, i.e., confusing the malware detectors by modi-

fying the feature values that can be shared by malware and benign apps. In implementation,

to find the features that can cause confusion and evolution, we first project all apps to the

RTLD feature spaces) and then we follow the following steps to generate new attacks.

To generate evolution attack, we identify a feature set called evolution feature set. In

the set, each feature is evolved either at intra-family level or inter-family level. For each

feature vector in the evolution feature set, we count the number of evolutions as evolution

weight, where intra-family evolution weight is proportional to the number of evolutions at

intra-family level, and inter-family evolution weight is proportional to that at inter-family

level. The rationale is that if the feature type has already been evolved frequently under

observation, it is more likely to be evolved according to the nature of the law (in biological

67

evolution process [103]). 5.

To generate confusion attack, we identify a set of feature vectors that can be projected

from both benign apps and malware as confusion feature set. For each feature in the

confusion feature set, we count the number of benign apps that can be projected to the

feature vector as the confusion weight of the feature vector. The rationale is that if more

benign apps are projected to the feature, it is harder for the malware detector to label the

apps with this feature as malicious.

After the preceding step, in both evolution attack and confusion attack, for each

malware that we aim to mutate, we first check whether the resource feature appears in any

critical feature set, which denotes the evolution feature set in the context of evolution attack

and the confusion feature set in the context of confusion attack, respectively. If a resource

feature R appears in a vector V in the critical feature set, we then mutate the original feature

vector of R to be the same as vector V by mutating the contextual features. A resource

feature could appear in many vectors in the critical feature set. Then we mutate top K

matching vectors ranked by the corresponding evolution or confusion weight. Otherwise,

we leverage a similarity metric 6 to find another resource feature (in the critical feature

set) R′ that is most likely to be executed in the same context as R. Similarly we select

top K vectors (ranked by the corresponding evolution or confusion weight) matching R′ as

the target vectors for mutation. Finally, if any mutated malware passes the validation test

(Section 5.6) and evades detection, then evolution/confusion attack successfully produces a

malware variant given the fact that each malware generally corresponds to multiple mutated

malware. Empirically we set K = 10 in our experiments.

5.5 PROGRAM MUTATION

In this section, we present how MRV mutates existing malware based on synthesized

mutation strategies. The mutation process is essentially a program transformation that keeps

the the malicious behavior (i.e., resource feature) while mutateing the context features. To

mutate the context features, we develop a program transplantation framework that satisfies

two needs: (a) transplanting the malicious behavior to different contexts in the existing

program; (b) transplanting the contextual features from other programs into the existing

contexts. For details of the mutation, please refer to our technical report [102].

5The number labeled in the bottom of each phylogenetic tree denotes the distance between two
nodes. The node could be a leaf node for denoting a malware, and also could be an internal node
for denoting a cluster grouped from its children node. The Hungarian-type algorithm [104] is used
to compute the malware distance based on the RTLD features.

6Please refer to our technical report for more details.

68

8

3‐7

9

11‐13 15

17

10 20

3‐5

6

Enter
OnCreate

Exit
OnCreate

Enter
OnStart

7

9

Exit
OnStart

Figure 5.9: Inter-Procedural Control Flow Graph of DougaLeaker

5.5.1 Transplantation framework

Transplantation is the process that transplants the implementation of a feature (i.e.,

organ) from one app (i.e., donor app) to another app (i.e., host app) [105]. We broaden the

concept of transplantation to components and methods. Transplantation takes four steps:

identification of the organ (i.e., code area that needs to be transplanted), extraction of the

organ, identification of the insertion point in the host and adaption of the organ to the host’s

environment.

In our transplantation framework, we take different strategies based on the type of features

that need to be mutated. On one hand, to mutate the temporal features or locale features

(that are usually simple to solve) of the program, we identify or construct a suitable context

(that satisfies the targeted value of temporal features or locale features) in the existing

program, and then transplant the malicious behavior (i.e., resource feature) to the identified

or constructed location. On the other hand, to alter the dependency features that usually

require sophisticated ways (i.e., specific method sequences) to achieve the desired control,

we transplant the existing implementation of such control (i.e., organ) from a donor app to

the host app.

Such two-strategy design aims to simplify the existing software transplantation problem.

In the first strategy, the transplantation is actually intra-app. We simply save and pass

the unresolved dependency and contextual information (e.g., values of parameters) in the

program via setting the variables and fields global. In the second strategy, although the

transplantation is inter-app, we just need to transplant a program slice that contains a

few dependencies. Such transplantation is lightweight compared to transplanting the whole

implementation of a functional feature in previous work [105]. Intra-app transplantation

is feasible for temporal and locale features because synthesizing a new entrypoint or a new

component within an existing Android program results in little or no impact to other areas of

69

the program. Mutation of dependency features requires inter-app transplantation because

synthesizing new dependencies within the program is challenging. The tight coupling of

dependencies brings huge impact to other program behaviors and likely causes the mutated

program to crash.

Note that although temporal features and local features all require the transplantation

of the malicious behaviors, the donor (i.e., area of code) that requires transplantation is

different. The related code of a malicious behavior can be separated as the triggering

part and the execution part. These two parts may not be in the same component. For

example, in Figure 5.9, the malicious behavior of sending text message can be separated as

the triggering part in the OnCreate method of activity component and execution part in

the OnStartCommand method of the service component. To mutate temporal features, the

donor to be transplanted is the triggering part. To mutate locale features, the donor to be

transplanted is the execution part.

We categorize the transplantation based on the locality into three levels: inter-method,

inter-component, and inter-program transplantation, which are illustrated below.

Listing 5.1: Code snippet of mutated DougaLeaker malware

1 public void onClick(View v) {
2 User u = (User) getApplication();

3 u.androidid = Settings.Secure.getString(getContentResolver(), ”android id”);

4 u.tel = getSystemService(”phone”).getLine1Number();

5 if(!isRegisterd(u.androidid)){
6 String text = ”android id = ” + u.androidid + ”; tel =” + u.tel;

7 Date date = new Date();

8 if(date.getHours>23 || date.getHours< 5){
9 android.telephony.SmsManager.getDefault().sendTextMessage(MyService.number, null, text,

null, null); } }}

Listing 5.1 shows the mutated code related to the SMS-sending behavior in Figure 3.1.

The mutation strategy consists of two mutations: (i) to mutate the temporal feature from

lifecycle event “entering the app” (i.e., onCreate of MainActivity) to UI event “clicking the

button” (i.e., onClick of a button’s event listener), (ii) to mutate locale feature from Service

to Activity.

70

5.5.2 Inter-method transplantation

Inter-method translation refers to the migration of malicious behaviors (i.e., resource

features) from a method to another method in the same component. We observe that such

transplantation is commonly performed to mutate the temporal features. For example, the

mutation of temporal feature in Listing 5.1 is inter-method transplantation (Lines 2-5 of

onClick method in Listing 5.1 are transplanted from Lines 5-8 of the onCreate method).

In the case of temporal features, the organ that needs to be transplanted is the entry of the

malicious behavior and its dependencies. The entry of the malicious behavior is the first

node on the call graph path leading to the malicious behavior. For example, startService

is the entry of the SMS sending behaviors. In order to locate the entry of the malicious

behavior, we construct call graphs from the entrypoint of the program (corresponding to

the feature to be mutated) to the malicious method call. We then mark the node directly

connected to the entrypoint on the call graph as the entry of the malicious behavior.

Then, we extract all dependencies related to the entry. To ensure the entry method

to be invoked under the same context (e.g., parameter values), we perform a backward

slicing from the entry method until we reach the entrypoint of the program. For example,

in Figure 5.9, nodes 3-7 and 8 are all dependencies related to the entry (i.e., node 17,

startService). The corresponding statements are the code snippet to be transplanted. Next,

we create an entrypoint method that can provide temporal features that we need. The

entrypoint creation is done by either registering an event handler for system or UI events

or creating a lifecycle method in the component. We also edit the manifest file to register

receiver components for some of system events. For example, in Listing 5.1, we create an

event listener and an onClick method to provide the temporal feature that the mutation

needs.

Finally, we need to remove the organ from donor methods. If some of statements are

dependent on the organ, the removal can cause the donor method to crash. To avoid the

side-effects of the removal, we initialize a set of global variables with the local variables in the

organ. We then replace the original dependencies on the organ by making the statements

dependent on the new set of global variables. We note that in some instances, the host

method is invoked after the donor method, so the set of global variables may not be initialized

when the donor method is invoked. So when replacing the dependencies, we add conditional

statements to check for null to avoid NullPointerException in the donor method. For

example, after transplanting Lines 5-8, we need to remove Line 7 while keeping other lines

because Lines 9-13 are control-dependent on Lines 5-6.

71

5.5.3 Inter-component transplantation

The inter-component transplantation migrates malicious behaviors from one component

to another component in the same app. Inter-component transplantation can be used to

mutate the values of temporal features and locale features. For example, the mutation

of the locale feature in Listing 5.1 is inter-component transplantation (Lines 6-9 in the

Activity component in Listing 5.1 are transplanted from Lines 4-7 in the Service component

in Figure 5.8).

Inter-component transplantation follows the same process as inter-method transplanta-

tion except for two differences. First, in addition to temporal features, inter-component

transplantation is also used to mutate locale features. As previously mentioned, to mutate

local features, the organ to be transplanted is the execution part of the code. To extract

such organ, we find the call graph node directly linked by the entrypoint of the execution

part. Note that the entrypoint of the execution part can be different from the entrypoint

of the malicious behavior. For example, in Figure 5.9, the entrypoint of the execution part

is onStart, while the entrypoint of the malicious behavior is onClick. After we locate the

call graph node, the rest of the extraction process is the same.

The other difference of inter-component transplantation is when mutating the locale fea-

ture while maintaining the temporal feature, the regenerator needs to create inter-component

communications to invoke the host method. To avoid crash caused by unmatching intent

messages, the regnerator also adds conditional statements to avoid executing the existing

code in the host method when such inter-component communications occur.

5.5.4 Inter-program transplantation

The inter-program transplantation is used to migrate the dependency feature of a malicious

behavior in the donor app to the host app with identical malicious behavior. The extraction

of the dependency feature is different from migration of the triggering/execution part of the

malicious code. The organ consists of two parts. The first part is the implementation of

the controlling behavior. We first construct the inter-component control flow graph of the

app. Then we compute the subgraph containing all paths from the controlling statement

(i.e., the statement whose value determines the invocation of the malicious behavior) to

the controlled statement (i.e., malicious behavior). Such subgraph essentially represents the

controlling behavior. The second part of the organ is the dependencies of the controlling

statement. To extract these necessary dependencies, we slice backward from the controlling

statement until we reach the entrypoint of the program. We then migrate both parts of the

organ into the host app.

72

5.6 TESTING ON MUTATED APPS

We perform testing on mutated apps for two purposes: (a) whether the malicious behaviors

have been preserved; (b) whether the robustness of the app has been mutated.

Checking the preserving of malicious behaviors. We develop two techniques to

assist the testing. First, to simulate the environment where the malicious behaviors are

invoked, we create environmental dependencies by changing emulator settings or using mock

objects/events. By simulating the environment, we can directly invoke the malicious be-

haviors to speed up the validation process. Second, to further validate the consistency of

malicious behaviors when the triggering conditions are satisfied, we apply the instrumenta-

tion technique to insert logging functions at the locations of malicious method invocations.

The logging functions print out detailed information about the variables, functions, and

events invoked after the triggering events. We therefore attain the log files before and after

the mutation under the same context (e.g., the same UI or system events and same inputs).

Then, we automatically compare the two log files to check the consistency of malicious

behaviors.

Checking the robustness of mutated apps. We leverage random testing to check

the robustness of a mutated app. In particular, we use Monkey [106], a random user-event-

stream generator for Android, to generate UI test sequences for mutated apps. Each mutated

app was tested against 5,000 events randomly generated by Monkey to ensure that the app

does not crash 7

5.7 EXPERIMENT

Malware Detection Dataset. Our subject set consists of a malware dataset and a

benign app dataset. Our malware dataset starts with 3,000 malware randomly selected from

Genome [4], Contagio [54], VirusShare [53], and Drebin [15]. We use VirusTotal to perform

sanity checking on the malware dataset (descriptions about signature-based detectors are

provided later in this dissertation). We exclude the apps identified as benign by VirusTotal

from the malware dataset. We also exclude any duplicate apps by comparing SHA1 hashes.

For benign apps, we download the most popular 120 apps from each category of apps in the

Google Play store as of February 2015 and collect 3,240 apps in total. We implement the

process of extracting RTLD features using third-party static analysis frameworks, including

7Due to the limitation of the coverage of random testing, the mutated app passing the testing
step can still be invalid. As future work, we plan to incorporate more intelligence-guided testing
techniques [8, 107] in MRV testing.

73

Soot [101] and FlowDroid [100]. To isolate and remove the effects of potential limitations

of these frameworks, we run feature-extraction analysis on the complete subject set and

remove any apps that cause a third-party tool to fail. The filtering gives us a final analyzable

dataset of 1,917 malware and 1,935 benign apps to perform malware detection. Our final

malware dataset consists of 529 malware samples from Genome, 25 samples from Contagio,

287 samples from VirusShare, and 1,076 samples from Drebin dataset. Our final benign

app dataset retains 63 to 96 apps from the original 120 apps in each Google Play category.

All runs of our process of extracting RTLD features, the transplantation framework, and

learning-based detection tools [28, 15] are performed on a server with Intel(R) Xeon(R)

CPU 2.80GH with 38 processors and 80 GB of memory with a timeout of 80 minutes for

each app.

Baseline Approaches. We implement two baseline approaches for comparison with

MRV: Random MRV and OCTOPUS. We first develop a random transformation strategy (Random

MRV) to compare against confusion and evolution attacks. Instead of following the evolution

rules and similarity metrics to mutate the RTLD features, we randomly mutate RTLD

features (i.e., mutate the original feature value to the same-level feature value randomly

selected from the available dataset) and transform the malware samples based on such

mutation. Note that for Random MRV and evolution MRV, we follow the sequence of temporal

feature, locale feature, and dependency feature to apply the transformation at different levels

(Figure 5.5). We choose such sequence because the transplantation goes from inter-method

to inter-app as the level increases in this sequence, likely leading to a higher success rate in

the program transplantation. We leave the exploration on other possible mutation sequences

to our future work.

We also implement a syntactic app obfuscation tool called OCTOPUS similar to Droid-

Chameleon [26]. Specifically, OCTOPUS contains four levels of obfuscation: bytecode-sequence

obfuscation (i.e., repacking, reassembling), identifier obfuscation (i.e., renaming), call-

sequence obfuscation (i.e., inserting junk code, call reordering, and call indirection), and

encryption obfuscation (i.e., string encryption). Then, we apply each level of obfuscation

in OCTOPUS to each malware sample at a time, and perform testing on the sample file

(Section 5.6) after each obfuscation. If the testing passes, we apply the next obfuscation

to the obfuscated sample (resulted from applying the current obfuscation). If the testing

fails, we apply the next obfuscation to the the sample before the current obfuscation (i.e.,

skipping the current obfuscation). In our experiment, all semantic mutations including

Random MRV and evolution/confusion attacks are performed after the syntactic obfuscation

of OCTOPUS.

Malware detectors. We use a number of learning-based and signature-based malware

74

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Receiver Operating Characteristic (ROC) Curve

AppContext_ORI
AppContext_MRV
Drebin_ORI
Drebin_MRV

Figure 5.10: Detection results of AppContext vs. Drebin on the original dataset (ORI) and
dataset with adversarial samples (MRV) produced by MRV

detectors to evaluate the effectiveness of MRV. For learning-based malware detectors, we

adopt AppContext [28] and Drebin[15]. AppContext leverages contextual features (e.g.,

the events and conditions that cause the security-sensitive behaviors to occur) to identify

malicious behaviors. In our experiment, AppContext generates around 400,000 behavior

rows on our dataset (3,852 apps), where each row is a 679-dimensional behavior vector. We

conservatively label these behaviors (i.e., marking a behavior as malicious only when the

behavior is mentioned by existing malware diagnosis). The labeled behaviors are then used

as training data to construct a classifier. Drebin uses eight features that reside either in the

manifest file or in the disassembled code to capture the malware behaviors. Since Drebin is

not open source, we develop our own version of Drebin according to its description [15].

Although Drebin extracts only eight features from an app, Drebin covers almost every

possible combination of feature values resulting in a very large feature vector space. In fact,

Drebin produces over 50,000 distinct feature values on our dataset (3852 apps). We perform

ten-fold cross-validations to assess the effectiveness of AppContext and Drebin. Figure 5.10

shows the performance of AppContext and Drebin on all subjects in our dataset.

75

For signature-based malware detectors, we leverage the existing anti-virus service provided

by VirusTotal. Specifically, we follow the evaluation conducted for Apposcopy [25] to pick

the results of seven well-known anti-virus vendors (i.e., AVG, Symantec, ESET, Dr. Web,

Kaspersky, Trend Micro, and McAfee) and label an app as malicious if more than half of the

seven suggest that the app is malicious. Following such procedure, only malware labeled as

malicious are selected into our malware dataset, and thus all malware in our dataset can be

detected by VirusTotal.

Learning algorithms. In our experiment, we leverage k-Nearest Neighbors (kNN), De-

cision Tree (DT), and Support Vector Machine (SVM) for malware detection in AppContext

and Drebin. For confusion attack, we leverage Random Forest (RF) as the algorithm to

train the substitute model8. The reason for us to use RF is that we want to use a dif-

ferent algorithm from the ones used in malware detection to validate our assumption in

transferability [110].

Malware variants generation. We focus on generating malware variants by detected/-

known malware samples. Among all 1,917 malware samples, 1,739 samples can be detected

by all three detection tools that we used. Because many malicious servers of malware are

blocked, causing malware to crash even before the mutations, we test the 1,739 malware

with 5,000 events randomly generated by Monkey and discard the crashed apps. This step

gives us a final set of 409 valid malware samples to generate malware variants. We then

systematically apply OCTOPUS, evolution/confusion attacks, and Random MRV to all 409 valid

malware samples.

5.8 RESULTS

5.8.1 Defeating existing malware detection

Table 5.1 shows the malware variants generated through transformation of OCTOPUS,

Random MRV, malware evolution attack and confusion attack, and the detection results of

VirusTotal on the variants. We also show the result of the full version of MRV (the combi-

nation of confusion and evolution attack) in the last column (F). Therefore, the full version

includes all malware variants produced by confusion attack and evolution attack. The row

“Transformable malware” refers to the number of malware samples that can be mutated to a

8We optimize the parameter for SVM and DT (we use C4.5 DT [108]) using CVParameterSelection of
Weka [109]. For RF and kNN, we tune the parameters by testing on a sample set (100 malware and 100
benign apps). We set the benign/malware ratio in each subset (of an individual tree) for RF as 3 and K
value for kNN as 7.

76

Table 5.1: Number of transformable malware samples and generated malware variants by
different evasive techniques and the detection results

O. R. E. C. F.

Transformable malware 409 121 314 58 341
Generated variants 1008 212 638 58 696

Variants undetected by VirusTotal 125 113 512 53 565
Variants Undetected by AppContext 0 2 97 56 153

Variants Undetected by Drebin 0 111 460 58 518
O. = OCTOPUS, R. = Random MRV, E. = Malware Evolution Attack, C. = Malware Confusion Attack, F. = Full

Version of MRV

valid malware variant (i.e., of all malware variants generated at different levels of an evasive

technique, at least one of the malware variants can pass the testing). The row “Generated

variants” shows the number of generated variants that pass the impact analysis and test-

ing9, and the last three rows10 show the number of variants that can evade the detection of

VirusTotal, AppContext, and Drebin, respectively.

As shown in Table 5.1, although the full MRV generates fewer malware variants than

OCTOPUS (696 vs. 1,008), the full MRV produces much more evasive variants than both

OCTOPUS and Random MRV for all three tools, especially the learning-based tools. This result

indicates that the full MRV is much more effective in producing evasive malware variants

than syntactic obfuscation and random transformation.

We investigate the malware variants produced by the full MRV that can still be detected

by anti-virus software. We find that most variants of this kind contain extra payloads (e.g.,

rootkit, another apk). The anti-virus software can detect them by identifying the extra

payloads because our mutation transforms only the main program.

Although originally Drebin detects more malware samples than AppContext (Figure 5.10),

Drebin performs worse on the full MRV dataset. Given different training malware samples,

the full MRV can consistently make over 60% testing variants undetected by Drebin. One

potential reason could be that AppContext leverages huge human efforts in labeling each

security-sensitive behavior, while Drebin is a fully automatic approach, so overfitting is likely

to occur in Drebin’s model.

We also notice that Random MRV becomes much more effective in evading Drebin than

evading AppContext (AppContext detects almost all variants produced by Random MRV).

The reason lies in the large number of syntactic features used in Drebin. Such result indicates

that although Random MRV is effective in befuddling the syntactic-based detection (e.g., anti-

9The variants are generated at each level, and one malware sample may result in multiple malware
variants.

10For AppContext and Drebin, we show the number of variants that cannot be detected by models based
on all training algorithms.

77

Table 5.2: Details of Evolution Attack at each level (undetected vs. all)

Results T. L. D.

Robust variants 178 316 144
Undetected by VirusTotal 77/178 296/316 139/144

Undetected by AppContext 21/178 15/316 61/144
Undetected by Drebin 73/178 272/316 115/144

T. = Temporal Features L. = Locale Features D. = Dependency Features

virus software), it is not effective in evading semantics-based detection techniques.

One noteworthy result is that confusion attack can successfully mutate only 58 malware

samples into working malware variants. The reason is that confusion attack usually requires

mutating more contextual features than evolution features. We observe in our experimental

data that the likelihood of an attack to break the app increases as the number of mutations

in the attack increases. Actually, confusion attack synthesizes more than 1,000 variants,

and most of the variants are unable to run. However, such conversion rate is already high

compared to Random MRV. Random MRV generates more than 320,000 variants, but only 212

of them can run without crashing (and only 2 can evade the detection of AppContext).

Such result suggests that considering the feasibility of an attack is essential in generating

adversarial malware samples.

5.8.2 Effectiveness of attacks at each level

For evolution attack, we also investigate the effectiveness of mutation at each RTLD level.

Table 5.2 shows the detailed detection results of evolution attack at each mutation level.

Table 5.2 shows some interesting observations. For example, for anti-virus software and

Drebin, the level that produces the largest number of evasive variants is on the locale-feature

level, while for AppContext, the level that produces the largest number of evasive variants

is on the dependency-feature level. This result indicates that mutating at the locale-feature

level is more effective for the detectors using syntactic features (e.g., VirusTotal, Drebin),

while mutating at the dependency-feature level is more effective for semantics-based detectors

(e.g., AppContext). Such result also indicates that the transformation sequence used in

the experiment (i.e., temporal-locale-dependency) might not be the most optimal choice to

evade some detectors. Ideally, we can explore different combinations of the mutation levels

to maximize the number of undetected malware samples for each malware detector.

We also observe that most of unsuccessful variants produced at the dependency-feature

level are due to the fact that a malicious behavior cannot be triggered in the simulated

78

testing environment. The reason of lacking triggering is that by transplanting conditional

statements from one component/method to another component/method, the internal logic of

the original malware sample is broken. Some of the transplanted conditional statements may

be mutually exclusive with the existing conditions in the code, thus making the malicious

behavior infeasible to be triggered. As an ongoing effort, we plan to leverage a constraint

solver to identify the potential UNSAT conditions when synthesizing mutation strategies.

5.8.3 Strengthening the robustness of detection

We also investigate the possibility of leveraging variants produced by MRV to strengthen

the robustness of detection. We propose the following three techniques.

Adversarial Training. We randomly choose half of our generated malware variants into

the training set to train the model, and put the other half of generated variants into the

testing set to evaluate the model11.

Variant Detector. We create a new classifier called variant detector to detect whether an

app is a variant derived from existing malware. The variant detector leverages mutation

features that are generated from each pair of apps’ RTLD features to reflect the feature

differences between the two apps. The number of mutation features is the same as the

number of RTLD features. The difference is that for any RTLD feature that the two apps

disagree on, the mutation feature (corresponding to the RTLD feature) is the (bidirectional)

mutation between the apps on the RTLD feature. If the pair of apps are derived from same

malware, we label the feature vector as “variant”. Otherwise, we label the feature vector

as “unrelated”. Because only a small portion of all pairs of apps would have a “variant”

relation, the trained model would be biased to the majority class (i.e., the “unrelated” class).

To resolve such issue, we use SMOTE [111] to make both classes to have an equal number

of instances by creating synthetic instances. We then use the trained model on each app

labeled (by malware detectors) as benign. For each of the apps, we create pairs to produce

mutation features by grouping the app with each malware sample in our training set. Then

the trained model determines whether the app is a variant of malware in the training set

based on the mutation features.

Weight Bounding. We constrain the weight on a few dominant features to make feature

weights more evenly distributed. For example, in the case of SVM, we constrain w in the

cost function of SVM:

11We perform ten-fold cross-validation in our experiment to report TP and FP.

79

0.01 0.02 0.03 0.04 0.05 0.06
False Positive Rate (FPR)

0.70

0.75

0.80

0.85

0.90

0.95

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Original
MRV
Adverserial Training
Variant Detector
Weight Bounding

Figure 5.11: Detection results of AppContext (SVM) when different defense mechanisms are
applied

min
w∈Rd

‖ w ‖2 +C
N∑
i

max(0, 1− yif(xi))

We observe that adversaries can produce evasive malware variants by applying just a few

mutations on dominant features in contrast to many more mutations on other non-dominant

features. Therefore, to locate dominant features, we select all 44 malware variants produced

by fewer than three mutations, and summarize 17 dominant features that enable the produc-

tion of the variants. To compute the specific range of the weight, we put only 44 malware

variants and their original malware samples as malicious samples in the training set, and

record the range value of the weight of the 17 dominant features under different parameters.

We then summarize the constraints in reasonable settings (TPR ≥ 0.80 and FPR ≤ 0.10)

and put the hard constraints in the training phase.

Figure 5.11 presents the detection results of AppContext’s malware detection12. The red

line represents the detection performance on the original dataset, and the purple triangles

represent the detection performance on the dataset with malware variants produced by MRV.

The other three curves represent the detection performance of three proposed protection

12We present only SVM-based model here due to the limited space. Other learning algorithms present
similar patterns as SVM. We leave investigation of specific differences across models as future work.

80

Table 5.3: Number of malware samples evading detection of AppContext or Drebin under
different algorithms

Detector ORI. AT. VD. WB.

AppContext 178 125 106 152
Drebin 38 19 8 23

ORI. = Original detection, AT. = Adversarial training
VD. = Variant detection, WB. = Weight bounding

techniques on the dataset with malware variants. As shown in Figure 5.11, all three proposed

techniques can alleviate the MRV attacks. The variant detector technique can reach almost

the same performance as the original malware detector (while being more secure/robust to

malware variants).

To alleviate the concerns that our proposed defenses are overfitting to MRV attacks, we

also investigate whether the trained models can assist detecting not only malware variants

but also unknown malware samples in general. We choose to investigate the malware samples

evading the detection of the original AppContext and Drebin (178 and 38 malware samples

evade the detection, respectively)13. As shown in Table 5.3, all the protection mechanisms

can help detect evasive malware samples, and only eight of the samples can evade the

detection of the variant detector technique.

5.9 CONCLUSION

In this chapter, we have proposed practical attacks that mutate malware variants to evade

detection. The core idea is to leverage existing malware program structures to change the

features that are non-essential to malware but important to malware detectors. To achieve

this goal, we have presented the MRV approach including static analysis, phylogenetic

analysis, machine learning, and program transplantation to systematically produce new

malware mutations. To the best of our knowledge, our work is the first effort toward solving

the malware-evasion problem by altering malware bytecode without any knowledge of the

underlying detection models.

MRV opens up intriguing, valuable venues of applications. First, the proposed attacks can

be used to evaluate the robustness of malware detectors and quantify the differentiability

of features. Second, MRV can help discover potential attack surfaces to assist the iterative

design of malware detectors. Finally, the program transplantation framework (capable of

changing malware features) can be written as a malicious payload within malware and such

13All the numbers are counted when the false positive is within 0.06.

81

adaptive malware are valuable for the community to investigate.

82

CHAPTER 6: RELATED WORK

Static Analysis for Mobile App. Much work has been proposed to enhance static

analysis on mobile apps [75, 76, 77, 22, 78, 20, 79, 80, 81, 82, 83, 19, 84, 85]. EnMobile

falls into the general category of information flow analysis. Information flow analysis tracks

whether privacy-sensitive data (i.e., sources) flows to outgoing channels or sensitive outlets

(i.e., sinks). EnMobile complements existing information flow analysis by adding entity-

based characterization to the information flow. AAPL [77] uses enhanced data flow analysis

techniques to increase the number of data flows that can be detected by information flow

analysis and then uses the peer-voting mechanism to low the false positive rate to report

illegitimate information leakages. AAPL fails to handle obfuscation techniques such as

String encryption (by using constant propagation analysis) and produces high false positives

(by matching all sources with all potential sinks). EnMobile resolves these two limitations

by precisely computing the identity of entities. SPARTA [86] and FlowDroid [14] are two

general information flow analysis frameworks. SPARTA enables the flow-policy checking

by providing an integrity type system to annotate source code with information-flow type

qualifiers. FlowDroid is a static taint analysis tool for Android apps based on Soot [87]

and Heros [88]. EnMobile complements SPARTA and FlowDroid by analyzing all types of

data flows to detect malicious behaviors that are not information leakage (e.g., bot-driven

C&C behaviors). HARVESTER [95] is a hybrid analysis that extracts runtime value to

cope with anti-analysis technique (e.g., encryption) in Android apps. EnMobile can leverage

HARVESTER to derive more accurate inference of entity identity by coping with the problem

of reflective method calls.

Characterizing App Behaviors. Existing work uses static analyses to characterize app

behaviors. DroidSift [67] characterizes malicious behaviors via program dependency graphs.

However, malware can obfuscate the program by leveraging the external entities to break a

program dependency graph into pieces. EnMobile can assists DroidSift to reconstruct the

dependency graph from the segmented graphs. Pegasus [112] characterizes the effects of the

event system and API semantics using permission event graphs. EnMobile complements

Pegasus by reflecting the configuring or controlling entities of security-sensitive behaviors.

Mobile Malware Detection. There are mainly two types of techniques: signature

matching and machine learning. For signature matching, a malware detector matches either

a syntactic signature (i.e., a sequence of instructions matched by a regular expression) or

a semantic signature [25] (i.e., control flows or data flows). In our evaluations, we demon-

strate that EnMobile can be used to match entity-based malware signatures (which are

83

semantic signatures). For machine learning, existing work leverages techniques such as min-

ing (MUDFLOW [65]) clustering (CHABADA [66]), classification (AppContext [28]), and

natural language processing (AsDroid [73], WHYPER [23]) to detect malicious apps. Our

approach complements existing malware-detection analysis by identifying contexts that indi-

cates the intentions of data uses. There are various approaches that perform analysis to de-

tect malicious behaviors, such as dynamic taint analysis [7, 113], language-based information

flow [114, 115, 116, 117], static analysis [118, 67, 25, 119], and Bayesian classification [120].

However, these approaches are concerned about how privacy-sensitive data protected by

permissions are used, while our approach provides the contexts under which the permissions

are triggered. Future work can also leverage entity-based semantic information extracted by

EnMobile to train classification models to differentiate benign apps and malware.

Contexts of Permission Uses. Besides our work, prior research has leveraged the

contextual information of app behaviors for various security purposes. Pegasus [112] con-

structs permission event graphs using static analysis to model the effects of the event system

and API semantics, and performs model checking to enforce the policies specified by users.

However, specifying these policies requires that users have established knowledge about the

expected behavior/functionality of the app and an understanding of the Android platform.

Our approach complements Pegasus by providing the contexts, which can be used to con-

struct Pegasus’ policies. AppIntent [9] presents a sequence of GUI events that lead to data

transmissions and let analysts decide whether the data transmissions are intended. Their

approaches focuses on GUI events, a kind of user-perceivable contexts that allows analysts

to scrutinize the manipulations of UI components. Although our approach also focuses on

the events that trigger app behaviors, AppIntent handles only app behaviors activated by

GUI events while our approach analyzes a more comprehensive set of contexts (e.g., receivers

and background services) and can complement their approach to handle data transmissions

that are not triggered by sequences of GUI manipulations. Further, our approach focuses on

permission uses rather than data transmissions. Moreover, in addition to the event-handlers

in the code, our approach also extracts the events from Android components’ attributes

in the manifest files, identifying more types of contexts than their approach. AsDroid [73]

detects stealthy app behaviors by identifying mismatches between API invocations and the

text displayed in the GUIs. Our approach focuses on the events that trigger app behaviors

rather than the textual analysis of the GUIs. Since app behaviors can occur without dis-

playing a GUI, the textual analysis of GUIs alone is insufficient to detect all stealthy app

behaviors. DroidAPIMiner [30] identifies malicious apps by performing frequency analysis of

API invocations within a set of benign and malicious apps to extract the features of malware,

and uses machine learning to determine the most relevant features. Our approach focuses

84

on what causes security-sensitive API calls to be used rather than the pattern of API calls

that are used. WHYPER [23] examines whether app descriptions provide any justification

for the app’s permission uses. WHYPER focuses on why apps request permissions while our

approach focuses on how apps actually use the requested permissions. Such sentences in the

app description provide explanations for the contexts of permission uses. But WHYPER

cannot provide contexts for permission uses that have not been justified by app descriptions.

Our approach addresses this issue by transforming the permission related behaviors and

contexts into natural-language descriptions. Such descriptions can be used to explain the

unjustified permission usages identified by WHYPER, complementing WHYPER to improve

user-understanding of permission usages.

Studies of Permission Model. Felt et al. [121] perform usability studies to examine

whether users understand the permission warnings. Their results show that user can identify

(part of) the permission definition, but they are confused about the scope of permission.

Users incorrectly believe that a given permission has more capabilities or less capabilities

than it actually has. The context description provided by AppContext could alleviate

the issue to some extent. The description explains the privileges gained by permission

invocations, so users could infer what apps could do by using the permissions. Barrera et

al. [122] leverage the Self-Organizing Map (SOM) algorithm to study how the developers use

the Android permission system in practice. They take 1100 Android apps on the market as

their study subjects, and visualize the study results in U-matrix representation of the SOM

for Android permissions. Their results reveal the correlations between permissions, and the

results also suggest that pairs of permissions are common. Stowaway [123] build a permission

mapping to check whether Android apps follow least privilege with their permission requests.

PScout [46] also build a more complete permission mapping by static analysis of Android

system source code. These studies focus on correlations between permissions and permission

mapping while our studies focus on contextual use of permissions.

Risk Ranking and Certification of Apps. Peng et al. [27] present the risk information

of an app compared to other apps by using probabilistic generative models to calculate risk

scoring of the app. MAST [124] triages Android apps by analyzing features extracted from

the APKs. MAST uses machine learning techniques to measure the correlation between

features and directs malware analysis resources to the apps that have the greater potential

of risks. Kirin [125] performs lightweight certification of apps by identifying dangerous app

configurations against a set of security rules. These approaches leverage various kinds of

features or configurations in apps to identify potential risks. Unlike these approaches that

present the risk scores or ranking for users, our approach analyzes the bytecode of apps to

extract the contexts of permission uses. However, our approach can complement risk ranking

85

and certification techniques by providing the extracted permission contexts as another metric

for their evaluation.

Privacy Issues in Mobile Apps. Several efforts try to characterize the current mobile

ad targeting process. MAdScope [126] and Ullah et al. [127] both found that ad libraries have

not yet exploited the full potential of targeting. Our work is driven by such observations

and tries to assess the data exposure risk associated with embedding a library in an app.

Many studies describe alternative mobile advertising architectures. AdDroid [128] enforces

privilege separation by hard-coding advertising functions as a system service into Android

platform. AdSplit [129] achieves privilege separation via making ad libraries and their host

apps run in separate processes. Leontiadis et al. [130] proposes a client-side library compiled

with the host app to monitor the real-time communication between the host app and the ad

libraries to control the exposed information. MobiAd [131] suggests local profiling instead

of keeping the user profiles at the data brokers to protect users’ privacy. Most of these

alternative architectures envision a separation of ad libraries from their host apps. This

would eliminate the in-app attack channels that we demonstrate and constrain the data

exposure to the ad libraries. However, none of these solutions are deployed in practice as

they all disrupt the business model of multiple players in this ecosystem. We take a different

approach by modeling the capabilities of ad libraries in order to proactively assess apps’ data

exposure risk.

There are a number of studies that aim to—or can be used to—detect and/or prevent

current privacy-infringing behaviors in mobile ads. Those works mainly fall into three general

categories: (1) static scanning [132, 133, 134, 135, 136], (2) dynamic monitoring [137, 138,

139, 140], and (3) hybrid techniques using both [141]. A combination of these techniques

could detect and prevent some of the attack strategies of ad libraries we discussed in this

work, if they are adopted in practice. However, such countermeasures can still fail to

protect against all allowed behaviors. For example, TaintDroid [7] and FlowDroid [14]

cannot evaluate the sensitivity of the data carried. Moreover, static code analysis will miss

dynamically loaded code, and code analysis in general cannot estimate the potential reach

of libraries. Further, by merely encrypting local files we cannot prevent libraries within the

same process from using the key the host app uses to decrypt the files. In addition, there is

no mechanism to address data exposure through app bundle information as we reveal in this

work because (1) this is not considered as a sensitive API from AOSP and (2) even if marked

as sensitive it is unclear how access to it by apps and/or libraries should be mediated, as

there are legitimate uses of it. Our focus is not on detecting and tackling current behaviors

but assessing the data exposure given the allowed behaviors. This is critical when trying to

assess the privacy risk of an asset.

86

SUPOR [142] and UIPicker [143] seek instances where apps exfiltrate sensitive data.

Like Pluto, they use NLP and machine learning techniques to find data of interest in user

interfaces. Unlike Pluto, their focus is on data like account credentials and financial records,

whereas Pluto is aimed at general targeted data with validation based on data of interest to

advertisers. As with most of the other work in this area, SUPOR and UIPicker seek existing

exfiltration instances rather than allowed instances, although some of their techniques can

facilitate finding allowed instances.

Evasive Malware. Metamorphic malware [144], polymorphic malware [145] and other

obfuscation techniques [146] have been developed to evade malware detection [147]. Semantic

signature [148], behavior graphs [149] and other semantics aware techniques [150], [28], [151]

have been developed to defeat against malware. To study how anti-malware products are

resistant against transformed mobile apps, Droidchameleon [26] is developed as a systematic

framework with various transformation techniques for mobile app study and they found the

transformed apps can easily evade detection. Unlike MRV, DroidChameleon only performs

syntactic obfuscation, which can be easily be detected by semantic-based detection tool

such as AppContext. PraGUARD [152] performs assets encryption on malware samples

to assess the role of external resources (i.e., assets) in the detection for the anti-malware

tools PraGUARD focuses on assessing detection of external resources, while MRV focuses

on assessing detection of apps behaviors. Two approaches focus on different problems,

complementary to each other. Replacement attack [153] is proposed to poison behavior-based

specifications by concealing similar behaviors of malware variants. Replacement attack can

impede malware clustering [154]. MalGene [155] is developed to automatically locate evasive

behavior in system call sequences and therefore extract evasion signatures. Different from

these works, MRV can evade both anti-virus tools and machine learning based classifiers.

Recent evaluations [16] on ML-based malware detection techniques suggest that more

feature number does not necessarily improve the performances due to the non-informative

features [15] and noisy features. Recent study on PDFrate [96] evaluates existing learning-

based malware detection techniques in different evasion scenarios. Xu et al. [97] propose

an evading technique based on classification score feedback that can manipulate PDF mal-

ware samples to evade detection of PDFrate and Hidost. Carmony et al. [98] manipulate

JavaScript payload in PDF malware to evade detections. The major difference between

these works and MRV is that MRV requires much less knowledge about machine learning

model to launch the attack. Moreover, prior work mainly focuses on pdf malware while MRV

automatically generates malware variants for android apps.

Adversarial Machine Learning. Adversarial machine learning [156, 157, 158, 96]

studies the effectiveness of machine learning techniques against an adversarial opponent.

87

Adversaries frequently attempt to break many of the assumptions that practitioners make

(e.g., data has various weak stochastic properties; data do not follow a stationary data

distribution). Generally, the adversary is assumed to have full (or partial) information related

to three components of learner: learning algorithm, feature space and training dataset. In

our work, we propose a targeted attack assuming a malware developer knows the information

about the feature space and classifier.

Program Transplantation. We leverage program transplantation technique for pro-

gram transformation. Given an entry point in the donor and a target implantation point in

the host program, the goal of automated program transplantation [105, 100, 159] is to iden-

tify and extract an organ, all code associated with the feature of interest, then transform it

to be compatible with the name space and context of its target site in the host. In this work,

we broaden program transplantation concept to intra-app transplantation that needs to deal

with the side-effect of the removal of the organ (compared to inter-app transplantation),

where effective heuristics are proposed to automatically identify the target implantation

point in the host program.

88

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

The increasing popularity of intelligent techniques such as machine learning intrigue se-

curity researchers and practitioners to adapt the intelligent techniques in security systems.

Investigating and strengthening the adversarial resiliency of the intelligent techniques are

crucial for such adaptation because these techniques were first proposed or developed with-

out considering the presence of adversaries. The contributions of this dissertation address

this issue from three perspectives. We first present how intelligent techniques can be adapted

for automated decision making in mobile security systems. Then we investigate the possibil-

ity to design and implement systematic attack strategies that are specifically adversarial to

these newly-proposed intelligent techniques. Last, based on the findings that the intelligent

techniques are indeed susceptible to the adversarial attacks, we develop techniques to fur-

ther strengthen the adversarial resiliency of intelligent techniques toward these adversarial

attacks.

One important direction for future research is to develop software engineering infras-

tructures including testing infrastructures to assure the quality of learning-based security

systems. The existing way to assure quality of a learning-based system is either by manual

testing (i.e., applying the learning-based system to several examples drawn from a test set

and measuring its accuracy) or by verification in a form of statistical guarantees (e.g., us-

ing statistical learning theory to suggest that the test error rate is unlikely to exceed some

threshold). For manual testing, the testing procedure cannot cover most (if not all) of the

possible – previously unseen – examples that may be misclassified. For verification, the

statistical guarantees are expressed for points that are drawn from the same distribution

as the training data (i.e., the guarantee will hold when considering only “naturally occur-

ring” inputs). While verification is challenging even from a theoretical point of view, even

automatic testing can be challenging from a practical point of view.

The traditional techniques of automatic testing cannot be applied on the learning-based

systems for three main reasons.

(1) Learning instead of implementing program logics. In traditional software,

test generation is driven by the goal of covering program structures (such as all program

branches/paths of a given program under test) because the logic of a traditional program is

expressed in terms of control flow statements. However, core logics of learning-based systems

are embedded in the machine learning models (i.e., arithmetic operations of formulas) in

the program. Even a single input can easily cover all program paths in a learning-based

system [160] because the learning-based system automatically learns its logic from a large

89

amount of data with minimal human guidance (there is no need to incorporate any control-

flow statements in the program itself). Due to such unique characteristic, the erroneous

corner-case behaviors in learning-based systems are analogous to logic bugs in traditional

software.

(2) Non-linearity of machine learning models. Machine learning models are fun-

damentally different from the models (e.g., finite state machines) used for modeling and

testing traditional programs. Modern learning algorithms (e.g., perceptron learning, neural

network) tend to learn models that are highly non-linear functions. Finding inputs that can

result in high model coverage in these models is significantly more challenging due to the

non-linearity.

(3) Incapability of supporting techniques. The Satisfiability Modulo Theory (SMT)

solvers [161] that have been quite successful at generating high-coverage test inputs for tradi-

tional software are known to have trouble with formulas involving floating-point arithmetic

and highly nonlinear constraints, which are commonly used in machine learning models.

Next we present our plans for possible future work that can be built upon our current

contributions and results.

Testing Metrics for Learning-based Mobile Security Systems. Testing metrics

are used to represent the effectiveness of test inputs. Higher values of testing metrics usu-

ally indicate better saturation of program logics in the system under test. As the values

of testing metrics increase, more issues lying in the system are likely to be uncovered. In

traditional software testing, various types of code coverage metrics, including line cover-

age, method coverage, and branch coverage, usually serve as the standard testing metrics

for evaluating different testing strategies. Testing metrics of traditional software are based

on program structures (e.g., statements, branches, and paths) because traditional software

incorporates program logics in these program structures (e.g., control flows, data flows).

However, program logics of learning-based systems are embedded in the arithmetic opera-

tions of formulas in the program. These facts make traditional testing metrics inappropriate

to characterize the executions of such mathematical formulas. For instance, sigmoid func-

tion, as a commonly-used activation function in neural networks, can be implemented with

only one line of Java code. When the function is used in neural networks, we need to observe

the return value (e.g., check whether the value is greater than a threshold) to tell whether

the respective neuron is activated or not. In other words, if we achieve full line coverage of

the method implementing a sigmoid function, we still could not guarantee that the status

space of the respective neuron has been fully covered. Thus, there is a strong need of testing

metrics customized for learning-based systems.

Recently, researchers developed a new systematic strategy [162] to test deep learning

90

systems. They propose neuron coverage (i.e., ratio of the number of distinct activated

neurons to the total number of neurons in the neural network) as the testing metric. As

their approach tries to improve neuron coverage during testing of real deep learning models,

they find thousands of incorrect corner-case behaviors. The promising results show the

effectiveness of their approach as well as the future of such efforts. However, considering

only neuron coverage might not be sufficient for future improvements of the models under

test. There is one key problem in this testing metric: it interprets neuron activation as a

positive indicator for testing effectiveness, while actually it is only a status of the respective

neuron. Such situation is similar to counting the number of true clauses in traditional

software testing. A higher number of true clauses revealed during testing does not necessarily

imply covering more situations when executing the code. In fact, it is possible for faults to

be revealed even when most clauses are false. Such facts suggest that we should consider

more effective testing metrics for neural networks.

For our future work, we plan to use manifold to address the testing metric problem. A

manifold is a topological space, in which each point is surrounded by a locally Euclidean

space. Previous research [163] speculated that lower-dimension manifolds are good models for

many data-related tasks, whose data points might lie in very high-dimensional spaces. Such

speculation indicates that we might be able to tell whether specific inputs are meaningful or

not by checking whether they could fit in the manifold constructed from the training data.

There are multiple ways to construct manifolds from training data and check whether

specific inputs could fit in the manifolds. We plan to choose the most suitable combination

of approaches for each neural network model.

Manifold-reconstruction-based checking. The basic idea is to construct a new manifoldM′

with both training data and given input, and measure the distance between the new manifold

and the manifold M constructed from only training data, which is denoted as d(M,M′).

If inputs could fit in M, then the differences between M and M′ should be insignificant,

resulting in a small d(M,M′). If inputs are unlikely to be meaningful with regard to the

training data, it is expected to observe a somewhat differentM′, which corresponds to a big

d(M,M′). This approach should be applicable to all manifold learning algorithms.

Manifold-construction-invariant-based checking. Reconstructing the manifold and deriv-

ing the manifold-to-manifold distance might lead to efficiency problems. During manifold

construction, determined by the construction algorithm, some properties among the training

data might be fully or partially preserved (i.e., invariants), which could be utilized for faster

checking of new inputs. For instance, Isomap [164] preserves the geodesic distance between

each pair of points (i.e., the sum of edge lengths along the shortest path between two points).

This property entails that, if an input under test is together used with the training data to

91

construct a manifold, the shortest Euclidean distance between the point corresponding to

the test input and the points representing the training data in the lower-dimensional space

will be the same as that in the higher-dimensional input space. Thus, if the distances of test

inputs to the manifold are used to judge whether those inputs fit in the manifold, we simply

need to find the shortest Euclidean distance between those inputs and training data in the

input space instead of constructing manifolds and measuring the distances among manifolds.

Autoencoder-based manifold construction and checking. Autoencoders are neural networks

with simpler hidden representations trained to forward inputs to outputs. Autoencoders can

be leveraged to identify intrinsic properties of the data [165] and realize both manifold

learning and checking. An autoencoder ae = d ◦ e can be viewed as two parts: an encoder

e : S→ H, which is trained to map from inputs to hidden representations, and resembles to

constructing the manifold from training data, and a decoder d : H→ S, which is trained to

recover inputs from hidden representations, and resembles to the reverse process of manifold

construction. The input space is denoted as S, the hidden representation space is denoted

as H, and H has fewer dimensions than S. Assume that H is large enough to embrace most

hidden representations of normal inputs, then the reconstruction error for training inputs

by ae, which can be defined as the average Euclidean distance from the outputs of ae to the

training inputs, should be reasonably low. This process resembles to normal inputs lying on

the manifold. For unintended inputs, since their hidden representations are likely to clash

with those of normal inputs due to limited space dimensions of H, and e tries to recover

from hidden representations based on training inputs, the outputs of e (also as the outputs

of ae) should be different from those inputs, resulting in high reconstruction errors. Such

process resembles to unintended inputs being away from the manifold. Such properties enable

unintended-input detection according to the reconstruction errors, essentially approximating

the distances between inputs and the manifold. Previous research [166] applied this technique

to defend against adversarial examples for neural network classifiers.

Test Oracle for Learning-based Mobile Security Systems. To test machine learn-

ing software, software testing techniques have been used to address two major issues: test

generation (i.e., generating test inputs) and test oracle (i.e., determining whether the soft-

ware behaviors are expected with respect to the given test inputs). Unexpected behaviors

of machine learning software can come from various causes such as not having good enough

training data sets, or the machine learning software itself is faulty. Here we are focusing on

the latter cause: test oracles to determine whether the machine learning software is faulty.

Machine learning software is known to suffer from the “no oracle problem” [167]. Usually

machine learning, especially supervised learning, learns a prediction model from training data

sets and then uses the prediction model to predict the label to classify a future data instance.

92

A test oracle (what the prediction/label should be) is not easily obtainable. Labeling a

future data instance can also be done manually, yet being ineffective. Our previous work

on differential testing [168] focused on a similar problem. Differential testing is a testing

approach to generate test inputs that exhibit the behavioral differences between two versions

of a program. A specific implementation is chosen as a reference implementation, which can

be seen as a test oracle. By using another implementation of the same functionality as the

program that we want to test as a cross-reference test oracle, we can just use the output from

this another implementation as our expected output for a certain test input. Since machine

learning software is widely used nowadays, there are many machine learning frameworks

that have the same or similar functionality to each other. Thus, it can be very useful to

leverage multiple machine learning frameworks to help address the “no oracle problem” in

testing machine learning software.

We plan to tackle the test oracle problem for machine learning software by using an

approach of multiple-implementation testing for supervised learning software. The overall

idea is that we can collect multiple implementations of machine learning software that have

the same or similar functionality to the software that we want to test. It is likely that the

majority of these implementations produce the expected output for a given test input. Thus,

we can use the majority output from these implementations as our test oracle.

Going forward, the approaches that we have developed in this dissertation can be extended

to strengthen the adversarial resiliency for a much wider range of security systems. We hope

that by strengthening the adversarial resiliency of intelligent techniques, these approaches

will become cost-effective enough to be used in a much wider range of practical security

systems.

93

REFERENCES

[1] G. M. Blog, “Android and security.” [Online]. Available:
http://googlemobile.blogspot.com/2012/02/android-and-security.html

[2] “App review — Apple App Store,” https://developer.apple.com/app-store/review/.

[3] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scalable and
accurate zero-day android malware detection,” in Proceedings of the 10th international
conference on Mobile systems, applications, and services. ACM, 2012, pp. 281–294.

[4] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization and evolution,”
in Proc. S&P, 2012, pp. 95–109.

[5] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets.” in NDSS, vol. 25, no. 4,
2012, pp. 50–52.

[6] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of capability
leaks in stock android smartphones.” in NDSS, vol. 14, 2012, p. 19.

[7] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth,
“TaintDroid: An information-flow tracking system for realtime privacy monitoring on
smartphones,” in Proc. OSDI, 2010, pp. 1–6.

[8] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated gui-model
generation of mobile applications,” in Proc. FASE, 2013, pp. 250–265.

[9] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang, “AppIntent: Analyzing
sensitive data transmission in Android for privacy leakage detection,” in Proc. CCS,
2013, pp. 1043–1054.

[10] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang, “Vetting
undesirable behaviors in Android apps with permission use analysis,” in Proc. CCS,
2013, pp. 611–622.

[11] M. Hypponen, “Malware goes mobile,” Scientific American, no. 5, pp. 70–77, 2006.

[12] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-application
communication in android,” in Proceedings of the 9th international conference on
Mobile systems, applications, and services. ACM, 2011, pp. 239–252.

[13] M. J. Harrold, G. Rothermel, and S. Sinha, “Computation of interprocedural control
dependence,” in ACM SIGSOFT Software Engineering Notes, no. 2, 1998, pp. 11–20.

[14] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “FlowDroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps,” in Proc. PLDI, 2014, p. 29.

94

[15] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, “DREBIN: effective
and explainable detection of android malware in your pocket,” in NDSS, 2014, pp.
23–26.

[16] S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P. Ranganath, H. Li,
and N. Guevara, “Experimental study with real-world data for android app security
analysis using machine learning,” in ACSAC, 2015, pp. 81–90.

[17] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege escalation attacks
on android,” in international conference on Information security. Springer, 2010, pp.
346–360.

[18] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission re-
delegation: Attacks and defenses.” in USENIX Security Symposium, vol. 30, 2011,
p. 88.

[19] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting android apps for
component hijacking vulnerabilities,” in Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012, pp. 229–240.

[20] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and general inter-component data
flow analysis framework for security vetting of Android apps,” in Proc. CCS, 2014, pp.
1329–1341.

[21] D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein, and Y. Le Traon,
“Combining static analysis with probabilistic models to enable market-scale an-
droid inter-component analysis,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM, 2016, pp.
469–484.

[22] L. Li, A. Bartel, T. F. D. A. Bissyande, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, and P. McDaniel, “IccTa: detecting inter-component privacy
leaks in android apps,” in Proc. ICSE, 2015, pp. 280–291.

[23] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: Towards automating
risk assessment of mobile applications,” in Proc. USENIX Security, 2013, pp. 527–542.

[24] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog: Measuring
the description-to-permission fidelity in android applications,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,
2014, pp. 1354–1365.

[25] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-based detection of
Android malware through static analysis,” in Proc. FSE, 2014, pp. 576–587.

[26] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: evaluating android anti-malware
against transformation attacks,” in Proceedings of the 8th ACM SIGSAC symposium
on Information, computer and communications security. ACM, 2013, pp. 329–334.

95

[27] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru, and
I. Molloy, “Using probabilistic generative models for ranking risks of android apps,” in
Proceedings of the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 241–252.

[28] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcontext: Differentiating
malicious and benign mobile app behaviors using context,” in ICSE, 2015, pp. 303–313.

[29] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A scalable system
for detecting code reuse among android applications,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 2012,
pp. 62–81.

[30] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level features for robust
malware detection in Android,” in Proc. SecureComm, 2013.

[31] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen, “I-arm-droid: A rewriting
framework for in-app reference monitors for android applications,” Mobile Security
Technologies, vol. 2012, no. 2, p. 17, 2012.

[32] R. Xu, H. Säıdi, and R. J. Anderson, “Aurasium: Practical policy enforcement for
android applications.” in USENIX Security Symposium, vol. 2012, 2012.

[33] B. Livshits and J. Jung, “Automatic mediation of privacy-sensitive resource access in
smartphone applications.” in USENIX Security Symposium, 2013, pp. 113–130.

[34] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors and security flaws
using pql: a program query language,” ACM SIGPLAN Notices, vol. 40, no. 10, pp.
365–383, 2005.

[35] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement: A practical
approach to defeat a wide range of attacks.” in USENIX Security Symposium, 2006,
pp. 121–136.

[36] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker, “Towards
automatically generating summary comments for java methods,” in Proceedings of the
IEEE/ACM international conference on Automated software engineering. ACM, 2010,
pp. 43–52.

[37] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating parameter comments and
integrating with method summaries,” in Program Comprehension (ICPC), 2011 IEEE
19th International Conference on. IEEE, 2011, pp. 71–80.

[38] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting and describ-
ing high level actions within methods,” in Proceedings of the 33rd International Con-
ference on Software Engineering. ACM, 2011, pp. 101–110.

96

[39] R. P. Buse and W. R. Weimer, “Automatically documenting program changes,” in
Proceedings of the IEEE/ACM international conference on Automated software engi-
neering. ACM, 2010, pp. 33–42.

[40] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-Shanker,
“Automatic generation of natural language summaries for java classes,” in Program
Comprehension (ICPC), 2013 IEEE 21st International Conference on. IEEE, 2013,
pp. 23–32.

[41] B. B. Rad, M. Masrom, and S. Ibrahim, “Camouflage in malware: From encryption
to metamorphism,” IJCSNS, 2012.

[42] “Android sensors overview,” http://developer.android.com/guide/topics/sensors/ sen-
sors overview.html.

[43] T. Bradley, “DroidDream becomes Android market nightmare.” [Online]. Available:
https://tinyurl.com/yd222fna

[44] D. Franke, C. Elsemann, S. Kowalewski, and C. Weise, “Reverse engineering of mobile
application lifecycles,” in Proc. WCRE, 2011, pp. 283–292.

[45] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”
Neural processing letters, no. 3, pp. 293–300, 1999.

[46] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the Android
permission specification,” in Proc. CCS, 2012, pp. 217–228.

[47] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for classifying
and categorizing android sources and sinks,” in 2014 Network and Distributed System
Security Symposium (NDSS), 2014.

[48] S. Chiba, “Load-time structural reflection in Java,” in Proc. ECOOP, 2000, pp. 313–
336.

[49] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna, “Execute this!
analyzing unsafe and malicious dynamic code loading in Android applications,” in
Proc. NDSS, 2014.

[50] B. Livshits, J. Whaley, and M. S. Lam, “Reflection analysis for Java,” in Proc. APLAS,
2005, pp. 139–160.

[51] “AppContext,” https://sites.google.com/site/asergrp/projects/appcontext/.

[52] O. Lhoták and L. Hendren, “Scaling Java points-to analysis using Spark,” in Proc.
CC, 2003, pp. 153–169.

[53] “VirusShare,” https://www.virusshare.com.

[54] “Contagio mobile - mobile marewale mini dump.” [Online]. Available:
http://contagiominidump.blogspot.com/

97

[55] “Virustotal - free online virus, malware and url scanner,”
https://www.virustotal.com/.

[56] F-Droid, “FOSS apps for Android.” [Online]. Available: https://f-droid.org/

[57] “Androguard,” https://code.google.com/p/androguard/wiki/ databaseandroidmal-
wares.

[58] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and
model selection,” in IJCAI, no. 2, 1995.

[59] “Security Threat - Symantec,” https://www.symantec.com/security response/.

[60] “Virus Information - McAfee,” http://home.mcafee.com/virusinfo/.

[61] “Threat Analysis - Sophos,” https://www.sophos.com/en-us/threat-center/threat-
analyses.aspx.

[62] “Microsoft malware protection center,” http://www.microsoft.com/security/portal
/threat/Threats.aspx.

[63] “Threat Encyclopedia - Trend Micro,” http://www.trendmicro.com/vinfo/us/threat-
encyclopedia/.

[64] “Antiy Labs,” http://www.antiy.net/.

[65] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer, and E. Bodden,
“Mining apps for abnormal usage of sensitive data,” in Proc. ICSE, 2015, pp. 426–436.

[66] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior against app
descriptions,” in Proc. ICSE. ACM, 2014.

[67] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware Android malware classi-
fication using weighted contextual API dependency graphs,” in Proc. CCS, 2014, pp.
1105–1116.

[68] Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand, “Automated synthesis of
semantic malware signatures using maximum satisfiability,” in NDSS, 2017.

[69] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, Deep Ground Truth Analysis of Current
Android Malware, 2017.

[70] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and G. Vigna,
“Triggerscope: Towards detecting logic bombs in android applications,” in Security
and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 377–396.

[71] K. O. Elish, X. Shu, D. D. Yao, B. G. Ryder, and X. Jiang, “Profiling user-trigger
dependence for android malware detection,” Computers & Security, vol. 49, pp. 255–
273, 2015.

98

[72] J. Rubin, M. I. Gordon, N. Nguyen, and M. Rinard, “Covert communication in mobile
applications,” in Automated Software Engineering (ASE), 2015, pp. 647–657.

[73] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid: Detecting stealthy be-
haviors in Android applications by user interface and program behavior contradiction,”
in Proc. ICSE, 2014, pp. 1036–1046.

[74] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and P. Liu,
“Finding unknown malice in 10 seconds: Mass vetting for new threats at the google-
play scale.” in USENIX Security Symposium, 2015, pp. 659–674.

[75] O. Bastani, S. Anand, and A. Aiken, “Interactively verifying absence of explicit infor-
mation flows in android apps,” in Proc. SPLASH, 2015, pp. 299–315.

[76] D. Li, Y. Lyu, M. Wan, and W. G. J. Halfond, “String analysis for Java and Android
applications,” in Proc. FSE, 2015, pp. 661–672.

[77] K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee, and G. Jiang,
“Checking more and alerting less: Detecting privacy leakages via enhanced data-flow
analysis and peer voting,” in Proc. NDSS, 2015.

[78] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Composite constant
propagation: Application to android inter-component communication analysis,” in
Proc. ICSE, 2015, pp. 77–88.

[79] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. Le Traon,
“Effective inter-component communication mapping in Android with epicc: An es-
sential step towards holistic security analysis,” in Proceedings of the 22Nd USENIX
Conference on Security, ser. SEC’13, 2013.

[80] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and Y. Chen,
“Edgeminer: Automatically detecting implicit control flow transitions through the
android framework,” in Proc. of NDSS, 2015.

[81] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. d’Amorim, and M. D. Ernst,
“Static analysis of implicit control flow: Resolving java reflection and android intents,”
in Proc. ASE, 2015, pp. 669–679.

[82] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev, “Static window
transition graphs for android,” in Proc. ASE, 2015, pp. 658–668.

[83] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-flow analysis of
user-driven callbacks in android applications,” in Proc. ICSE, 2015, pp. 89–99.

[84] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard, “Information-
flow analysis of android applications in droidsafe,” in Proc. NDSS, 2015.

[85] J. Rubin, M. I. Gordon, N. Nguyen, and M. Rinard, “Covert communication in mobile
applications,” in Proc. ASE, 2015, pp. 647–657.

99

[86] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner, K. Koscher,
P. Barros, R. Bhoraskar, S. Han, P. Vines, and E. X. Wu, “Collaborative verification of
information flow for a high-assurance app store,” in Proc. CCS, Scottsdale, AZ, USA,
November 4–6, 2014, pp. 1092–1104.

[87] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot framework for java program
analysis: a retrospective,” in Proc. CETUS, 2011.

[88] E. Bodden, “Inter-procedural data-flow analysis with ifds/ide and soot,” in Proc.
SOAP, 2012.

[89] “Android.geinimi,” https://www.symantec.com/security response/writeup.jsp?docid
=2011-010111-5403-99.

[90] “Android.answerbot,” https://www.symantec.com/security response/writeup.jsp?
docid=2011-100711-2129-99.

[91] “Security alert: New beanbot sms trojan discovered,”
http://www.cs.ncsu.edu/faculty/jiang/BeanBot/.

[92] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating ad fraud in android
applications,” in Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. ACM, 2014, pp. 123–134.

[93] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow analysis via
graph reachability,” in Proc. POPL, 1995, pp. 49–61.

[94] “Soot: A framework for analyzing and transforming java and android applications,”
http://sable.github.io/soot/.

[95] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting runtime values in
android applications that feature anti-analysis techniques,” in Proc. NDSS, 2016.

[96] N. Rndic and P. Laskov, “Practical evasion of a learning-based classifier: A case study,”
in IEEE S & P, 2014, pp. 197–211.

[97] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in NDSS, 2016.

[98] C. Carmony, M. Zhang, X. Hu, A. V. Bhaskar, and H. Yin, “Extract me if you can:
Abusing pdf parsers in malware detectors,” in NDSS, 2016.

[99] Z. Zhu and T. Dumitras, “Featuresmith: Automatically engineering features for mal-
ware detection by mining the security literature,” in CCS. ACM, 2016, pp. 767–778.

[100] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic error elim-
ination by horizontal code transfer across multiple applications,” in PLDI, 2015, pp.
43–54.

[101] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot: A
Java bytecode optimization framework,” in Proc. CASCON, 1999.

100

[102] “Malware recomposition attacks,” https://github.com/davidyoung8906/MRV-
Report/raw/master/DSNMainTR.pdf.

[103] A. D. Baxevanis and B. F. F. Ouellette, Bioinformatics: A Practical Guide to the
Analysis of Genes and Proteins, 2005.

[104] H. W. Kuhn and B. Yaw, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, pp. 83–97, 1955.

[105] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated software
transplantation,” in ISSTA, 2015, pp. 257–269.

[106] “Monkey,” http://developer.android.com/tools/help/monkey.html.

[107] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma: programmable
ui-automation for large-scale dynamic analysis of mobile apps,” in Mobisys, 2014.

[108] J. R. Quinlan, “Induction of decision trees,” Machine learning, 1986.

[109] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
weka data mining software: an update,” ACM SIGKDD explorations newsletter, no. 1,
pp. 10–18, 2009.

[110] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine learn-
ing: from phenomena to black-box attacks using adversarial samples,” arXiv preprint
arXiv:1605.07277, 2016.

[111] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Synthetic
minority over-sampling technique,” Journal of artificial intelligence research, pp. 321–
357, 2002.

[112] K. Chen, N. Johnson, V. D’Silva, K. MacNamara, T. Magrino, E. Wu, M. Rinard, and
D. Song, “Contextual policy enforcement for Android applications with permission
event graphs,” in Proc. NDSS, 2013.

[113] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “TaintEraser: Protecting
sensitive data leaks using application-level taint tracking,” SIGOPS Oper. Syst. Rev.,
vol. 45, no. 1, 2011.

[114] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE
J.Sel. A. Commun., vol. 21, no. 1, 2006.

[115] A. C. Myers and B. Liskov, “Protecting privacy using the decentralized label model,”
ACM Trans. Softw. Eng. Methodol., vol. 9, no. 4, 2000.

[116] A. C. Myers, “JFlow: Practical mostly-static information flow control,” in Pro. POPL,
1999, pp. 228–241.

[117] I. Roy, D. E. Porter, M. D. Bond, K. S. Mckinley, and E. Witchel, “Laminar: Practical
fine-grained decentralized information flow control,” in Proc. PLDI, 2009, pp. 63–74.

101

[118] X. Xiao, N. Tillmann, M. Fahndrich, J. De Halleux, and M. Moskal, “User-aware
privacy control via extended static-information-flow analysis,” in Proc. ASE, 2012,
pp. 333–346.

[119] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and general inter-component data
flow analysis framework for security vetting of Android apps,” in Proc. CCS, 2014, pp.
1329–1341.

[120] O. Tripp and J. Rubin, “A Bayesian approach to privacy enforcement in smartphones,”
in Proc. USENIX Security, 2014.

[121] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence in smart-
phone security and privacy,” in Proc. SOUP, 2012.

[122] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A methodology for
empirical analysis of permission-based security models and its application to Android,”
in Proc. CCS, 2010.

[123] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android Permissions De-
mystified,” in Proc. CCS, 2011.

[124] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “MAST: Triage for market-scale
mobile malware analysis,” in Proc. WiSec, 2013.

[125] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application
certification,” in Proc. CCS, 2009.

[126] S. Nath, “MAdScope: Characterizing mobile in-app targeted ads,” in Mobisys, 2015.

[127] I. Ullah, R. Boreli, M. A. Kaafar, and S. S. Kanhere, “Characterising user targeting
for in-app mobile ads,” in INFOCOM WKSHPS, 2014.

[128] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege separation for
applications and advertisers in Android,” in ASIACCS, 2012.

[129] S. Shekhar, M. Dietz, and D. S. Wallach, “AdSplit: Separating smartphone advertising
from applications,” in USENIX Security, 2012.

[130] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo, “Don’t kill my ads!: balancing
privacy in an ad-supported mobile application market,” in HotMobile, 2012.

[131] H. Haddadi, P. Hui, and I. Brown, “Mobiad: private and scalable mobile advertising,”
in MobiArch, 2010.

[132] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure analysis of
mobile in-app advertisements,” in WiSec, 2012.

[133] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: Automatically de-
tecting potential privacy leaks in Android applications on a large scale,” in TRUST,
2012.

102

[134] C. Mann and A. Starostin, “A framework for static detection of privacy leaks in
Android applications,” in SAC, 2012.

[135] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps,” in PLDI, 2014.

[136] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath, R. Wang, and
D. Wetherall, “Brahmastra: driving apps to test the security of third-party compo-
nents,” in USENIX Security, 2014.

[137] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Investigating user privacy
in Android ad libraries,” in MoST, 2012.

[138]

[139] L. Vigneri, J. Chandrashekar, I. Pefkianakis, and O. Heen, “Taming the Android
appstore: Lightweight characterization of Android applications,” arXiv.org, 2015.

[140] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth,
“Taintdroid: An information-flow tracking system for realtime privacy monitoring on
smartphones,” in OSDI, 2010.

[141] V. Moonsamy, M. Alazab, and L. Batten, “Towards an understanding of the impact
of advertising on data leaks,” IJSN, vol. 7, no. 3, 2012.

[142] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang, “Supor: Precise and
scalable sensitive user input detection for android apps,” in USENIX Security, 2015,
pp. 977–992.

[143] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “Uipicker: User-input
privacy identification in mobile applications,” in USENIX Security, 2015, pp. 993–
1008.

[144] F. Leder, B. Steinbock, and P. Martini, “Classification and detection of metamorphic
malware using value set analysis,” in Malware, 2009.

[145] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymorphic worm
detection using structural information of executables,” in RAID, 2006, pp. 207–226.

[146] C. Collberg, C. Thomborson, and D. Low., “A taxonomy of obfuscating transforma-
tions,” in Technical Report of University of Auckland, 1997.

[147] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: Capturing system-
wide information flow for malware detection and analysis,” in CCS, 2007, pp. 116–127.

[148] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, “Semantics-aware
malware detection,” in IEEE S & P, 2005, pp. 32–46.

103

[149] M. Fredrikson, S. Jha, R. Sailer, and X. Yan, “Synthesizing near-optimal malware s &
pecifications from sus & picious behaviors,” in IEEE S & P, 2010, pp. 45–60.

[150] C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang, “Airbag: Boosting smartphone
resistance to malware infection,” in NDSS, 2014.

[151] D. Babic, D. Reynaud, and D. Song, “Malware analysis with tree automata inference,”
in CAV, 2011, pp. 116–131.

[152] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, “Stealth attacks: An ex-
tended insight into the obfuscation effects on android malware,” Computers & Security,
vol. 51, pp. 16–31, 2015.

[153] Z. Xin, H. Chen, X. Wang, P. Liu, S. Zhu, B. Mao, and L. Xie, “Replacement attacks
on behavior based software birthmark,” in ISC. S & Pringer, 2011, pp. 1–16.

[154] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and E. Kirda, “Scalable,
behavior-based malware clustering,” in NDSS, 2009.

[155] D. Kirat and G. Vigna, “MalGene: Automatic Extraction of Malware Analysis Evasion
Signature,” in CCS, 2015, pp. 769–780.

[156] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar, “Adversarial
machine learning,” in AISec’11. ACM, 2011, pp. 43–58.

[157] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector ma-
chines,” in 29th ICML, 2012.

[158] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and
F. Roli, “Evasion attacks against machine learning at test time,” in ECML, 2013.

[159] F. Long and M. Rinard, “Staged program repair with condition synthesis,” in ES-
EC/FSE, 2015, pp. 166–178.

[160] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox testing of
deep learning systems,” in SOSP, 2017, pp. 1–18.

[161] C. W. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli et al., “Satisfiability modulo
theories.” Handbook of satisfiability, vol. 185, pp. 825–885, 2009.

[162] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox testing of
deep learning systems,” arXiv preprint arXiv:1705.06640, 2017.

[163] H. Narayanan and S. Mitter, “Sample complexity of testing the manifold hypothesis,”
in Advances in Neural Information Processing Systems, 2010, pp. 1786–1794.

[164] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for
nonlinear dimensionality reduction,” science, vol. 290, no. 5500, pp. 2319–2323, 2000.

104

[165] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 1096–1103.

[166] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial examples,”
arXiv preprint arXiv:1705.09064, 2017.

[167] C. Murphy and G. E. Kaiser, “Improving the dependability of machine learning ap-
plications,” Department of Computer Science, Columbia University, Tech. Rep., 2008.

[168] T. Xie, K. Taneja, S. Kale, and D. Marinov, “Towards a framework for differential unit
testing of object-oriented programs,” in Proc. International Workshop on Automation
of Software Test (AST 2007), 2007, p. 5.

105

