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Abstract

How can we share sensitive datasets in such a way as to maximize utility while simulta-

neously safeguarding privacy? This thesis proposes an answer to this question by re-framing

the problem of sharing sensitive datasets as a data synthesis task. Specifically, we propose

a framework to synthesize full data records in a privacy-preserving way so that they can be

shared instead of the original sensitive data.

The core the framework is a technique called seedbased data synthesis. Seedbased data

synthesis produces data records by conditioning the output of a generative model on some

input data record called the seed. This technique produces synthetic records that are similar

to their seeds, which results in high quality outputs. But it simultaneously introduces

statistical dependence between synthetic records and their seeds, which may compromise

privacy. As a countermeasure, we introduce a new class of techniques that can achieve

strong privacy notions in this setting: privacy tests. Privacy tests are algorithms that

probabilistically reject candidate synthetics records which are determined to leak sensitive

information. Synthetic records that fail the test are simply discarded, whereas those that

pass the test are deemed safe and included in the synthetic dataset to be shared. We design

two privacy tests that provably yield differential privacy.

We analyze the quality of synthetic datasets based on a cryptography-inspired definition

of distinguishability: if synthetic data records are indistinguishable from real records, then

they are (by definition) as useful as real data. On the theory front, we characterize the

utility-privacy trade-off of seedbased data synthesis. On the experimental front, we design

an efficient procedure to experimentally quantify distinguishability.

We experimentally validate the seedbased data synthesis framework using five probabilistic

generative models. Specifically, using real-world datasets as input, we produce synthetic

data records for four different application scenarios and data types: location trajectories,

census microdata, medical data, and facial images. We evaluate the quality of the produced

synthetic records using both application-dependent utility metrics and distinguishability,

and show that the framework is capable of producing highly realistic synthetic data records

while providing differential privacy for conservative parameters.

ii



To my parents, for their love and support.

iii



Acknowledgments

First, I want to express my deepest gratitude to my Ph.D. advisor, Carl Gunter, for

his continuous guidance and mentorship. I am especially grateful to Carl for encouraging

me to strive to be an independent researcher and for the resulting opportunities that this

has afforded me. I have found Carl to be an invaluable resource for advice regarding the

execution of research and career advancement.

Second, I am indebted to my committee members: Carl, Chengxiang Zhai, Nikita Borisov,

and Adam Smith, for their valuable feedback. More than anything else, their comments and

suggestions on earlier versions of this work have led me to change my perspective and thinking

about key aspects of this work.

Third, I want to thank the brilliant researchers that I have had the pleasure to work

with as a graduate student, including Carl, Reza Shokri, XiaoFeng Wang, Vitaly Shmati-

kov, Tom Ristenpart, Paul Grubbs, Yunhui Long, Yangyi Chen, Yan Huang, Xiaorui Pan,

Wenhao Wang, Haixu Tang, and Shantanu Rane. I have learned most of what I know about

conducting research from them and with them. In particular, I wish to thank Reza who is

my longest-standing collaborator, Vitaly for hosting me at Cornell Tech for a summer in-

ternship, and XiaoFeng for working with me on a diverse set of projects over the years. I also

owe a special thank you to my M.Sc. advisor Jean-Pierre Hubaux and my colleagues during

my time at EPFL, including Reza, Nevena Vratonjic, and Kévin Huguenin, for introducing
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Chapter 1: Introduction

A major challenge in the big data era is sharing sensitive data. Suppose we wish to share

a database of electronic medical records in a way that safeguards patients’ privacy. Why

not simply remove individually identifiable information from the database before sharing

the rest? This procedure is called anonymization or de-identification and it is mandated by

regulations such as the Health Insurance Portability and Accountability Act (HIPAA) and

the more recent European General Data Protection Regulation (GDPR).

Unfortunately, proper anonymization of data is difficult to achieve. In 2001, Latanya

Sweeney demonstrated the recovery of the medical record of William Weld, governor of the

state of Massachusetts at the time, from “anonymized” medical data released by the Group

Insurance Commission [1]. Since then, catastrophic incidents have occurred to companies

such as AOL [2], and Netflix [3, 4] who attempted analogous releases of purportedly ano-

nymized data. Similar issues have arisen with location data [5, 6], genomic data [7, 8], and

medical data [9, 10]. To this day, anonymizing data in a way that guarantees privacy but

does not overly degrade its quality has not yet found a satisfying solution.

This thesis proposes a new approach to the problem of sharing sensitive datasets. This new

approach re-frames the problem as a data synthesis task: create a synthetic dataset that is

similar to the original sensitive dataset (but not the same) and share it instead. We develop

a framework to perform data synthesis in a privacy-preserving way using a probabilistic

generative model given as a black-box. The idea of data synthesis for privacy is not new. It

dates back to 1993 when it was proposed by Rubin [11]. What is new is that the framework

performs a particular kind of data synthesis which we call seedbased and is inspired and

compatible with state-of-the-art generative models based on neural-network architectures.

This is in contrast to all prior techniques for privacy-preserving data synthesis which we

call seedless because they essentially reduce to sampling from a probability distribution with

parameters learned in a privacy-preserving way. Seedbased data synthesis produces synthetic

records from generative models by constraining their output on some seed record given as

input. As a result, synthesis is not performed by sampling from the distribution induced by

the generative model but rather by sampling from its distribution conditioned on the seed (in

the sense of conditional probability). This gives greater control on the output of the model

and thus better outputs, but the dependence on the seed induces a privacy leak. To address

this leak, we propose a novel class of techniques that yield provable privacy guarantees:

privacy tests. Instead of noising the generative model, as is typical in data privacy, we add

a privacy test that achieves privacy through rejection sampling.
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1.1 OVERVIEW

This thesis proposes an answer to the following question.

How can we share sensitive datasets in such a way as to maximize utility while

simultaneously safeguarding privacy?

By re-framing the data sharing problem as a data synthesis task, our framework aims to

produce a synthetic dataset such that the synthetic records:

(a) do not reveal sensitive information about the data from which they are generated, and

(b) preserve the utility, i.e., statistical properties, of the original data.

Re-framing data sharing as data synthesis . Instead of trying to anonymize a sensitive

dataset directly, we can synthesize full data records similar to those in the sensitive dataset.

The challenge in synthesizing data, especially high-dimensional data, is to provide both

privacy and utility guarantees. That is: certain sensitive facts about the sensitive data

should not be revealed by the synthetic data (no matter what), and certain data analysis

tasks should perform (almost) as well on the synthetic data as on the sensitive dataset.

The benefits of synthetic data . In the early days of theoretically sound data privacy

research the idea of synthetic data fell out of favor. Instead, the focus shifted to an interactive

paradigm: analysts ask queries and get answers about a dataset without ever having direct

access to data records [12]. Today, this paradigm is increasingly at odds with modern

workflows of data analysis because it assumes that the analyst has precise questions to

ask before looking at the data. For centuries, this was true of the scientific method: a

specific hypothesis was formulated, an experiment designed, and an answer was produced

after collecting and analyzing the data. In the age of big data, questions often emerge only

after looking at the data. In their 2013 book on Big Data [13], Viktor Mayer-Schönberger

and Kenneth Cukier compare the process of a big data investigation to a fishing expedition:

“it is unclear at the outset not only whether one will catch anything but what one may

catch.” Data analysts often need the flexibility of accessing full data records before they

can formulate a question. As a result, tasks such as early-stage data exploration benefit

tremendously from having a synthetic dataset of full data records with an identical format

to the original (sensitive) dataset, instead of query-based access to a statistical database.

A new data synthesis technique . Seedbased data synthesis is a new idea introduced and

formalized in this thesis. It is inspired by recent development of generative models based on

neural networks such as [14–19] and the realization that such models can be used to produce

2



outputs similar to a given input by conditioning the output distribution on the input [20–23].

This is the essence of seedbased synthesis: one takes a point or record as input (called the

seed) and use it to produce a similar synthetic point or record as output. The intuition is

that given an example of anything, it is easy (for humans at least) to recognize a pattern

and then generate a similar example with the same or a similar pattern. Unfortunately, the

dependence of the synthetic outputs on their seeds is a double-edged sword. From a data

quality perspective, the process produces realistic synthetic outputs that are highly similar

to their seeds (by design). But from a privacy perspective, synthetics records produced

this way leak information about their seeds. This makes privacy harder to achieve than for

seedless techniques, which all prior work fall under.

Testing privacy: a new strategy . We propose a new methodology to design privacy-

preserving algorithms that applies to seedbased data synthesis and may also apply beyond

data synthesis. We take a generative model as a black-box and use a privacy test as a form of

rejection sampling to filter its output. Outputs that are determined to leak too much about

their seeds fail the privacy test and are discarded. Others, i.e., outputs that pass the test, are

considered part of the produced synthetic dataset. A key feature of this idea is that one may

design any privacy test that can be expressed as an algorithm looking at candidate synthetic

records. In particular, we show that simple privacy tests can yield strong privacy guarantees

such as differential privacy. As a result, the framework provides provable privacy guarantees

for several classes of generative models, including state-of-the-art generative models based

on deep learning, where no alternative exists to safeguard the privacy of seeds.

A tale of two indistinguishabilities. Though the framework is not inherently tied to any

particular notions of privacy or utility, part of this work focuses on framing the utility–privacy

trade-off as a trade-off between two kinds of indistinguishabilities. Specifically, privacy is

formalized in the sense of differential privacy viewed as a form of indistinguishability of

neighboring datasets. Utility is framed as indistinguishability between real and synthetic

data: if one cannot distinguish a synthetic record from a real record, then the synthetic data

is useful. This framing enables us to characterize the utility-privacy trade-off in two ways:

(1) we define relative sensitivity, a property of a generative model with respect to a dataset,

and use it to show the impossibility of achieving certain trade-offs; and (2) we propose a

methodology to analyze the quality of synthetic data, in the sense of indistinguishability,

both theoretically and experimentally.

3



1.2 MOTIVATING NARRATIVE

You are the chief technology officer of a small Midwest hospital. You would like to share

patient electronic medical records with biomedical researchers (external to the hospital) who

are working on a study. You could produce summary statistics of the medical records. But

you do not know what information the researchers need. In fact, the biomedical researchers

confess to you that they do not know precisely what they are looking for and probably will

not know until they have a look at the data.

You want to share full data records, with the same format as the originals but you are

concerned about patients’ privacy and do not know how to properly anonymize the medical

records. You decide that a possible solution could be privacy-preserving data synthesis. That

is, you want to synthesize, in a privacy-preserving way, a few dozen medical records similar

to those of the hospital’s patients and send them to the biomedical researchers. You hope

that this small sample of synthetic records will be representative of the hospital’s patients

and sufficient for early-stage data exploration or maybe even formulate a hypothesis.

For the generative model, you decide to train a neural network. And to safeguard privacy,

you want to apply the result of a recent paper showing how to train a neural network with

differential privacy guarantees. But, your hospital being a small regional hospital, you only

have a few hundreds medical records which is not enough to obtain an accurate model.

Indeed, state-of-the-art deep-learning models often require hundreds of thousands if not

millions of training examples to produce useful outputs [24, 25].

However, you can train an accurate model if the training set includes a large subset of the

medical records of all US hospitals. But sampling from the generative model, i.e., seedless

synthesis, will yield synthetic records reflecting the distribution of medical records across

the US, not that of your hospital. So you decide to sample from the generative model by

conditioning its output. Specifically, you use one of the hospital’s medical records as a seed

for each synthetic record you produce. This is seedbased synthesis. The produced synthetic

records are highly similar to those of the hospital’s patients. But, there is a problem. What

if a synthetic record is so similar to its seed that this compromises patient privacy?

You think of a simple countermeasure: if a synthetic record is too similar to its seed,

then discard it; otherwise keep it. You have invented privacy tests. But what does “too

similar” mean? What would be a systematic methodology to ensure that the entire procedure

provably guarantees privacy for some meaningful notion such as differential privacy? In fact,

it is not obvious that there exists such an algorithm. And even if there exists one, what

about utility? Could the filtering of the privacy test distort the distribution of synthetics so

much that the resulting output is not meaningful?

4



1.3 CONTRIBUTIONS

This thesis introduces seedbased data synthesis and describes a framework for it.

(1) We formalize seedbased synthesis and propose a mechanism for privacy-preserving

seedbased synthesis. This is the first mechanism of its kind.

(2) We introduce privacy tests as a technique to achieve strong privacy guarantees. We

believe this technique is of independent interest. We design two privacy tests that

combined with our seedbased synthesis mechanism yield (ε, δ)-differential privacy.

(3) We propose an efficient methodology to evaluate the quality of synthetic data both

theoretically and experimentally. The methodology is based on cryptography-like in-

distinguishability game definitions.

(4) We demonstrate the construction of seedbased generative models through examples and

propose techniques to use existing models. Specifically, we propose a new generative

model for location trajectories and construct a seedbased model inspired by Bayesian

networks. We also show how a large class of existing models, including state-of-the-art

neural-network models, can be used as seedbased generative models.

(5) We perform extensive experimental validation of the framework using real-world data-

sets. Specifically, we produce and analyze the quality of synthetic datasets of: location

trajectories, census microdata, medical discharge records, and facial images.

1.4 STRUCTURE

This thesis is composed of two parts. The first part (Chapters 2 to 5) develops a framework

for sharing sensitive datasets through seedbased data synthesis. The second part (Chapters 6

to 10) validates the framework experimentally using location trajectories, census microdata,

electronic medical records, and facial images from real-world datasets.

1. Theory

• Chapter 2 introduces notation and background concepts, including relevant results

on differential privacy.

• Chapter 3 describes the seedbased synthesis framework, its main mechanism, and

how it uses privacy tests. We explain the difference between seedbased synthesis

and seedless synthesis. We define the notion of relative sensitivity that captures

5



the stability of the generative model and the input dataset. Finally, we derive a

triangle lemma showing the impossibility of certain utility-privacy trade-offs.

• Chapter 4 describes two privacy tests that yield differential privacy. The first is

based on an intuitive criterion we call plausible deniability, whereas the second

generalizes the idea and provides a superior privacy guarantee.

• Chapter 5 proposes a methodology to evaluate the utility of synthetic data both

theoretically and experimentally. We advocate for the use of a distinguishability-

based metric and show that we can, in certain cases, derive utility bounds on the

quality of synthetics.

2. Validation

• Chapter 6 describes several generative models that we use for validation. Specifi-

cally, we describe: (1) a similarity-based generative model to synthesize location

trajectories, (2) a Bayesian networks inspired model to capture statistical relati-

onships between data record attributes, and (3) a class of models, latent-space

models, that includes prominent state-of-the-art generative models.

• Chapter 7 evaluates the generative model for location trajectories in two scenarios

using real-world location data.

• Chapter 8 applies the framework to generate census microdata using our Bayesian

network model.

• Chapter 9 applies the framework to produce synthetic medical records using two

latent-space models: principal component analysis and variational autoencoders.

• Chapter 10 applies the framework to synthesize facial images using an off-the-shelf

autoencoder generative adversarial network [26].

The thesis is concluded with a brief survey of the relevant literature (Chapter 11) and a

discussion of limitations and future work (Chapter 12).

6



Chapter 2: Background

This chapter introduces notation and background concepts.

2.1 NOTATION

Datasets and data records . A dataset D is a (non-empty) multiset of data records.

Each data record is an element of a data universe U which is a large but finite set. The

data universe depends on the type of data considered. For example, in a medical context,

the data universe U may represent the set of all medical records with a given format (e.g.,

a specific set of attributes). In a different context, the data universe U may be the set of all

bit-strings of length l ≥ 1, i.e., U = {0, 1}l.
The cardinality or size of dataset D, denoted |D| is the number of records in D. Two

datasets D1, D2 are said to be neighboring, denoted ‖D1 −D2‖ = 1, if one dataset can be

obtained from the other by adding a single data record d ∈ U .

Models and mechanisms . A seedbased generative model M is a randomized algorithm

taking a data record d ∈ U as input and producing another record y ∈ U as output. The

probability that a generative model M produces a fixed y ∈ U as output given input data

record d ∈ U is denoted as: Pr{y ←M(d)}.
A mechanism F is a randomized algorithm that takes a dataset as input and produces a

single data record y ∈ U as output. The probability that a generative model F produces

a fixed y ∈ U as output given input dataset D is denoted as: Pr{y←F(D)}. For both

generative models and mechanisms, the probability space is over the random choices of the

algorithm. We refer to the probability that a generative model or a mechanism produces a

given output as the synthesis probability.

Probability distributions and expectation . If P denotes a discrete probability distri-

bution over a set X then we let px denote the probability of outcome x ∈ X.

The expectation of a real-valued function f of a random variable X taking values over a

set X according to a probability distribution P is denoted by EP [f(X)] (or E[f(X)] when

the probability distribution is clear from the context) and is defined as:

EP [f(X)] =
∑
x∈X

f(x) · Pr{X = x} =
∑
x∈X

f(x) · px .

For an event or statement A, we write 1A which equals 1 if A occurs and 0 otherwise. It

is often convenient to use the fact that: Pr{A} = E[1A].

7



This thesis references several probability distributions both discrete and continuous.

• The Bernoulli distribution with parameter p is denoted Bern(p) and has probability

mass px(1− p)1−x for x ∈ {0, 1}.

• The Gaussian distribution with mean µ and standard deviation σ is denoted Gaus(µ,σ).

• The Laplace distribution with shape parameter b > 0 has density 1
2b

exp (− |x|
b

) and is

denoted Lap(b).

• The symmetric geometric distribution with parameter 0 < α < 1 has probability mass
1−α
1+α

α|i|, for i ∈ Z, and is denoted Geom(α).

Distances and distance metrics. The hamming distance (or weight) of a bit-string x

of l bits, denoted HAMM(x), is the total number of 1 bits it contains.

We consider several distance metrics over discrete probability distributions P and Q with

the same support X. The Kullback–Leibler divergence (KL divergence) from Q to P is:

KL(P,Q) =
∑
x∈X

px ln
px
qx

. (2.1)

The statistical distance (SD), also called total variation distance, between P and Q is:

SD(P,Q) =
1

2

∑
x∈X

|px − qx| . (2.2)

Pinkser’s inequality [27] connects the KL divergence to the statistical distance: SD(P,Q) ≤√
1
2
KL(P,Q). The Hellinger distance (HEL) between P and Q is:

HEL(P,Q) =
1√
2

√∑
x∈X

(
√
px −

√
qx)2 . (2.3)

Vectors and matrices . When it is unclear from the context, we use bold-type face to

denote vectors and matrices. Insofar as convenient and clear, we use lower-case for vectors

and upper-case for matrices, so that x denotes a vector whereas X denotes a matrix. In

particular, we let I denote the identity matrix where the dimension is either specified or can

be inferred from the context. Also, we denote the transpose of a matrix X as XT .

8



2.2 DIFFERENTIAL PRIVACY

Informally, differential privacy [28] is a condition on the output distribution resulting from

a computation: specifically that the distribution be multiplicatively bounded by a factor eε

(for some ε > 0 called the privacy budget) for any two neighboring input datasets.

Definition 2.1 (Differential Privacy [29]).

Mechanism F satisfies (ε, δ)-differential privacy if for any neighboring datasets D, D′, and

any output S ⊆ Range(F):

Pr{F(D′) ∈ S} ≤ eεPr{F(D) ∈ S}+ δ .

This definition is often called approximate differential privacy because it allows for some

small probability δ > 0 of a bad event (i.e., an event such that the multiplicative eε bound

does not hold). In this thesis, we want δ ≤ 2−λ where λ is a security parameter.

Differential privacy falls within the category of membership privacy [30] which defines

privacy by the extent to which the membership status of an individual record in a dataset

influences the output distribution of a mechanism.

There are several prominent mechanisms that provide differential privacy guarantees. We

briefly describe the Laplace mechanism [29] and the Exponential mechanism [31].

An important concept is the sensitivity of a function which is the maximum possible

change in the function’s output for any two neighboring inputs. Specifically, the sensitivity

of a function f with outputs over the reals, denoted ∆f , is: maxD,D′ ||f(D)−f(D′)||1, where

D and D′ are neighboring datasets.

Definition 2.2 (Laplace Mechanism – 3.3 [29]).

Let f be any function that takes a dataset D as input and outputs a real number. The Laplace

mechanism for ε > 0 outputs f(D) + z, where z is drawn from Lap(∆f
ε

).

It is shown in [29] that the Laplace mechanism satisfies (ε, 0)-differential privacy.

For computations with outputs ranging over an arbitrary domain R, the Exponential

mechanism [31] can be used. Informally, the mechanism works by sampling from its output

domain R such that a sample r ∈ R is returned with probability proportional to eεq(D,r),

where q(D, ·) is a quality function which assigns a score to each element of R. The guarantee

(for one output) is (2ε∆q, 0)-differential privacy, where ∆q is the sensitivity of q.

A crucial property of any meaningful privacy definition is that it provides some way to

understand and obtain a guarantee when invoking a mechanism more than once. There are

several composition results for differential privacy. For ease of reference, we reproduce here
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the results for sequential composition and advanced composition. The reader is referred

to [29] for a more extensive discussion.

Theorem 2.1 (Sequential Composition – 3.16 [29]). Let Fi be a (εi, δi)-differentially private

mechanism for i=1, 2, . . . ,m. Then, for any dataset D, the mechanism which releases out-

puts (F1(D),F2(D), . . . ,Fm(D)) is a (ε, δ)-differentially private mechanism for ε =
∑m

i=1 εi

and δ =
∑m

i=1 δi.

Theorem 2.2 (Advanced Composition – 3.20 [29]). Let Fi be a (ε, δ)-differentially private

mechanism for i=1, 2, . . . ,m. Then the mechanism represented by the sequence of k queries

over F1(·),F2(·), . . . ,Fm(·) with potentially different inputs is a (ε′, δ′)-differentially private

mechanism for:

ε′ = ε

√
2k ln

1

δ′′
+ kε(eε − 1) and δ′ = kδ + δ′′ .

A related result, sometimes referred to as parallel composition, is that if we release

(F1(D1),F2(D2), . . . ,Fm(Dm)) for disjoint datasets D1, D2, . . . , Dm, where each Fi is a

(εi, δi)-differentially private mechanism, then the guarantee is (ε, δ)-differential privacy, for

ε = maxi(εi) and δ = maxi(δi).

2.3 SYNTHETIC DATA

Synthetic data is nebulous term which often means different things to different people. It

is often implicitly or imprecisely defined as any data that was not produced or derived from

direct measurement or observation. Throughout this thesis, synthetic data refers to data

records with the same format (and belonging to the same data universe) as the real data

records they are produced from or inspired by. We call the synthetic data records produced

by the techniques proposed in the thesis full data records to emphasize that the data format

(and dimension) is fully preserved.

The idea of using synthetic data for privacy dates back to 1993 when it was proposed

by Rubin [11]. What is attractive about this proposition is that synthetic data (in the

sense of full data records) can be used in lieu of the real data for many applications. This

makes synthetic data ideal for early-stage discovery and data analysis processes that would

otherwise need to use real sensitive data.
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Chapter 3: Framework

This chapter describes the seedbased synthesis framework. Elements of the framework

were originally introduced in [32] and [33]. Specifically, we describe the seedbased mechanism

and formalize the notion of privacy tests. We also introduce the concept of relative sensitivity

and use it to derive a triangle constraint on achievable utility-privacy trade-offs which applies

to any seedbased synthesis process.

3.1 SEEDBASED SYNTHESIS

We are given a probabilistic generative model and a dataset and tasked with producing a

synthetic dataset.

3.1.1 Generative Models

A probabilistic generative model is a randomized algorithm that produces a record, which

we call synthetic as output, where the probability space is over random choices made by

the algorithm. In this work, we consider the special case of seedbased generative models

which (probabilistically) maps the data records universe onto itself, i.e.: M : U → U . We

denote the probability that a generative modelM produces output y ∈ U given input x ∈ U
(called the seed) as: Pr{y ← M(x)}. This expression, called the synthesis probability, is

a conditional probability which can be interpreted as follows. Given input x ∈ U : M(x)

describes a (discrete) probability distribution (of the output) over U . That is for all x ∈ U ,

we have:
∑

y∈U Pr{y ←M(x)} = 1.

The framework requires generative models to satisfy the following properties.

• (Seedbased) the output probability distribution depends on the seed. That is, there

exists distinct x1, x2 ∈ U and y ∈ U such that: Pr{y ←M(x1)} 6= Pr{y ←M(x2)}.

• (Computability) for any x, y ∈ U : there exists a procedure to compute Pr{y ←M(x)}
exactly.

It is important that the procedure to compute Pr{y ←M(x)} be efficient enough to be

used in practice.1

1We do not impose any formal efficiency constraints, but remark that in most practical scenarios we
desire the time complexity of computing Pr{y ←M(x)} to depend on |x|+ |y| and not on |U | which can be
very large for high-dimensional data.
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To provide intuition, we consider two examples of seedbased generative models.

Example 3.1 (Identity model).

The identity generative model is defined (by its probability distribution) as:

Pr{y ←M(x)} =

1 if x = y

0 otherwise
.

This model is seedbased.

The identity model is not very interesting; its output is always the same as its input. But,

for the same reason, it preserves utility.

Example 3.2 (Hamming similarity model). Take as data universe the set of all bit-

strings of length l ≥ 1, i.e., U = {0, 1}l.

Pr{y ←M(x)} =

(cHAMM(x))
−1 if HAMM(x) = HAMM(y)

0 otherwise
,

where cHAMM(x) = |{y ∈ U : HAMM(x) = HAMM(y)}|.
In other words, the model outputs a uniformly random string with the same ham-

ming weight as its input. Thus, by construction, this model preserves the hamming

weight distribution of the input dataset.

Seedless Synthesis. A generative model is called seedless if its output is independent of

its input. That is if for all y: the value of Pr{y ←M(x)} is the same regardless of x ∈ U .

Example 3.3 (Uniform model). The uniform modelMU is such that for any x, y ∈ U :

Pr{y ←MU(x)} =
1

|U |
.

This model is seedless.

Note that seedless synthesis is a special case of seedbased synthesis.
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Generative models as distributions . Generative models can equivalently be viewed as

randomized algorithms or distributions. This also illustrates the difference between seedless

and seedbased generative models. Let P denote the distribution of a generative model.

Seedless synthesis is equivalent to drawing y as

y ∼ P (y) .

In contrast, seedbased synthesis is equivalent to drawing y as

y ∼ P (y | d) ,

where d ∈ D is the seed.

Training . Real-world generative models typically have parameters to drive their behavior.

The parameters are usually learned from data through a training process. It is important

to note that if training is performed using sensitive data, the learned parameters may leak

sensitive information that is not captured by what the model’s output reveals about its input

seed. This issue can sometimes be bypassed by learning model parameters from public data.

Alternatively, we can use a training process that satisfies differential privacy.

3.1.2 Basic Synthesis

To produce synthetic records from an entire input dataset (as opposed to from a single

seed record) we use the following process.

Definition 3.1 (Basic synthesis).

Input: dataset D, generative model M.

Output: synthetic y ∈ U .

1. Select a seed record d ∈ D uniformly at random.

2. Sample a synthetic record y ←M(d).

3. Output y.

We denote this procedure as G and call it basic synthesis. It produces a single synthetic

record y ∈ U for every invocation with probability:

Pr{y ← G(D)} = |D|−1
∑
d∈D

Pr{y ←M(d)} .

In other words, basic synthesis simply picks a random input record as seed and feeds it

into the generative model to obtain an output.
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3.2 MECHANISM

We construct a seedbased synthesis mechanism which uses a privacy test in addition to

basic synthesis. The privacy test rejects synthetic candidates that do not satisfy some privacy

criterion in order to achieve a privacy guarantee such as differential privacy.

Given a generative modelM, and a dataset D, the mechanism runs a privacy test for any

released data. The mechanism produces data records by using M on dataset D.

Mechanism 3.1 (The mechanism).

Input: generative model M, dataset D.

Output: synthetic record y or nothing (⊥).

1. Select a seed record d ∈ D uniformly at random.

2. Generate a candidate synthetic record y ←M(d).

3. Invoke the privacy test on (M, D, d, y).

4. If the tuple passes the test, then output y.

Otherwise, output ⊥.

Note that basic synthesis can be viewed as an instance of Mechanism 3.1 with a privacy

test which always returns pass.

Privacy Tests . The privacy test is a form of rejection sampling; by rejecting some synthe-

tics and not others, the test can shape the output distribution to ensure that the mechanism

satisfies some privacy guarantee such as differential privacy. We formalize the class of privacy

tests as tuples (κ, δ), where κ is a privacy score function (the higher the score the higher the

privacy) and δ is function mapping scores to probabilities.

The privacy score function κ takes as input the generative model M, the dataset D, the

seed record d, and the synthetic y and produces a non-negative real number interpreted as

a score. The larger the score, the more desirable it is that y passes the test. The probability

of passing the privacy test is: δ(x), where x = κ(M, D, d, y). This thesis considers functions

δ that are well-behaved in the following sense.

Definition 3.2. A privacy test function δ : [0,∞) → [0, 1] is well-behaved if the following

conditions hold.

(i) Non-decreasing: for any x > y: δ(x) ≥ δ(y).

(ii) Bounded increments: there exist constants c0 > 0, and β0 ≥ 1 such that for all x ≥ 0:

δ(x+ c0)

δ(x)
≤ β0 and

1− δ(x)

1− δ(x+ c0)
≤ β0 .
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Informally, the first condition says that the higher the score the higher the probability of

passing the test, whereas the second condition says that the increase in probability (of passing

and of failing the test) with the score itself is bounded. As we will see in Chapter 4, the

second condition is necessary to ensure that the test itself does not leak sensitive information.

Algorithmically, we describe a generic test as follows.

Privacy Test 3.1 (Generic test Tκ,δ).
Input: generative model M, dataset D, data records d and y, privacy score function κ, and

privacy test function δ

Output: pass to allow releasing y, otherwise output fail.

1. Compute the score x = κ(M, D, d, y).

2. With probability δ(x) return pass

Otherwise return fail.

Example 3.4. The simplest form of privacy test is a threshold test on the score: if

the score exceeds some pre-defined threshold k, then the test returns pass, otherwise

it returns fail. This test implicitly defines δ such that for x < k: δ(x) = 0, and

δ(x) = 1 otherwise.

Deterministic tests do not provide differential privacy (and are not well-behaved). But

we can turn a deterministic threshold test into a well-behaved (randomized) test by adding

noise to the threshold k. We call this the noisy threshold technique.

Privacy Test 3.2 (Noisy threshold test Tκ,Z,k).
Input: generative model M, dataset D, records d and y, privacy score function κ, privacy

parameter k, and noise distribution Z

Output: pass to allow releasing y, otherwise output fail.

1. Randomize k by adding fresh noise: k̃ = k + z.

2. Compute the score x = κ(M, D, d, y).

3. If x ≥ k̃ then return pass

Otherwise return fail.

Where z is a sample drawn from the noise distribution Z, i.e., z ∼ Z.

Note that when the noise is symmetric, it may be useful to think of it as being added to

the score rather than to the threshold. Appendix A.1 describes properties of the symmetric

geometric distribution and the Laplace distribution as they relate to Definition 3.2.
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The probability of synthesizing any fixed y ∈ U using Mechanism 3.1 (denoted by F) with

privacy test (κ, δ) given input dataset D is:

Pr{y ←F(D)} = |D|−1
∑
d∈D

Pr{y ←M(d)} · δ(M, D, d, y) ,

where for conciseness we overload δ as δ(M, D, d, y) = δ(x) for x = κ(M, D, d, y).

In Chapter 4 we describe two instances of privacy tests that lead to differential privacy.

3.3 CHARACTERIZING THE TRADE-OFF

Suppose we seek to design a mechanism F that satisfies ε-differential privacy. Further,

suppose we would like F to produce synthetics with similar probability as basic synthesis.

Given y ∈ U this demand can be formalized by requiring that for some small α ≥ 1:

α−1Pr{y ← G(D)} ≤ Pr{y ← F(D)} ≤ αPr{y ← G(D)}. Given that utility and privacy

may be in conflict, a natural question is: what characterizes the trade-off between α and ε?

In this section, we explore this question through the notion of relative sensitivity.

3.3.1 Relative Sensitivity

A key idea in the theory of differential privacy is to calibrate noise to the sensitivity of

the function one wishes to privatize [28]. For example, using the Laplace mechanism for

a real-valued function f , the noise needed to achieve ε-differential privacy is Lap(∆f/ε),

where ∆f is the global sensitivity of f and ∆f = supD,D′:‖D−D′‖=1‖f(D)− f(D′)‖1. In this

sense, we can think of the sensitivity of f as defining a trade-off between the privacy level

(ε) and the utility, i.e., inaccuracy of the response or noise magnitude (∆f/ε).

To understand the sensitivity of basic synthesis G, we look towards the synthesis proba-

bilities Pr{y ← G(D)} and Pr{y ← G(D′)} for neighboring D,D′ and some fixed arbitrary

y ∈ U and observe that we can find M and neighboring D,D′ such that:

|Pr{y ← G(D)} − Pr{y ← G(D′)}| = 1

|D|
.

Example 3.5. Let D = D′∪{d?} for some d? ∈ U and takeM such that Pr{y ←M(d)} = 0

for d ∈ D′ and Pr{y ←M(d?)} = 1.

This is a significant challenge towards achieving privacy because for high-dimensional data

universes (|U | � |D|) we expect the synthesis probabilities to be orders of magnitude smaller
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than 1
|D| . Under what circumstances could we expect the (local) sensitivity to be roughly

the same order of magnitude as the synthesis probabilities? What would have to hold of G
(i.e.,M) and D? A bound on the following, which we call the relative sensitivity of G at D.

Definition 3.3. The relative sensitivity of G at D, y is:

∆̃G(D, y) = max
d?∈D

{
Pr{y ← G(D)}
Pr{y ← G(D′)}

,
Pr{y ← G(D′)}
Pr{y ← G(D)}

}
, (3.1)

where D′ = D \ {d?} and we interpret the ratio to be unbounded (∆̃G(D, y) = ∞) if there

exists d? such that Pr{y ← G(D \ {d?})} = 0.

Note that the relative sensitivity is actually a condition on the pair (M, D), since:

Pr{y ← G(D)}
Pr{y ← G(D′)}

=
|D| − 1

|D|

[
1 +

Pr{y ←M(d?)}∑
d∈D′ Pr{y ←M(d)}

]
.

For example, observe that the identity model has unbounded relative sensitivity for arbi-

trary input datasets. As another example, consider as data universe the set of all bit-strings

of length l ≥ 1, i.e., U = {0, 1}l. The relative sensitivity of the model in Example 3.2 is

unbounded: if a dataset D′ does not contain the bit-string 0l, then the probability of produ-

cing y = 0l under D = D′ ∪ {0l} is non-zero whereas it is zero under D′. That said, remark

that for some datasets the relative sensitivity may be bounded. For example, take any D

that contains two or more record with every hamming weight between 0 and l.

In contrast, any seedless model when applied to bit-strings of length l, has relative sensiti-

vity 1 (which is minimal). For example, the model of Example 3.2 and that of Example 3.3

can be combined to produce a hybrid model as follows.

Example 3.6. Let MHAMM denote the model of Example 3.2 and MU denote the

model of Example 3.3. Let 0 < b < 1 be a parameter. The hybrid model Mb is:

Pr{y ←Mb(x)} = b · Pr{y ←MHAMM(x)}+ (1− b) · Pr{y ←MU(x)} .

It can be seen that the value of the parameter b directly controls the relative sensitivity

of the model of Example 3.6. The closer b is to 1 the smaller the relative sensitivity and

(simultaneously) the less the model’s output depends on the input.
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3.3.2 The Triangle Lemma

We introduce a key result towards characterizing the utility-privacy trade-off, which we

call the Triangle Lemma by analogy to the triangle inequality. Informally, the lemma says

that given a dataset D and a generative modelM, the utility-privacy trade-off is constrained

by the relative sensitivity of G at D. A consequence is the impossibility of achieving certain

utility-privacy trade-offs (no matter the mechanism F).

Lemma 3.1 (Triangle Lemma). Let G denote basic synthesis with some generative modelM,

let F be any mechanism with outputs over U . Also, let D be a dataset and take D′ = D\{d?}
for some d? ∈ D. Finally, let y ∈ U , If:

• α = maxD?∈{D,D′}max
{

Pr{y←G(D?)}
Pr{y←F(D?)} ,

Pr{y←F(D?)}
Pr{y←G(D?)}

}
,

• ε = maxD1,D2:‖D1−D2‖=1 max
{

ln Pr{y←F(D1)}
Pr{y←F(D2)} , ln

Pr{y←F(D2)}
Pr{y←F(D1)}

}
,

• η = Pr{y←G(D)}
Pr{y←G(D′)} ≥ 1,

with α, ε, η <∞.

Then:

η ≤ α2eε . (3.2)

The first condition can be viewed as a utility demand as it relates to the closeness condition

on synthesis probabilities of mechanism F and those of basic synthesis. As such it, α is

related to utility in a sense which we make precise in Chapter 5. For now, we ask the reader

to conceive of α as related to utility in the following sense: the closer α is to 1, the higher

the utility. Remark that the second condition says that F satisfies (ε, 0)-differential privacy

(if it holds for all y ∈ U).

Proof. Take G, F , y, D, D′, α, ε, and η as in the lemma. Then:

η =
Pr{y ← G(D)}
Pr{y ← G(D′)}

≤ α
Pr{y ← F(D)}
Pr{y ← G(D′)}

≤ αeε
Pr{y ← F(D′)}
Pr{y ← G(D′)}

≤ α2eε .

We call Lemma 3.1 the Triangle Lemma by analogy to the triangle inequality. The indis-

tinguishability demand of ε-differential privacy coupled with the α-closeness condition of the

synthesis probability of F and G constraint the relative sensitivity of G at D. Equivalently,

if the relative sensitivity of G at D is known, then certain pairs (α, ε) characterizing points

on the utility-privacy trade-off curve cannot be reached by any mechanism F . Fig. 3.1 shows

the feasible regions for different values of η in terms of α and ε.
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Figure 3.1: Visual representation of the Triangle Lemma (Lemma 3.1) for different values of η in
terms of γ = α−1

α+1 (which we call indistinguishability) and ε. The area to the top-right of each curve
is the feasible region according to Eq. (3.2). No mechanism can offer a utility-privacy trade-off that
lies to the bottom left of the corresponding curve.

Example 3.7. For η = 3 no mechanism that satisfies differential privacy for ε = ln 2

can have α <
√

3/2 ≈ 1.22.

A further (and related) consequence of Lemma 3.1 is that if we desire to have α arbitrarily

close to 1 (i.e., maximize utility), then we cannot achieve better privacy than ε ≈ ln η.

Informally, if the relative sensitivity is large there is no hope of achieving good privacy

without a significant decrease in utility!
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Chapter 4: Testing Privacy

This chapter presents two generic privacy tests which when used with the seedbased synt-

hesis mechanism (Chapter 3) yield (ε, δ)-differential privacy. The first is based on an intuitive

criterion called plausible deniability (Section 4.1). The second test (Section 4.2) generalizes

the idea using insights from the notion of relative sensitivity and provides better privacy.

Before describing the two privacy tests, we provide an illustrating example.

Example 4.1 (Understanding Privacy Testing).

Imagine running a survey asking individuals whether they have engaged in some illicit

behavior; they must respond by yes (1) or no (0). This can be modeled in the data

universe U = {0, 1} where each record is one individual’s response. Assuming n ≥ 1

respondents, survey responses form a dataset D of n records.

One way to get an estimate of the number of respondents that engaged in the illicit

behavior is to repeatedly pick a record d ∈ D uniformly at random and examine it.

Let n1(D) denotes the proportion of 1 records in D. The probability of picking a 1

record is n1(D)
n

. This process is exactly modeled by the identity generative modelM:

M(d) = d for d ∈ {0, 1}. The probability of output x ∈ {0, 1} from basic synthesis

(G) is:

Pr{x← G(D)} =

p(D) for x = 1

1− p(D) for x = 0
,

where p(D) = n1(D)
n

.

Observe that G does not satisfy ε-differential privacy (for any ε > 0). For example,

take D1 = {0, 0, . . . , 0} and D2 = D1 ∪ {1}. Then Pr{1 ← G(D2)} = |D2|−1 but

Pr{1 ← G(D1)} = 0. In other words, from the output of G one may be able to

determine whether a target individual has engaged in the illicit behavior (if it is

known that no other individual in the dataset has).

Consider the following generative model M as an alternative:

M(d) =


d with probability 2

3

0 with probability 1
6

1 with probability 1
6

, (4.1)

which is an instance of randomized response [34]. Specifically, with probability 2/3

the output is identical to the input, otherwise it is equally likely to be 0 or 1.
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The probability of outputting x ∈ {0, 1} from basic synthesis with this alternative

generative model is:

Pr{x← G(D)} =

2
3

[
p(D) + 1

4

]
for x = 1

2
3

[
5
4
− p(D)

]
for x = 0

,

with p(D) = n1(D)
n

. Remark that the quantity p(D) can be estimated by multiplying

by 3/2 the proportion of 1s observed and removing 1/4.

It can be seen that G satisfies (ln 3, 0)-differential privacy. Given a generative

model we want to use, it is often possible to modify it into (e.g., by adding noise)

one that leads to differential privacy. This chapter shows a different way to obtain

privacy guarantees. Instead of modifying the generative model, we use a privacy

test that will probabilistic reject some outputs. Observe that we can trivially achieve

differential privacy using rejection sampling: simply reject all outputs. If no output is

released, there is no privacy leakage. The challenge is, of course, to design tests that

achieve privacy with minimal impact on the utility which often involves minimizing

the rejection rate.

Take the identity generative model and consider the following privacy test parame-

terized by an integer k ≥ 2:

δ(D, ·, x) =

(
2

3

)max{k−cx, 1}

,

where cx = |{d ∈ D : d = x}| is number of records in D with value x. The mechanism

with this privacy test satisfies (ln 3, (3/2)−(k−1))-differential privacy for any dataset

with at least k records. Up to the δ, this is equivalent to the guarantee offered

by the randomized response generative model. However, for any input dataset D

that contains at least k 1s and k 0s (i.e., min{n1(D), n − n1(D)} ≥ k) the observed

proportion of 1s is exactly p(D) (when the test fails, there is no output) which results

in less distortion than that of the randomized response generative model. Basic

synthesis with the identity generative model does not leak much when the input data

contains at least a few 0s and 1s. In contrast, techniques which modify the generative

model often introduce noise or distortion to safeguard the worst-case (in this case,

few 0s and 1s) but end up affecting all the cases.
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4.1 PLAUSIBLE DENIABILITY

In this section, we show how to design a privacy test based on an intuitive criterion called

plausible deniability. This criterion was first proposed in [33] and formalized in [32]. We show

that a privacy test based on plausible deniability as a privacy score function yields differential

privacy provided an appropriate choice of the privacy test function δ. For example, one can

make use of the noisy threshold technique.

The intuition behind the plausible deniability criterion is that given a synthetic record, the

larger the set of input records which could have plausible generated the synthetic, the lower

the leakage about the seed and so the higher the privacy (and the score). We formalize this

idea as follows. As beforeM denotes an arbitrary seedbased probabilistic generative model

that given any data record d generates a synthetic record y with probability Pr{y ←M(d)}.
Let k ≥ 1 be an integer and r ≥ 1 be a real number.

Definition 4.1 (Plausible Deniability Criterion).

For any dataset D with |D| ≥ k, and any record y generated by a probabilistic generative

model M such that y ←M(d1) for d1 ∈ D, we state that y is releasable with (k, r)-plausible

deniability, if there exist at least k − 1 distinct records d2, ..., dk ∈ D \ {d1} such that

r−1 ≤ Pr{y ←M(di)}
Pr{y ←M(dj)}

≤ r, (4.2)

for any i, j ∈ {1, 2, . . . , k}.

The larger privacy parameter k is, the larger the indistinguishability set for the input data

record. Also, the closer to 1 privacy parameter r is, the stronger the indistinguishability of

the input record among other plausible records.

Based on Definition 4.1, we propose the following privacy score function:

κ(M, D, s, y) = |{d ∈ D : b− logr Pr{y ←M(s)}c = b− logr Pr{y ←M(d)}c}| , (4.3)

where we assume that Pr{y ←M(s)} > 0 since otherwise it could not be the seed. (Alter-

natively, define κ(M, D, s, y) = 0 whenever Pr{y ←M(s)} = 0.)

In other words, the privacy score is the number of plausible seeds which we define as the

number of input data records d ∈ D such that:

r−i−1 < Pr{y ←M(d)} ≤ r−i ,
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where i is the unique positive integer that satisfies:

r−i−1 < Pr{y ←M(s)} ≤ r−i .

The following is a deterministic test using Eq. (4.3) as privacy score.

Privacy Test 4.1 (Deterministic test Tk).
Input: generative model M, dataset D, data records s, y, and privacy parameters k and r.

Output: pass to allow releasing y, fail otherwise.

1. Let i ≥ 0 be the (only) integer such that: r−i−1 < Pr{y ←M(s)} ≤ r−i.

2. Let k′ be the number of records d ∈ D such that: r−i−1 < Pr{y ←M(d)} ≤ r−i.

3. If k′ ≥ k then return pass, otherwise return fail.

Remark that this privacy score function enforces a stringent condition that the probability

of generating a candidate synthetic y given the seed s and the probability of generating the

same record given another plausible seed d both fall into a geometric range [r−i−1, r−i], for

some integer i ≥ 0, assuming r > 1. Notice that, under this test, the set of k − 1 different

ds plus s satisfies the plausible deniability condition Eq. (4.2).

Informally, the threshold k prevents releasing the implausible synthetics records y. As k

increases the number of plausible records which could have produced y also increases. Thus,

an adversary with only partial knowledge of the input dataset cannot readily determine

whether a particular input record d was the seed of any released record y. This is because

there are at least k− 1 other records di 6= d in the input dataset which could plausibly have

been the seed.

4.1.1 Differential Privacy

A problem with the deterministic test is that passing it with some y inherently reveals

something about the number of plausible seeds, which could potentially reveal whether a

particular d is included in the input data. This problem can be solved if we appropriately

randomize the threshold k. Indeed, we show that with the randomized test based on the noisy

threshold technique for an appropriate noise distribution, the mechanism (Mechanism 3.1)

denoted by F satisfies (ε, δ)-differential privacy.

Specifically, we consider the following privacy test which is an instance of the noisy thres-

hold technique with Eq. (4.3) as privacy score.
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Privacy Test 4.2 (Randomized test Tε0,k,r).
Input: generative model M, dataset D, data records s, y, and parameters k, r, ε0.

Output: pass to allow releasing y, fail otherwise.

1. Randomize k by adding fresh noise: k̃ = k + Lap( 1
ε0

).

2. Let i ≥ 0 be the (only) integer such that: r−i−1 < Pr{y ←M(s)} ≤ r−i.

3. Let k′ be the number of records d ∈ D such that: r−i−1 < Pr{y ←M(d)} ≤ r−i.

4. If k′ ≥ k̃ then return pass, otherwise return fail.

Theorem 4.1. Let F denote Mechanism 3.1 with Privacy Test 4.2 and parameters k ≥ 1,

r > 1, and ε0 > 0. For any neighboring datasets D and D′ such that |D|, |D′| ≥ k, any set

of outcomes Y ⊆ U , and any integer 1 ≤ t < k, we have:

Pr{F(D′) ∈ Y } ≤ eεPr{F(D) ∈ Y }+ δ ,

for δ = e−ε0(k−t) and ε = ε0 + ln (1 + r
t
).

The proof of Theorem 4.1 can be found in Appendix A.3. Roughly speaking, the theorem

says that, except with some small probability δ, adding a record to a dataset cannot change

the probability that any synthetic record y is produced by more than a small multiplicative

factor. The intuition behind this is the following.

Fix an arbitrary synthetic record y produced by the mechanism on some dataset. Remark

that given y, records are partitioned into disjoint sets according to their probabilities of

generating y (with respect to M). That is, partition i for i = 0, 1, 2 . . ., contains those

records d such that r−(i+1) < Pr{y ←M(d)} ≤ r−i.

Now suppose we add an arbitrary record d′ to the dataset. The probability of producing

y changes in two ways: (1) the probability that y is generated increases because d′ may be

chosen as seed, and (2) the probability that y passes the privacy test increases because d′ is

an additional plausible seed. Remark that this change only impacts whichever partition d′

falls into because the probability of passing the privacy test depends only on the number of

plausible seeds in the partition of the seed.

Thus, we focus on the partition in which d′ falls. If that partition contains a small number

of records compared to k then introducing d′ could increase the probability of generating y

significantly, but the probability of passing the privacy test is very small. (The probability

of passing the privacy test decreases exponentially the fewer plausible seeds are available

compared to k.) In contrast, if the partition contains a number of records comparable to

k or larger, then the probability of generating y increases only slightly (because there are
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already a large number of plausible seeds with similar probability of generating y as d′).

And, the probability of passing the privacy test increases by a multiplicative factor of at

most eε0 due to adding Laplacian noise. In both cases, the increase to the probability of

producing y due to adding d′ is small and bounded.

1
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Figure 4.1: Improving the test: illustration of the relationship between the synthesis probabilities,
the min score, and the privacy score κ. (For simplicity of illustration, we take the floor of the min
score to make it integer valued.)

4.2 IMPROVING THE TEST

The plausible deniability criterion has two downsides: (1) it is overly conservative so that

tests based on it sometimes fail even in situations where privacy is readily achieved, and (2)

its rigid partitioning of records in plausible seeds makes analyzing utility difficult. In this

section, we use insights from the concept of relative sensitivity (Section 3.3.1) to construct a

privacy test which achieves tighter bounds than Theorem 4.1 and which facilitates analysis

of the utility of the produced synthetics (Chapter 5).

We propose to use a privacy score function κ based on relative sensitivity (Definition 3.3).

Given a synthetic candidate y, the higher the relative sensitivity ∆̃G(D, y), the more y leaks

about D and therefore the smaller the privacy score (and thus the probability of passing the

test) should be.
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Define the min score of a dataset D with respect to seed d ∈ D and y ∈ U as follows:

ms(M, D, d, y) =

∑
s∈Sd\{d} Pr{y ←M(s)}

Pr{y ←M(d)}
, (4.4)

where Sd = {s ∈ D : Pr{y ←M(d)} ≥ Pr{y ←M(s)}}. For convenience, we define

ms(M, D, d, y) = 0 whenever Pr{y ←M(d)} = 0, which is consistent with the fact that d

being the seed guarantees that Pr{y ←M(d)} > 0. Remark that:

0 ≤ ms(M, D, d, y) ≤ |Sd| − 1 .

We define the privacy score in terms of the min score. We do so recursively based on

the rank ordering of the records of D with respect to their probability of producing y when

selected as seed.

Definition 4.2 (Privacy score). Given dataset D of n records, generative model M, seed

d, and synthetic y ∈ U . Label the records in D according to their rank such that for D =

{d1, d2, . . . , dn}:

Pr{y ←M(d1)} ≥ Pr{y ←M(d2)} ≥ . . . ≥ Pr{y ←M(dn)} .

Then:

κ(M, D, d, y) =

ms(M, D, d, y) if i = 1

max{κ(M, D, di−1, y),ms(M, D, d, y)} for i > 1 ,

where i is such that d = di.

Observation 4.1. Let d, d′ ∈ D. If Pr{y ←M(d)} ≥ Pr{y ←M(d′)} then:

κ(M, D, d, y) ≤ κ(M, D, d′, y) .

In the remainder of this section, we consider a single generative model M and omit it

whenever possible for conciseness. We write ms(D, d, y) and κ(D, d, y) to denote the min

score and privacy score respectively.

The privacy score quantifies the influence of a single record on the overall synthesis pro-

babilities in the following sense.
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Observation 4.2. Let d ∈ D, y ∈ U . If κ(D, d, y) ≥ t for some t > 0, then:

Pr{y ←M(d)}∑
s∈D Pr{y ←M(s)}

≤ 1

t
.

Definition 4.2 has sensitivity 1, which makes it attractive to use for a privacy test. Fig. 4.1

illustrates the relationship between the synthesis probabilities, the min score (Eq. (4.4)), and

the privacy score Definition 4.2.

Theorem 4.2. For any two neighboring datasets D1, D2 of at least n ≥ 1 records, any

y ∈ U , if F denotes Mechanism 3.1 with Definition 4.2 as privacy score function, and any

well-behaved privacy test function δ (Definition 3.2) for c0 = 1, β0 ≥ 1, then for any integer

1 ≤ t ≤ n:

Pr{y ← F(D1)} ≤ eεPr{y ← F(D2)}+ δ(t) ,

with ε = ln β0(1 + 1
t
).

A proof of Theorem 4.2 can be found in Appendix A.4. Informally, the theorem says that

the change in the probability that the mechanism produces a synthetic y is multiplicatively

bounded by (1 + t−1) · β0, except with probability δ(t).1 Consider adding a record d′ to

dataset D and the resulting change in the synthesis probability of producing some y. If

κ(D′, d′, y) < t, then the probability Pr{y ←M(d′)} is (relatively) large compared to other

records in d. But the probability of passing the privacy with d′ as seed is at most δ(t).

In contrast, if κ(D′, d′, y) ≥ t, so that Pr{y ← M(d′)} is not large compared to other

records in d, then by definition of κ, the increase in synthesis probability is bounded because

Pr{y ← M(d′)} ≤ t−1
∑

d∈D Pr{y ← M(d)}. In all cases, since the sensitivity of κ is

1, then the probability of passing the privacy test (for any seed) increases by at most β0

(Definition 3.2) when d′ is added to the dataset.

If we use the noisy threshold technique (Privacy Test 3.2) with geometric noise parameter

α = e−ε0 then we have the following corollary.

Corollary 4.1. For any two non-empty neighboring datasets D1, D2, any y ∈ U , if F
denotes Mechanism 3.1 with Definition 4.2 as privacy score function and Privacy Test 3.2

with parameter k ≥ 2 and geometric noise parameter α = e−ε0 for ε0 > 0. Then for any

integer 1 ≤ t < k:

Pr{y ← F(D1)} ≤ eεPr{y ← F(D2)}+ δ ,

with ε = ε0 + ln (1 + 1
t
) and δ < e−ε0(k−t).

1This probability be made small by an appropriate choice of t and privacy test function δ. For example,
it is a decreasing exponential in k − t in the case of Corollary 4.1.
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By tuning k and t, we can make δ arbitrarily small as it is bounded by an exponentially

decreasing function of k − t. Given their dependence on ε0, there is an inherent trade-off

between ε and δ (as expected).

A key insight to understand Theorem 4.2 is that that the sensitivity of the privacy score

function, κ (Definition 4.2), is 1 in the following sense.

Lemma 4.1. For any dataset D with |D| ≥ 1 and D′ = D ∪ {d′} for some d′ ∈ U , and any

y ∈ U :

κ(D, d, y) ≤ κ(D′, d, y) ≤ κ(D, d, y) + 1 , (4.5)

for any d ∈ D.

We prove Lemma 4.1 in Appendix A.4.

4.3 COMPOSITION

Suppose we want to produce a synthetic dataset of m records. To understand the privacy

guarantee we obtain for the entire synthetic dataset, we use composition results for diffe-

rential privacy. For example, if we use sequential composition then we achieve (mε,mδ)-

differential privacy. However, if m is large enough, then using advanced composition, the

results of Kairouz et al. [35], or the ratio bucket technique [36] yields better bounds.

Suppose we want (1, 2−λ)-differential privacy for a synthetic dataset with m records where

λ > 0 is a security parameter. As a concrete example, we take Corollary 4.1 and advanced

composition. How should we set the privacy parameters k, t, and ε0? We propose the

following strategy.

To start, we incorporate the constraint on δ. To satisfy the demand that δ ≤ 2−λ, we let

δ′′ = 2−λ/(m + 1) and set k, t, and ε0 such that: δ = exp{−ε0(k − t)} = 2−λ/(m + 1). In

other words, we set: ε0 = λ̃
k−t where λ̃ = λ ln 2 + ln (m+ 1).

With this, the privacy budget for a single invocation of the mechanism (Corollary 4.1) is:

εk,t = ε0 + ln

(
1 +

1

t

)
=

λ̃

k − t
+ ln

(
1 +

1

t

)
where any pair (k, t) such that 1 ≤ t < k is valid. We propose to take k = 2t, so that:

εk,t =
λ̃

t
+ ln

(
1 +

1

t

)
≤ λ̃+ 1

t
= εt .
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Figure 4.2: Composition: trade-off between the number of synthetics released m and privacy
parameter k, where t = k/2. Each curve plots a different value λ with respect to the privacy
guarantee: (1, 2−λ)-differential privacy.

Then it suffices to set t such that:

1 ≥ εt

√
2m ln

1

δ′′
+mεt(e

εt − 1) = εt

√
2mλ̃+mεt(e

εt − 1) . (4.6)

In this example, we started with a number of synthetic records m to produce and then

derived the parameters to reach the level of privacy desired. Remark that Eq. (4.6) suggests

an alternative strategy. Instead of considering the number of synthetics records m fixed and

setting t accordingly, we can set t and then determine m, the number if synthetics that can

be produced, given the desired level of privacy.

To illustrate composition, Fig. 4.2 shows the trade-off between the number of synthetics

produced and the parameter k (with k = 2t) to obtain (1, 2−λ)-differential privacy overall

for different values of λ (according to Corollary 4.1).

Partitioning . An alternative is partitioning which is also called parallel composition.

Instead of using the entire dataset D as input to Mechanism 3.1 we can randomly partition

D into m disjoint subsets D1, . . . , Dm of (roughly) equal size. This allows us to produce up

to m synthetic records by invoking Mechanism 3.1 independently on each of D1, . . . , Dm.

This yields the same privacy guarantee as producing a single synthetic from D. However,

given a fixed threshold k, the smaller sub-datasets Di are, the less likely it is that candidate

synthetics will pass the privacy test.
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Chapter 5: Utility

This chapter outlines a systematic approach to evaluate the quality of synthetics produ-

ced through the framework. In Section 5.1, we propose to evaluate utility loss through a

distinguishability-based definition and game. In Section 5.2, we use the distinguishability-

based approach to characterize the utility-privacy trade-off offered by the framework and

derive bounds on the utility loss. The key insight is that the quality degradation to achieve

the privacy guarantee can be expressed in terms of the expected proportion of synthetics

that pass the privacy test, which in turns depends on the relative sensitivity of the generative

model and the input. Given that precise measurements of relative sensitivity are typically

unavailable, we describe an efficient experimental methodology to estimate distinguishability

and utility bounds in practice.

A Tale of Two Losses . The quality of privacy-preserving synthetic data can be under-

stood in terms of two losses: (1) the loss from real (input) data to synthetic data produced

by the generative model, which we call the model loss, and (2) the loss of filtering synt-

hetics candidates into privacy-preserving synthetics that pass the privacy test, which we

call the filtering loss. The term utility refers to the quality degradation between reals and

privacy-preserving synthetics which includes both the model loss and the filtering loss.

The crucial difference here, compared to differential privacy for interactive database que-

ries, is that the generative model itself induces loss. This is inherent to data synthesis and

applies equally to our framework as to other data synthesis techniques. When given a gene-

rative model to use, we can do nothing about the model loss: if the model is bad, its output

will be bad. However, we can measure the model loss experimentally using the notion of

distinguishability (Section 5.1). Additionally, our notion of distinguishability is transitive so

that given the model loss and the filtering loss we can obtain a utility guarantee.

5.1 DISTINGUISHABILITY

If synthetics cannot be distinguished from real records, then surely synthetics can be used

instead of real records. This is the intuition behind distinguishability, the utility metric we

propose in this thesis. An advantage of this metric is that it is application independent and

thus it can be used no matter what type of data and the ultimate use of the synthetics.

We formalize the notion of distinguishability as a game.1 An adversary, modeled as a

(possibly randomized) algorithm, is given a record y ∈ U and has to decide whether y comes

from distribution P or Q.

1The definition is similar in essence to cryptographic definitions of indistinguishability games [37].
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Definition 5.1 (Distinguishing Game).

Input: P and Q probability distributions over U , Adversary A.

Output: success or failure.

1. Pick a random bit b ∈ {0, 1} uniformly at random.

2. If b = 0: y ← P . Otherwise: y ← Q.

3. Invoke the adversary to obtain a guess b′ = A(P,Q, y).

4. If b = b′, then output success.

Otherwise, output failure.

If there exists an adversary that wins the game (for distributions P and Q) with probability
1+γ

2
, we say that P ’s distinguishability from Q is γ, or that P and Q are γ-distinguishable.

Definition 5.1 can capture utility loss, model loss, and filtering loss by appropriately

choosing P and Q. If P is the distribution of real data and Q is the distribution our privacy-

preserving synthetics (Section 3.2), then the distinguishing game measures the utility loss.

In contrast, if P is the distribution of real data and Q is the distribution of basic synthesis

on some dataset D, then the distinguishing game measures the model loss. Similarly, if P

is the distribution of basic synthesis on D and Q the distribution our privacy-preserving

mechanism (Section 3.2) on D, then the distinguishing game measures the filtering loss.

Remark that distinguishability (with Definition 5.1) depends on the adversary. So, we would

like to measure distinguishability with respect to the adversary with the highest success rate.

We define the best adversary and its advantage for arbitrary discrete distributions. Let

P and Q be discrete probability distributions over a set of events X such that px (resp. qx)

denotes the probability of event x according to P (resp. Q). Given a sample x ∈ X, we

can optimally distinguish P from Q through the likelihood ratio px/qx. The advantage in

distinguishing P from Q with respect to sample x is A(P,Q, x) = 2max{px,qx}
px+qx

− 1. We have:

• If px = qx, then A(P,Q, x) = 0.

• If px > 0, qx = 0 (or px = 0, qx > 0): A(P,Q, x) = 1.

• If A(P,Q, x) ≤ γ for 0 ≤ γ < 1: max{px
qx
, qx
px
} ≤ 1+γ

1−γ .

Definition 5.2 (max advantage). Let P and Q denote two discrete probability distributions

with support X. The max advantage in distinguishing P and Q from a single sample is:

A(P,Q) = max
x∈X

A(P,Q, x) = max
x∈X

|px − qx|
px + qx

. (5.1)

If A(P,Q) ≤ γ for 0 ≤ γ < 1, we say that P and Q are max γ-indistinguishable. In

contrast, if A(P,Q) ≥ γ, then we say that P and Q are γ-distinguishable.
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Definition 5.3 (mean advantage). Let P and Q denote two discrete probability distributions

with support X. The mean advantage in distinguishing P and Q from a single sample is:

Ā(P,Q) =
∑
x∈X

Pr{x;P,Q} · A(P,Q, x) . (5.2)

If Ā(P,Q) ≤ γ for 0 ≤ γ < 1, we say that P and Q are mean γ-indistinguishable or simply

γ-indistinguishable. In contrast, if Ā(P,Q) ≥ γ, we say that P and Q are γ-distinguishable.

Observe that if A(P,Q) ≤ γ then: Ā(P,Q) ≤ γ.

Since the sample is equally likely to come from P or Q, we have Pr{x;P,Q} = 1
2
(px + qx).

Thus, Ā(P,Q) is exactly the statistical distance between P and Q:

Ā(P,Q) =
∑
x∈X

px + qx
2

· |px − qx|
px + qx

= SD(P,Q) . (5.3)

Using Eq. (5.3) and the standard triangle inequality, it can be seen that the mean ad-

vantage (and thus the mean distinguishability) is transitive in the following sense. If P

and R are γ1-indistinguishable, and R and Q are γ2-indistinguishable, then P and Q are

γ-indistinguishable for γ = γ1 + γ2. This property allows us to make end-to-end indistin-

guishability statements: i.e., if the model loss is γ1 and the filter loss is γ2, then the utility

loss is at most γ1 + γ2.

Experimentally . In practice, we can (typically) only measure distinguishability using De-

finition 5.1 instead of Eqs. (5.1) to (5.3) due to the dimension of the data which makes

computation intractable. Thus, we choose an adversary A to play the distinguishing game

and measure its success rate. For this, we can use machine learning techniques and train a

classifier to play the distinguishing game. We give the classifier a labeled dataset of records

from P and Q, and use its classification accuracy on a disjoint test set to estimate distin-

guishability. For example, this is the approach we take in Chapters 8 and 9, where decision

trees and random forest classifiers are found to perform well.

5.2 UTILITY-PRIVACY TRADE-OFF

We apply the distinguishability-based methodology of the previous section to the me-

chanism with privacy tests introduced in Section 4.2 and characterize the utility-privacy

trade-off in terms of (ε, δ)-differential privacy and filtering loss (distinguishability). The

key observation is that if the relative sensitivity is (upper-)bounded then the probability of

passing the privacy test is (lower-)bounded. This results in allowing us to characterize the

filtering loss, measured using distinguishability, in terms of relative sensitivity.
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In Section 5.2.1, we tackle the case where the relative sensitivity is bounded everywhere

(i.e., for all synthetics). In Section 5.2.2 we relax this assumption and derive bounds on

the filtering loss. Finally, given that precise measurements of the relative sensitivity are not

always available, we propose an efficient methodology to derive bounds based on empirical

measurements.

Preliminaries . To understand the trade-off we need to compare the synthesis probability

of the mechanism, Pr{y←F(D)}, with those of basic synthesis, Pr{y←G(D)}. For this,

recall (from Chapter 3) that:

Pr{y←G(D)} = |D|−1
∑
d∈D

Pr{y ←M(d)} , and

Pr{y←F(D)} = |D|−1
∑
d∈D

Pr{y ←M(d)} · δ(D, d, y) .

For conciseness, we write PHD (y) = Pr{y ← H(D)} for any mechanism H.

A difficulty is that we cannot compare the synthesis probabilities P GD(y) and PFD (y) directly

because the two distributions have different support. Indeed, F produces ⊥ as output when

the privacy test fails. Instead, since we only release y ∈ U , we have to compare it to:

P̃FD (y) =
PFD (y)∑
y∈U P

F
D (y)

= c−1PFD (y) ,

where c =
∑

y∈U P
F
D (y) = 1− PFD (⊥) is a normalization constant.2

The following is the key observation relating the ratio of the synthesis probabilities P GD(y)

and PFD (y) with the probability of passing the privacy test.

Observation 5.1. Let F denote Mechanism 3.1 with any well-behaved privacy test function

δ. For any y ∈ U , we have the following.

• If P GD(y) = 0, then: PFD (y) = 0.

• If P GD(y) > 0:

δ̄y
c
≤ P̃FD (y)

P GD(y)
≤ 1

c
, (5.4)

where δ̄y = mind∈D δ(D, d, y).

2Note that c > 0 for the privacy tests we consider because they always assign a non-zero probability of
passing the test.
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Further, observe that c =
∑

y∈U P
F
D (y) ≥ δ̄ for δ̄ = miny∈U δ̄y = miny∈U,d∈D δ(D, d, y). As

a result, if P GD(y) > 0, then it follows from Eq. (5.4) that:

max

{
P̃FD (y)

P GD(y)
,
P GD(y)

P̃FD (y)

}
≤ δ̄−1 .

In other words, a bound on the ratio of synthesis probabilities P GD(y) and P̃FD (y) de-

pends only on the minimum probability of passing of the privacy test, which for the test

of Section 4.2, depends on relative sensitivity.

5.2.1 Bounded Relative Sensitivity

The Triangle Lemma (Lemma 3.1) tells us that no mechanism achieves a utility-privacy

trade-off beyond the constraint given by the relative sensitivity of G at D, y.

Suppose that the relative sensitivity of G at D is bounded by some constant η ≥ 1 for all

y ∈ U , i.e.: 1 ≤ ∆̃G(D, y) ≤ η. This assumption immediately results in a lower bound on

the value of κ (Section 4.2) from which we can fully characterize the utility-privacy trade-off

offered by our mechanism in terms of ε, δ, and γ.

Lemma 5.1. If for all y ∈ U : 1 ≤ ∆̃G(D, y) ≤ η <∞ and F denotes Mechanism 3.1 with

privacy test (κ, δ) (Definition 4.2) for any well-behaved δ with β0 = eε0, c0 = 1.

Then, for any integer 1 ≤ t ≤ n:

• F satisfies differential privacy for ε = ε0 + ln(1 + t−1) and δ = δ(t).

• The output distribution of F(D) over U is max γ-indistinguishable from that of G(D)

for γ = 1−δ(η̃)
1+δ(η̃)

, where η̃ = ((1 + |D|−1)η − 1)
−1

.

Example 5.1. Take the mechanism and privacy test of Corollary 4.1, and suppose

we want (ε, δ)-differential privacy for ε = 1 and δ = 2−40. If |D| = 10000 and η = 1.02

is a bound on the relative sensitivity as in Lemma 5.1, then it suffices to take k = 40,

t = 5, and ε0 = 0.8 to ensure γ-indistinguishability for γ ≈ 0.0001.

The following example shows that our wish to minimize δ is what keeps us from achieving

a utility-privacy trade-off close to that of the Triangle Lemma (Lemma 3.1).

Example 5.2. Recall from the Triangle Lemma that if η is a bound on the re-

latively sensitivity, then no mechanism can achieves ε-differential privacy and γ-

indistinguishability (for γ = α−1
α+1

) unless η ≤ α2eε. Equivalently, if we want to have

α arbitrarily close to 1, then we must have ε ≥ ln η.
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From Lemma 5.1, we know that we can achieve γ-indistinguishability with our me-

chanism for γ arbitrarily close to 0 (i.e., α arbitrarily close to 1) by choosing the pri-

vacy test function such that δ(η̃) is arbitrarily close to 1.3 If we further set t = η̃, then

the mechanism achieves (ε, δ(t))-differential privacy for ε = ln η + ln β0(1 + |D|−1).

Given that the dataset D could be arbitrarily large and that we can choose β0 arbi-

trarily close to 1, this is bound is arbitrarily close to that of the Triangle Lemma!

Unfortunately, if δ is set such that δ(η̃) is arbitrarily close to 1, then so is δ(t).

Thus, if we need to minimize δ(t) (as we should) then we must set t < η̃ (or perhaps

even t� η̃) which results in a privacy guarantee clearly worse than optimal.

5.2.2 Bounds for the Unbounded Case

Lemma 5.1 says that the loss (in the sense of γ-indistinguishability) introduced by F
depends on the relative sensitivity of G at D. What if the relative sensitivity is not bounded

everywhere? For example, there may exist y ∈ U such that ∆̃G(D, y) =∞.

The following generalizes Observation 5.1 to deal with the case where the relative sensiti-

vity is unbounded for some outputs.

Observation 5.2. Let F denote Mechanism 3.1 with privacy test (κ, δ) (Definition 4.2).

Let t > 0, Yt− = {y ∈ U : mind∈D κ(D, d, y) < t} and define βt =
∑

y∈Yt−
P GD(y). For any

y ∈ U such that P GD(y) > 0, we have the following.

• If y ∈ Yt−:

0 ≤ P̃FD (y)

P GD(y)
≤ [δ(t)(1− βt)]−1 ,

• If y ∈ U \ Yt−:

δ(t)(1− βt) ≤
P̃FD (y)

P GD(y)
≤ [δ(t)(1− βt)]−1 .

Recall that the statistical distance is the same as the mean distinguishability (Eq. (5.3)).

The following shows a bound on the filtering loss using Observation 5.2.

Lemma 5.2. Let F denote Mechanism 3.1 with privacy test (κ, δ) (Definition 4.2). Then,

for any t > 0:

SD(P GD, P̃
F
D ) ≤

βt + 1−δ(t)
2δ(t)

if αt ≤ 2

αt−1
2

if αt > 2

where βt =
∑

y∈Yt−
P GD(y) and αt = [δ(t)(1− βt)]−1.

3For well-behaved tests (Definition 3.2), we can never have δ(x) = 1 for any x, but we can (in principle)
have δ(x) arbitrarily close to 1 for some x, while keep β0 small.
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Example 5.3. Suppose we pick t such that δ(t) = 0.9, and that βt = 0.01. Then

αt ≈ 1.122 and the statistical distance is SD(P GD, P̃
F
D ) ≈ 0.066, or equivalently the

output distribution of F on D is 0.066-indistinguishable from that of basic synthesis.

Experimental Quantification . Lemma 5.2 enables us to predict the quality of the synt-

hetics for various tasks. The problem is that βt is unknown and intractable to compute in

general. Experimentally, we propose to estimate βt as follows. Invoke G(D) to obtain a

synthetic dataset Y = {y1, y2, . . . , ym}. Then compute:

β̂t =
1

m

m∑
i=1

1mind∈D κ(D,d,yi)<t . (5.5)

This is equivalent to flipping a biased coin (with probability of heads βt) m times and

computing the proportion of heads.

We can then use Lemma 5.2 by plugging in our estimate for βt (and computing αt accor-

dingly). However, for example, there is no guarantee that the obtained bound on SD(P GD, P̃
F
D )

holds. It could happen that our estimate of βt is less than its true value. A remedy is to use

the upper edge of a 1− α confidence interval instead.

There are several ways to compute a confidence interval on βt given β̂t and m. For example,

a 1− α approximate confidence interval for βt is given by:

β̂t ± z

√
β̂t(1− β̂t)

m
,

where z is the 1− α
2
-quantile of the standard normal distribution [38].
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Chapter 6: Generative Models

All models are wrong, but some are useful.

George E. P. Box

This chapter presents several probabilistic generative models.

6.1 SYNTHESIZING LOCATION TRAJECTORIES

This section describes a seedbased model to generate synthetic location trajectories. For

a complete description of this model and how to use it, we refer the reader to [33]. The

model is evaluated experimentally in Chapter 7.

6.1.1 Generative Model

We assume that time and space are discrete, so that a location trace is a sequence

r1, r2, . . . , rt of visited locations over time. We denote by R the set of locations and each

ri ∈ R is represents a location visit. Given a real (seed) location trace we describe a genera-

tive model to synthesize a similar location trace. The generative model is based on the idea

that a trace can be decomposed into a geographic component and a semantic component.

The geographic dimension is what is sensitive because it reveals where a person lives and

the location visited. In contrast, the semantic dimension is what is useful from a human mo-

bility perspective; it captures the person’s lifestyle and the kinds of places visited. Fig. 6.1

illustrates this idea.

At a high-level, the model transforms a seed trace into the semantic space (discarding

the geographic information) and then probabilistically transforms it back to the geographic

space, thereby obtaining a (new) semantically plausible synthetic trace. The geographic and

semantic domains are defined implicitly by two similarity metrics defined based on Markovian

mobility models (Section 6.1.2). We first describe the generative model abstracting away

the specific of the mobility model and similarity metrics.

The generative model has a training step as pre-processing before it can be used to synt-

hesize trajectories. Let DS be the input dataset of traces used for synthesis. The training

step uses a separate dataset of traces DT over the same location space R which are public or

disjoint from DS. The training step creates an aggregate mobility model and a location se-

mantic graph which captures the semantic of locations (according to our semantic similarity

metric).
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The transition probability matrix of user u is denoted as p(u) and the corresponding visi-

ting probability vector is written π(u). The mobility profile of user u is denoted 〈p(u), π(u)〉.
The aggregate mobility model is 〈p̄, π̄〉. T denotes the number of time periods. We use

simG(u, v) and simS(u, v) to denote the geographic and semantic similarity between the mo-

bility of u and v, respectively. For a trace s, s(t) denotes the user’s location at time t.

The pre-processing step is described in Algorithms 6.1 to 6.3. To simplify the presentation,

we assume a single time period.

Algorithm 6.1 (Pre-process).

Input: location set R, training dataset DT , and desired number of clusters k.

Output: semantic clustering C, and aggregate mobility 〈p̄, π̄〉.

1. Set aggregate mobility model 〈p̄, π̄〉 be average of 〈p(u), π(u)〉 over all u ∈ DT

2. Set C = SemanticClustering(R,DT , k)

3. Return C, 〈p̄, π̄〉.

Algorithm 6.2 (Semantic Clustering).

Input: location set R, training dataset DT , and desired number of clusters k.

Output: semantic clustering C.

1. Create weighted graph G with locations R as vertices

2. For all pairs of trajectories u, v ∈ DT , u 6= v, do:

(a) Set svu, σ
v
u = SemanticSimilarity(u, v)

(b) For all locations r, r′ ∈ R such that r′ = σvu(r):

• Set edge weight wG(r, r′) = wG(r, r′) + svu

3. Set C = K-Means(G, k)

4. Return C

Algorithm 6.3 (Semantic Similarity).

Input: trajectories u, v.

Output: semantic similarity score simS(u, v), and optimal mapping σvu.

1. Compute mobility models 〈p(u), π(u)〉 and 〈p(v), π(v)〉
2. Compute optimal mapping σvu from Eq. (6.8)

3. Compute semantic similarity simS(u, v) from Eq. (6.9)

4. Return simS(u, v), σvu.
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Learning an aggregate mobility model . We construct the aggregate mobility model by

averaging the mobility models of all traces in dataset DT , as well as giving a small probability

to the possible movements between locations according to their distance and connectivity.

More precisely, we compute the aggregate transition probability p̄r
′
r as z−1

r ·
∑

u∈DT
pr
′
r (u) +

ε ·max(1, d(r, r′))−2, where ε is a small constant, d(r, r′) is the distance between locations r

and r′, and zr is a normalization constant. We compute the aggregate visiting probability

π̄r as the average of πr(u) for u ∈ DT .

Learning a location semantic graph . We analyze and discover the semantic relation

between different locations using traces in the training data. To this end, we propose a

semantic similarity metric (Section 6.1.2). Intuitively, we assign a higher similarity value

to a pair of locations if multiple individuals have similar spatiotemporal activities in them.

We find the optimal way to map the visited locations in a pair of traces such that the

mapping maximizes the statistical similarity between their mobility models. The semantic

similarity metric is therefore the statistical similarity between mobility models under the

optimal semantic mapping between locations. This means that if we were to translate the

locations visited by two individuals according to the discovered best mapping, they would

follow the same mobility model when their semantic similarity is high (i.e., have similar life

styles). For example, if Alice and Bob spend all day at their respective work locations wA

and wB, and all night at their respective home locations hA and hB their mobility models are

highly semantically similar, though it may be that hA 6= hB and wA 6= wB. In this example,

the best semantic mapping between locations is wA ↔ wB and hA ↔ hB. The proposed

semantic similarity metric goes beyond home and work; it is over all locations, so that that

Alice’s favorite bar could be mapped to Bob’s favorite nightclub, if Alice and Bob visit those

places in a similar way.

For each pair of mobility models of traces in the training dataset DT , we compute their

semantic similarity and the best semantic mapping between their locations. Note that the

semantic similarity is quantifying the similarity of two mobility models, not that of two

location traces. We then aggregate all the location matchings across all trace pairs, with

weights based on the semantic similarity between mobility models, and construct a location

semantic graph, where the nodes are locations and the weight of the edges is the average

semantic similarity between the locations over the dataset.

The location semantic graph enables us to infer which locations have similar meanings

(or purpose) for different people. The locations that have higher semantic similarity can be

grouped together to represent one location semantic class. We run a clustering algorithm on

the location semantic graph to partition locations into distinct classes. Regardless of their
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geographic positions, the locations that fall into the same class are visited in the same way

by different people. In other words, their visit probability, time of visit, and the probabilities

of transition from/to them to/from other locations with the same type is similar. Thus, we

can consider them as being semantically equivalent. So, using the notation of our previous

example, wA and wB should belong to the same cluster that can represent “workplace”

locations, and hA and hB should be grouped into another cluster representing residential or

“home” locations.

We compute the semantic similarity between all locations in R, and create a location

semantic graph G〈R,E,w〉 such that the vertices are in R and the weight wG(r, r′) on the

edge between locations r and r′ is the weighted sum of the number of pairs of users u and

v for whom r and r′ are semantically mapped (i.e., r = σvu(r
′)), weighted according to

their similarity. Then, we create the equivalent semantic classes C by running a clustering

algorithm on this graph. We make use of the k-means clustering algorithm, and we choose

the number of clusters such that it optimizes the clustering objective.

Transforming a trace into the semantic domain . We transform the seed trace s

into its corresponding semantic trace ssem by simply replacing each location in the trace

with all its semantically equivalent locations (according to the semantic classes C). Fig. 6.2

depicts an example of such a semantic seed. Intuitively, this composite trace encompasses

all possible geographic traces that are semantically similar to the original seed trace. To

be flexible with respect to traces we can generate, we add randomness to the semantic seed

trace. During the transformation process of the seed trace into the semantic trace, we sub-

sample locations from the semantic classes (instead of using them all). For each cluster,

we also remove each location independently with probability pc, resulting in a new cluster.

Further, we allow locations of different classes to merge into each other around time instants

where the user moves from one class to the other: we add a location from one time step to

another with a ∆t gap with a geometric probability pm
∆t.

Sampling a trace given the semantic seed . Any random walk on the semantic seed

trace that travels through the available locations at each time is a valid location trace that is

semantically similar to the seed trace. However, synthetic traces need to be geographically

consistent with the general mobility of people in the considered area. We cast the problem

of sampling such traces as a decoding problem in Hidden Markov Models (HMMs) [39].

The hidden states are the visited locations, the observed output are the semantic classes

(which are the set of semantically equivalent locations in the same class), and the transition

probability matrix follows the aggregate mobility model.

By decoding the semantic trace into geographic traces, we generate traces that are plau-
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Figure 6.1: Illustration of the generative model for location trajectories.

sible according to aggregate mobility models, i.e., there could be an individual who could

have made that trace. Among existing HMM decoding algorithms, we use the Viterbi algo-

rithm [40] that finds

arg max
y

Pr{y|ssem(t), 〈p̄, π̄〉}

assuming that y(t) can only choose from locations in ssem(t). Finding the most likely synthe-

tic trace is equivalent to finding the shortest path in an edge-weighted directed graph where

each location at time t is linked to all locations at time t+ 1 in the semantic seed trace.

This ensures that the sampled trace is consistent with the general mobility of the area.

However, the Viterbi algorithm produces a single trace: the most probable one. To ensure

that the generative model is capable of producing different synthetic traces for each seed,

we randomize the trace reconstruction of Viterbi as follows. We perturb the probabilities so

that at each step the algorithm randomly selects one location among a set of locations that

are highly probable (instead of always selecting the most probable location as the original

algorithm dictates). We implement this idea by multiplying the transition probabilities of

moving from one location to the next with a random number between 1 and pv, where pv ≥ 1

is a parameter.

The synthesis process to transform a seed trajectory into a synthetic trajectory (after

pre-processing) is described in Algorithm 6.4. The algorithm uses the semantic clustering

C obtained through Algorithm 6.2. We let Ci represent the set of locations belonging to

the cluster i. Also, the procedure HMMDecode() refers to the aforementioned randomized

Viterbi procedure with parameter pv.
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Algorithm 6.4 (Location Trace Synthesizer).

Input: seed trajectory s, aggregate mobility 〈p̄, π̄〉, and parameters pc, pl, pm.

Output: synthetic trajectory y.

1. Set C ′ = C

2. Update C ′ by removing locations in any partition with probability pc

3. Set semantic seed ssem = s

4. Update ssem by replacing locations r with C ′i where r ∈ C ′i
5. Update ssem by removing the location r = s(t) from time t with probability pl

6. Update ssem by merging locations within time ∆t with probability pm
∆t

7. Let y ← HMMDecode(ssem, 〈p̄, π̄〉)
8. Return y.

6.1.2 Mobility Model

We model the user mobility as a time-dependent first-order Markov chain on the set of

regions (locations). As users have different activities and mobility patterns during different

periods of time, we assume that time is partitioned into time periods, e.g., morning - after-

noon - evening - night. So, the mobility profile 〈p(u), π(u)〉 of a given user u is a transition

probability matrix of the Markov chain associated with the user’s mobility (from a region to

another), and the user’s visiting probability distribution over the regions, respectively. Note

that these probabilities are dependent on each other, and together they constitute the joint

probability of two regions that are subsequently visited by the user. The entry pr
′

r,τ,τ ′(u) of

p(u) is the probability that user u will move to region r′ in the next time instant (which will

be in time period τ ′), given that she is now (in time period τ) in region r. The entry πrτ (u)

is the probability that user u is in region r in time period τ . We can compute π(u) from

traces or directly from p(u) (in some circumstances). Let the random variable At
u represent

the actual location of user u at time t, and τ t be the time period associated with At
u. So,

the mobility profile of a given user u consists of the following probabilities:

pr
′

r,τ,τ ′(u) = Pr{At+1
u = r′ |At

u = r; τ t+1 = τ ′, τ t = τ},

πrτ (u) = Pr{At
u = r; τ t = τ} (6.1)

This Markovian model can predict the location of an individual to a great extent, as it

takes both location and time aspects into account. It can become even more precise, by

increasing its order, or by enriching its state. We can incorporate new dimensions similar to
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semantic classes:
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semantic seed:

f t t z x x p

d d d d w w b
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synthetic trace:

d b

w x

Figure 6.2: Generating a synthetic trace from a seed. Each location is represented by an English
letter in a box. The semantic class associated with each location is represented by a different color.
The semantic seed trace includes the locations in the seed along with other locations in the same
cluster at each time instant. Here, locations are clustered as {y, d, f, t, z}, {g, a, w, x}, {l, b, p}. To
generate a synthetic trace, we first probabilistically remove the seed location and probabilistically
merge subsequent classes. In this example, f, z, p are removed, and w, d, b, x are merged into
their neighboring visited clusters. We then run a decoder to generate a probable trace given the
possibility of choosing from all available locations at each time instant. The resulting synthetic
trace is shown with connected dashed boxes.

the way we model the time periods. To learn the probabilities of the mobility profile Eq. (6.1),

from location traces, we can use maximum likelihood estimation (if the traces are complete)

or make use of algorithms such as Gibbs sampling (if the traces have missing locations or

are noisy) [41].

Mobility Similarity Metrics . We propose two metrics to compare the mobility of two

users and compute their similarities: geographic and semantic similarity. The geographic

similarity metric captures the correlation between location traces that are generated by

two mobility profiles. It reflects if two users visit similar locations over time with similar

probabilities and if they move between those locations also with similar probabilities. Using
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this metric, for example, two individuals who live in the same region A and their workplace

is in the same region B potentially have very similar mobility, as they spend their work hours

in B and most of their evenings in A.

The geographic similarity between the mobility models of two random individuals is usu-

ally low. However, if we ignore their exact visited locations, they tend to share similar

patterns for visiting locations with similar semantics (locations therein they have similar

activities). Consider the semantic dimension of locations as a coloring of them on the map.

Besides the geographic correlation between location traces, we can compute their correla-

tion at the semantic level too (by reducing the set of locations to colors and computing the

similarity of colored traces). This is the intuition behind the semantic similarity metric.

If the pair of locations that two individuals visit over time have the same semantic, their

mobility models are also semantically similar (even if they do not intersect geographically).

For example, if we transform trace X by replacing its locations with their corresponding

semantically similar locations in trace Y, the transformed trace becomes statistically similar

to Y. So, two traces are semantically similar if their locations can be mapped (translated)

to each other in this way.

Geographic Similarity . We define this similarity metric based on the Earth Mover’s

Distance (EMD) for probability distributions. The EMD is widely used in a range of ap-

plications [42, 43], and can be understood by thinking of the two distributions as piles of

dirt where it represents the minimum amount of work needed to turn one pile of dirt (i.e.,

one distribution) into the other; the cost of moving dirt being proportional to both the

amount of dirt and the distance to the destination. The special case of EMD for probability

distributions has been shown to be equivalent to the Mallows distance [44].

Let X and Y be discrete random variables with probability distributions p and q, such

that Pr{X = xi} = pi and Pr{Y = yi} = qi, respectively, for i = 1, 2, . . . , n. We also have∑
i pi = 1 and

∑
i qi = 1.

Definition 6.1. (From [44]) Let d(·) be an arbitrary distance function between X and Y.

The Mallows distance Md(p, q) is defined as the minimum expected distance between X and

Y with respect to d(·) and to any joint distribution function f for (X,Y) such that p and q

are the marginal distributions of X and Y, respectively.

Md(p, q)=min
f
{Ef [d(X,Y)] : (X,Y)∼f,X∼p,Y∼q} , (6.2)
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where the expectation, minimized under f , is

Ef [d(X, Y )] =
n∑
i=1

n∑
j=1

fij d(xi, yj). (6.3)

In addition to the two constraints
∑n

i=1

∑n
j=1 fij = 1 and fij ≥ 0, for all i, j, the joint

probability distribution function f must also satisfy
∑n

i=1 fij = qj and
∑n

j=1 fij = pi.

Note that, for given p and q, the minimum f is easily computed by expressing the opti-

mization problem as a linear program.

Using the previous definition, we define the geographic similarity metric based on the

Mallows distance.

Definition 6.2. Let d(·) be an arbitrary distance function. The dissimilarity between two

mobility profiles 〈p(u), π(u)〉 and 〈p(v), π(v)〉 (belonging to individuals u and v), is defined

as the expected Mallows distance of the next random locations r′ and r′′ according to the

mobility profiles of u and v, respectively. More formally, it is

E(u)[Md(p
r′

r,τ,τ ′(u), pr
′′

r,τ,τ ′(v))], (6.4)

where pr
′

r,τ,τ ′(u) and pr
′′

r,τ,τ ′(v) denote the conditional probability distributions of the next loca-

tion, given the current location and the current and next time periods. The Mallows distance

is computed over random variables r′ and r′′, and the expectation is computed over random

variable r and time periods τ and τ ′.

We define the geographic similarity between mobility patterns of u and v as

simG(u, v) = 1−
E[Md(p

r′

r,τ,τ ′(u), pr
′′

r,τ,τ ′(v))]

zg
, (6.5)

where zg is a normalization constant equal to the maximum value of (the expectation of) the

Mallows distance given d(·), ensuring that the geographic similarity always is in the [0, 1]

range.

We compute the geographic dissimilarity using the law of total expectation. This also

clarifies its meaning by showing more directly the role of the random variables.

E[Md(p
r′

r,τ,τ ′(u), pr
′′

r,τ,τ ′(v))] =
∑
r,τ,τ ′

Md(p
r′

r,τ,τ ′(u), pr
′′

r,τ,τ ′(v)) · pr,τ,τ ′(u). (6.6)

This is simply the average, for each time and location, of the EMD between the distribu-

tions of the next location of u and v. So, for each current location (and time), we use the
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EMD to compute the dissimilarity between the distributions representing the next locations

of users u and v, respectively. The current location is taken according to user u’s mobility

profile, making this metric asymmetric.

For a particular distance function d(·), the definition can be expanded and previous ex-

pressions can be further simplified. This is the case for d(i, j) = 1i 6=j, for which Md(p, q),

for arbitrary probability distributions p and q, has closed form 1−
∑

i min {pi, qi}.
Using the dissimilarity metric, we can compute the geographic similarity between the

mobility profiles 〈p(u), π(u)〉 and 〈p(v), π(v)〉, for any distance function (e.g., hamming dis-

tance, Euclidean distance). For example, considering hamming distance d(r, r′) = 1r 6=r′ , the

geographic similarity is: ∑
r,r′,τ,τ ′

pτ
′

r,τ (u)πr,τ (u) min{pr′r,τ,τ ′(u), pr
′

r,τ,τ ′(v)}. (6.7)

We emphasize that this definition leads to an asymmetrical similarity measure, i.e., the

similarity of u to v need not be the same as the similarity of v to u. In principle, this

metric can also be computed using measures other than EMD. For example, one can use

Kullback-Leibler divergence measure [45] to compute the difference between two probability

distributions, ignoring the distance between the locations. We emphasize that we use EMD,

in our geographic similarity metric, as we also want to include the distance function d(·)
between locations in computing the difference between two mobility models.

Consider now the computation of the geographic similarity. For the case, d(r, r′) = 1r 6=r′ ,

the computation according to closed-form of Eq. (6.7) takes O(T 2 · |R|2) operations, where

T is the number of time periods . For arbitrary d(·) with no closed-form expressions, the

geographic similarity is obtained through T 2 · |R| EMD computations. Each of these EMD

computations involves minimizing the Mallows distance, that is equivalent to solving the

linear program given by Eq. (6.2).

Semantic Similarity . The semantic similarity metric builds upon the basic assumption

that for two individuals u and v there exists an (unknown) semantics mapping σ of locations

R onto itself (i.e. a permutation) such that R for u, and σ−1(R) for v semantically match.

It is important to note that assuming such a mapping does not commit us to trying to learn

it based on modeling location semantics directly. Instead, we define the hidden semantic

similarity between u and v as the maximum geographic similarity taken over all possible

mappings σ. We define semantic similarity metric as follows.

Definition 6.3. Let σ be the mapping of locations of u to locations of v. Let r, r′, and r′′

be random variables for locations, and τ and τ ′ be two time periods. We define the semantic
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dissimilarity between u and v for moving in the sequence of time periods {τ, τ ′} as

Dvu({τ, τ ′}) = min
σ

E
[
Md(p

r′

r,τ,τ ′(u), p
σ(r′′)
σ(r),τ,τ ′(v))

]
, (6.8)

where the Mallows distance Md(·) is computed over the random variable r′ and the expectation

is computed over the random variable r given time periods τ and τ ′.

Now, we define the semantic similarity between u and v over any sequences of time periods

as

simS(u, v) = 1− E [Dvu({τ, τ ′})]
zs

, (6.9)

where zs is a normalization constant equal to the maximum value of (the expectation of)

the Mallows distance given d(·), ensuring that the semantic similarity always is in the [0, 1]

range.

What we compute in Eq. (6.8) is the minimum geographic mobility dissimilarity between

u and v where the locations of v are relabeled and mapped to locations of u according to the

permutation function σvu (which is the σ that minimizes 6.8). Consider two individuals u and

v are at r and σ(r), respectively, at time period τ . The Mallows distance Md computes how

dissimilar their movement will be to the next location which are represented with random

variables r′ for u and σ(r′′) for v. If, according to a mapping, the way that they move

between these locations is similar, they behave similarly with respect to those locations. If

this is true across different time periods and location pairs, their mobilities are similar. So,

the semantic similarity between two individuals is determined by σvu.

We compute this metric at two different levels of accuracy of the mobility model. If we

only consider the visiting probability π part of each individual’s mobility profile, we compute

simS as follows: Let us consider the hamming distance function d(r, r′) = 1r 6=σ−1(r′). In this

case, we can compute the semantic similarity metric as

1−
∑
τ

Pr{τ} max
σ

∑
r

min{πrτ (u), πσ(r)
τ (v)}. (6.10)

Note that the computation of Eq. (6.10) requires finding the mapping σ which maximizes

the inner term for each time period τ . Since there are |R|! possible candidates for the

maximum mapping σ, a brute-force approach is inefficient. However, the problem’s structure

resembles that of a linear assignment. Focusing on the inner sum, we see that each term

(each r) can be associated with |R| values of σ(r) independently of the other components

of σ. To recast the problem as a linear assignment, we construct a bipartite graph where

the nodes represent R and σ(R), and each edge represents the association (through σ) of r
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with σ(r). The maximum weight assignment of the constructed bipartite graph gives the

permutation σ. The running time of this procedure is O(T · |R|3) using the Hungarian

algorithm [46].

In the case where we consider the more accurate mobility profile 〈p, π〉, it can be computed

as follows:

1−
∑
τ,τ ′

max
σ

∑
r,r′

πr,τ (u)pτ
′

r,τ (u) min{pr′r,τ,τ ′(u), p
σ(r′)
σ(r),τ,τ ′(u)} . (6.11)

It is not known whether there is an efficient algorithm to compute the semantic similarity

according to Eq. (6.11). The difficulty comes from having to consider assignments of pairs:

(r, r′) to (σ(r), σ(r′)), which makes this computation look similar to the Quadratic Assign-

ment Problem (QAP) [47], known to be NP-Hard and APX-Hard. But, Eq. (6.11) can be

approximated using the Metropolis-Hastings algorithm [48] or Simulated Annealing [49].

6.2 A BAYESIAN NETWORKS MODEL

In this section, we construct a seedbased generative model to capture statistical relations-

hips between attributes of a record. This model, which was proposed in [32], uses techniques

inspired from Bayesian networks. We evaluate it with a census dataset in Chapter 8.

We discuss training the model on a training set (disjoint from the input data for synthesis)

and achieving differential privacy for the model itself (with respect to its training set). Spe-

cifically, the training set is composed of two disjoint subsets DT used for structure learning,

and DP used for parameters learning.

6.2.1 Model

We consider a universe of records with m attributes, and we let {x1,x2, ...,xm} be the

set of random variables associated with the attributes of the data records in U . Let G

be a directed acyclic graph (DAG), where the nodes are the random variables, and the

edges represent the probabilistic dependency between them. A directed edge from xj to xi

indicates the probabilistic dependence of attribute i to attribute j. Let parG(i) be the set

of parents of random variable i according to the dependency graph G. The following model

represents the joint probability of data attributes.

Pr{x1, ...,xm} =
m∏
i=1

Pr{xi | {xj}∀j∈parG(i)} (6.12)
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This model is based on a structure between random variables, captured by the DAG

G, and a set of parameters that defines the conditional probabilities. In Section 6.2.3

and Section 6.2.4, we present differentially private algorithms to learn the structure and

parameters of the model, respectively.

6.2.2 Synthesis

We probabilistically transform a real data record (the seed) into a synthetic data record,

by updating its attributes. Let {x1, x2, ..., xm} be the values for the set of data attributes

for a randomly selected record in the input dataset D. Let ω be the number of attributes for

which we generate new values. Thus, we keep (i.e., copy over) the values of m−ω attributes

from the seed to the synthetic data. Let σ be a permutation over {1, 2, ...,m} to determine

the re-sampling order of attributes.

We set the re-sampling order σ to be the dependency order between random variables.

More precisely, ∀j ∈ parG(i): σ(j) < σ(i). We fix the values of the first m − ω attributes

according to σ (i.e., the synthetic record and the seed overlap on their {σ(1), ..., σ(m− ω)}
attributes). We then generate a new value for each of the remaining ω attributes, using the

conditional probabilities Eq. (6.12). As we update the record while we re-sample, each new

value can depend on attributes with updated values as well as the ones with original (seed)

values.

Specifically, we re-sample attribute σ(i), for i > m− ω, as

x′σ(i) ∼ Pr{xσ(i) | {xσ(j) = xσ(j)}∀j∈parG(i),j≤m−ω,

{xσ(j) = x′σ(j)}∀j∈parG(i),j>m−ω} (6.13)

Seedless synthesis. Observe that when ω = m, no attributes are copied from the seed

and thus the re-sampling of all m attributes does not depend on the seed. As a result, this

limiting case is an example of seedless synthesis. More generally, the smaller ω is the higher

the dependence on the seed. In particular, if ω = 0, no attributes are re-sampled and the

generative model is equivalent to the identity model (Section 3.1.1).

Marginal synthesis. As a baseline, we consider a (seedless) generative model that (inde-

pendently from any seed record) samples a value for an attribute from its marginal distribu-

tion. That is, for all attributes i, we generate xi ∼ Pr{xi}. This is based on an assumption

of independence between attributes: Pr{x1, ...,xm} =
∏m

i=1 Pr{xi}.
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6.2.3 Privacy-Preserving Structure Learning

The generative model depends on the dependency structure between random variables

that represent data attributes which is captured by the DAG G. We show how to learn G

from real (training) data. We also explain how to do this in a privacy-preserving way.

The algorithm is based on maximizing a scoring function that reflects how correlated the

attributes are according to the training data. There are multiple approaches to this problem

in the literature [50]. We propose to use a method based on a well-studied machine learning

problem: feature selection. For each attribute, we want to find the best set of features

(among all attributes) to predict it, and add them as the attribute’s parents, under the

condition that the dependency graph remains acyclic.

The machine learning literature proposes different ways to rank features by their predictive

power over a particular attribute. For example, we could calculate the information gain of

each feature with the target attribute, but this approach ignores the redundant information

between features. Instead, we propose to use Correlation-based Feature Selection (CFS) [51]

which determines the best subset of predictive features according to some correlation mea-

sure. This is an optimization problem: select a subset of features that have high correlation

with the target attribute and simultaneously low correlation among themselves. The task is

to find the best subset of features which maximizes a merit score that captures our objective.

We follow [51] to compute the merit score for a parent set parG(i) for attribute i as

score(parG(i)) =

∑
j∈parG(i) corr(xi,xj)√

|parG(i)|+
∑

j,k∈parG(i) corr(xj,xk)
, (6.14)

where |parG(i)| is the size of the parent set, and corr() is the correlation between two random

variables associated with two attributes. The numerator rewards correlation between parent

attributes and the target attribute, and the denominator penalizes the inner-correlation

among parent attributes. The suggested correlation metric in [51], which we use, is the

symmetrical uncertainty coefficient:

corr(xi,xj) = 2− 2
H(xi,xj)

H(xi) + H(xj)
, (6.15)

where H() is the entropy function.

The optimization objective in constructing G is to maximize the total score(parG(i)) for

all attributes i. Unfortunately, the number of possible solutions to search for is exponential

in the number of attributes, making it impractical to find the optimal solution. The greedy

algorithm, suggested in [51], is to start with an empty parent set for a target attribute and
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always add the attribute (feature) that maximizes the score.

There are two constraints in our optimization problem. First, the resulting dependency

graph obtained from the set of best predictive features (i.e., parent attributes) for all attribu-

tes should be acyclic. This would allow us to decompose and compute the joint distribution

over attributes as represented in Eq. (6.12).

Second, we enforce a maximum allowable complexity cost for the set of parents for each

attribute. The cost is proportional to the number of possible joint value assignments (con-

figurations) for the parent attributes. So, for each attribute i, the constraint is

cost(parG(i)) =
∏

j∈parG(i)

|xj| ≤ maxcost (6.16)

where |xj| is the total number of possible values that the attribute j takes. This constraint

prevents selecting too many parent attribute combinations. The larger the joint cardinality

of attribute i’s parents is, the fewer data points to estimate the conditional probability

Pr{xi | {xj}∀j∈parG(i)} can be found. This would cause overfitting the conditional probabilities

on the data, that results in low confidence parameter estimation in Section 6.2.4.

To compute the score and cost functions, we discretize the parent attributes. Let bkt() be

a discretizing function that partitions an attribute’s values into buckets. If the attribute is

continuous, it becomes discrete, and if it is already discrete, bkt() might reduce the number

of its bins. Thus, we update conditional probabilities as follows:

Pr{xi | {xj}∀j∈parG(i)
} ≈ Pr{xi | {bkt(xj)}∀j∈parG(i)

} , (6.17)

where the discretization varies for each attribute. We update Eq. (6.14) and Eq. (6.16)

according to Eq. (6.17). This approximation itself decreases the cost complexity of a parent

set, and further prevents overfitting on the data.

Differential privacy .

We show how to safeguard the privacy of individuals whose records are in the training

data, and could influence the model structure (which might leak about their data).

All computations to learn the DAG depend on computing the correlation metric Eq. (6.15).

Thus, we can achieve differential privacy by simply adding appropriate noise to the metric.

Observe that the correlation metric is based on the entropy of a single or a pair of random

variables. Thus, we only need to compute the entropy functions in a differentially-private

way and ensure that the result remains in the [0, 1] range.

Let H̃(z) be the noisy version of the entropy of a random variable z, where z could be a
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single or pair of random variables associated with the attributes and their discretized version

(as presented in Eq. (6.17)). We need to compute the noisy entropy H̃(xi), H̃(bkt(xi)),

H̃(xi,xj), and H̃(xi, bkt(xj)), for all attributes i and j. For each of these, we make use of

the Laplace mechanism, i.e., we generate fresh noise drawn from the Laplace distribution

calibrated to ∆H , the sensitivity of the entropy function. That is:

H̃(z) = H(z) + Lap(
∆H

εH
) . (6.18)

where εH is the privacy budget for this step.

We show in Appendix A.2 that if z is a random variable with a probability distribution,

estimated from nT = |DT | data records, an upper bound for the entropy sensitivity is:

∆H ≤
1

nT
[2 +

1

ln(2)
+ 2 log2 nT ] = O(

log2 nT
nT

) . (6.19)

Remark that ∆H is a function of nT (the number of records in DT ) which also needs to be

protected. So, we compute ∆H with the Laplace mechanism, where instead of nT we use:

ñT = nT + Lap(
1

εnT

) . (6.20)

By randomizing the entropy values, according to Eq. (6.18), the dependency graph, which

we denote as G̃, is obtained with differential privacy.

6.2.4 Privacy-Preserving Parameter Learning

Given the DAG G̃, we still need to compute the conditional probabilities for predicting

each of the attributes given its parent set (see Eq. (6.12)). This is a well-known problem

in statistics. In this section, we show how to learn the parameters that represent such

conditional probabilities, from the training data DP . We also show how this can be done

with differential privacy.

The problem to be solved is to first learn a prior distribution over the parameters of the

conditional probabilities. To do so, we learn the hyper-parameters (the parameters of the

prior distribution over the model’s parameters) from data. Only then, can we compute the

parameters that form the conditional probabilities from the prior distribution.

Let us take the example of computing the parameters for predicting discrete/categorical

attributes. In this case, we assume a multinomial distribution over the attribute’s values

(that fall into different bins). The conjugate prior for multinomials comes from a Dirichlet
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family. The Dirichlet distribution assigns probabilities to all possible multinomial distribu-

tions, according to the statistics obtained from a set of data records.

Let |xi| be the number of distinct values that attribute i can take. The probability

of some multinomial distribution parameters p ci = pci,1, p
c
i,2, ..., p

c
i,|xi| to predict attribute i,

under configuration c for parG(i), is

Pr{p ci | G̃,DP} = Dir(α c
i + n c

i) . (6.21)

where α c
i is the vector of default hyper-parameters for the Dirichlet distribution, and n c

i is

the vector for the number of data records in DP with parG̃(i) configuration c with different

values for attribute i (i.e., element n c
i,l is the number of records for which xi = l and parG̃(i)

configuration is c). The Dirichlet distribution is computed as

Dir(α c
i + n c

i) = Γ(αci + nci)

|xi|∏
l=1

(pci,l)
αc
i,l+n

c
i,l−1

Γ(αci,l + nci,l)
, (6.22)

where αci =
∑

l α
c
i,l, and nci =

∑
l n

c
i,l. The number of configurations #c is

∏
j∈parG̃(i) |bkt(xj)|,

which according to constraint Eq. (6.16) can at most be maxcost.

Learning the parameters of the model, in the case of a Dirichlet prior for the multinomial

distribution, is simply computing n c
i from the data records in DP . Given the probability

distribution Eq. (6.21) over the multinomial parameters, we can compute the most likely set

of parameters as

pci,l =
αci,l + nci,l
αci + nci

, (6.23)

or we can sample a set of multinomial parameters according to Eq. (6.22). This increases

the variety of data samples that we can generate.

Note that for computing the marginal distributions (needed for the baseline) we perform

the same computations but simply set the parent sets to be empty.

Differential privacy .

The parameters of the conditional probabilities depend on the data records in DP , thus

they can leak sensitive information about individuals who contributed to the real dataset.

We show how to learn parameters of the attribute conditional probabilities (i.e., p ci values)

in a differentially private way for the discrete case. Observe that in Eq. (6.21), the only

computations that are dependent on DP are the n c
i counts (for all c and i). To find the

variance of the noise to be added to these counts, to achieve differential privacy, we need to
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compute their sensitivity.

Suppose we are computing the parameters associated with predicting a given attribute

i given its parent set parG̃(i). Observe that adding a record to DP increases exactly a

single component nci,l, for which it matches value l for attribute i and configuration c for its

parent set. So, only one single element among all #c× |xi| elements of ni = n 1
i , n

2
i , ..., n

#c
i

changes. This implies that the L1 sensitivity of ni is 1. Consequently, random noise drawn

from Lap( 1
εp

) can be added to each component of ni independently. More precisely, for any

attribute i, value l, and configuration c, we randomize counts as

ñci,l = max(0, nci,l + Lap(
1

εp
)) (6.24)

and use them to compute Eq. (6.21).

6.2.5 Differential Privacy Analysis

In this section, we compute the differential privacy guarantee we obtained for the en-

tire training process. This includes learning the structure and the parameters of the mo-

del. We compute the overall ε and δ by composing the differentially-private mechanisms

in Section 6.2.3 and Section 6.2.4.

The m(m + 1) entropy values, H̃(z), needed for structure learning are obtained in an a

way that satisfies εH-differential privacy. This is also the case for the number of records nT ,

i.e., it satisfies εnT
-differential privacy. Similarly, the counts nci,l parameters learned for each

configuration satisfy εp-differential privacy.

For structure learning, we use advanced composition for the m(m+ 1) entropy values and

sequential composition with the number of records. So that the overall privacy achieved is

(εL, δL)-differential privacy for a fixed δL � 1
nT

and εL = εnT
+ εH

√
2m(m+ 1) ln (δ−1

L ) +

m(m+ 1)εH(eεH − 1).

For the parameter learning the privacy achieved is (εP , δP )-differential privacy using ad-

vanced composition over the m attributes. Here, δP � 1
np

(where np is the number of records

in DP ) and εP = εp

√
2m ln (δ−1

P ) +mεp(e
εp − 1).

Given that DT and DP are non-overlapping, the guarantee obtained for the generative

model is differential privacy with parameters (max{εL, εP},max{δL, δP}).
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6.3 LATENT-SPACE SEEDBASED SYNTHESIS

We characterize a class of models that we call latent-space models. We evaluate instances of

latent-space models using medical data and images in Chapter 9 and Chapter 10, respectively.

Latent-Space Models. A latent-space model is a pair of two deterministic algorithms

Encode, Decode that operate on elements of some data universe U and map it to and from

Rw for some positive integer w. We typically think of the latent space Rw as much smaller

than U in the sense that w � log |U |. Concretely:

• The encoder transforms a data record d ∈ U (back) into its latent-space representation,

point or code, z = Encode(d), with z ∈ Rw.

• The decoder takes a latent-space point z ∈ Rw and transforms it into a data record

y ∈ U such that y = Decode(z).

Starting from a record d ∈ U and encoding it to obtain z = Encode(d), we can feed z

into the decoder to obtain a reconstructed record d̃ = Decode(z). Remark that there is no

guarantee that d = d̃. Ideally, however, models are accurate in the sense that d̃ is likely to

be similar to d for all d ∈ U .

Note that because Encode and Decode are deterministic functions, the pair always produces

the same output given the same input. Consequently, encoding a data record d and producing

a synthetic as y = Decode(d) is a degenerate case of a generative model.

As an alternative, we propose two techniques to construct a probabilistic seedbased gene-

rative model from a latent-space model.

6.3.1 Latent-Space Noise Adding

A generic technique is to add noise to the latent space.

Definition 6.4 (Noise-Adding Latent-Space Generative Model).

Input: data record (seed) d, noise distribution Z (over Rw).

Output: synthetic y ∈ U .

1. Compute the code of the seed z = Encode(d).

2. Sample noise vector ζ ∼ Z.

3. Decode y = Decode(z + ζ).

4. Output y.

For example, the noise distribution may be independent Gaussians with mean zero and

variance β, i.e., Z = Gaus(0, βI).
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To use this technique within our framework (Section 3.1), it is necessary to compute

the synthesis probabilities Pr{y ←M(d)}. This is a challenge because even if the noise

distribution is known, we may not know the pre-image(s) of some y through Decode.

To overcome this obstacle, we propose to apply the framework directly on the latent space.

Given input dataset D, we first use Encode on each record to obtain a dataset of codes. Then

we simply apply Mechanism 3.1 with the dataset of codes as input, with a generative model

that simply adds noise from Z to its input. Synthetics that pass the privacy test are points

(in Rw) which we then reconstruct into records in the original data universe using Decode.1

In this case, the generative model operates over the latent space Rw directly, so the

synthesis probabilities, which only depend on the noise distribution Z, can be computed

easily using the probability density/mass function of Z.

Additional latent-space processing . A salient feature of this technique is that because

it occurs entirely over the latent space, any additional operations on the produced synthetics

(e.g., in the latent space) are considered post-processing operations from the point-of-view

of differential privacy. That is, we can manipulate a synthetic z ∈ Rw arbitrarily (including

making copies) before decoding it without compromising the privacy guarantee obtained.

We call this technique additional latent-space processing and illustrate it experimentally

in Chapter 10.

6.3.2 Probabilistic Projection

Some latent-space models produce outputs that do not lie strictly in the data universe,

i.e., for d ∈ U , it is possible that d̃ = Decode(Encode(d)) /∈ U . For example, this may occur

when the input data records are binary strings (which can be interpreted as a sequence of

{0, 1} values) but where d̃ is a sequence of real numbers either each close to 0 or 1. Such

occurrences are often dealt with by forcing the elements of d̃ to be either 0 or 1 (e.g., through

rounding) as part of the decoding process.

An alternative to deterministic rounding, which we call probabilistic projection, is to sample

a (synthetic) data record y ∈ U from d̃ using some probabilistic function. This is a seedbased

generative model (Section 3.1.1) where the seed is d̃ and we can use the framework on

reconstructed seeds.

1Since Decode does not depend on D, it is a post-processing operation so that it does not compromise
the privacy guarantee obtained.
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Example 6.1. Let U be the set of all medical diagnosis codes of some kind (e.g.,

ICD-9) so that each code is a binary variable coding whether a patient has been

diagnosed with the disease. A patient medical record d ∈ U is a sequence of {0, 1}
values where if the ith value is 1, the patient suffers from the ith disease.

Suppose we want to synthesize medical records of this type using a latent-space

model based on a neural network. Further suppose that the decoder produces outputs

as sequences of real numbers ri ∈ [0, 1]. To obtain y ∈ U , we could therefore simply

set yi, the ith value of y, to yi = 1ri>0.5. This is a deterministic projection.

Alternatively, we may interpret ri as the probability that the (synthetic) patient

suffers from the ith disease. To obtain y ∈ U , we simply sample yi as a Bernoulli

random variable with parameter ri, i.e., yi ∼ Bern(ri). This exact probabilistic

projection technique is evaluated on real-world medical records in Chapter 9.

6.3.3 Seedless

As a seedless baseline, we make use of the following technique. To produce synthetic y ∈ U :

sample some z ∈ Rw and set y = Decode(z). Given that many practical models impose a

Gaussian prior on the latent-space distribution, we propose to draw z from Gaus(0, I).

6.3.4 Examples

Many prominent techniques that were designed for purposes other than generating synt-

hetic data, are latent-space models compatible with the framework.

PCA. Principal Component Analysis is a well-established technique used in a variety of

applications [52–54]. In particular, it can be used as a dimensionality reduction technique:

a dataset, expressed as a set of records composed of m real attributes, is summarized with

respect to its w principal components (for some positive integer w < m).

Encoding and decoding of records with m attributes is performed using the m×w trans-

formation matrix W, which is obtained through “training” as follows. Given a dataset D

of n records each with m attributes, we center its n ×m data matrix X by subtracting its

mean X̄. Columns of the transformation matrix W are the w eigenvectors associated with

the w largest eigenvalues of the m×m covariance matrix (X− X̄)T (X− X̄).

Given a record d ∈ U represented as 1 × m row vector xd, we compute its latent-space

representation as: zd = (xd − X̄)W. We can reconstruct or decode the 1× w row vector z

as: x̃ = zWT + X̄.
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It should be noted that PCA has recently been proposed as a technique to produce synt-

hetic data by Chanyaswad et al. [55]; their proposal is seedless.

Auto-Encoders. Neural-network based auto-encoders are composed of an encoder network

and a decoder network trained simultaneously. The input and output layers have m neurons

for m-dimensional input data. In contrast, the encoder part has w neurons in the output

layer which coincides with the input layer of the decoder part.

The network is trained by feeding in data records and iteratively updating the weights so

as to minimize the reconstruction error according to some loss function. For example, if the

input data records attributes are in [0, 1], one may use the Bernoulli negative log-likelihood

as loss function. That is, if xj ∈ {0, 1} denotes the jth input and x̃j ∈ [0, 1] denotes the

reconstructed output, then the loss is:

−
m∑
i=1

[xi log x̃i + (1− xi) log(1− x̃i)] .

We add a regularization term to the loss function to constrain the latent-space distribution.

For example, if the mean and standard deviation of a mini-batch are µ and σ, respectively, we

add the following term to the loss function: C ·KL(Gaus(µ, σ),Gaus(0, I)) for some constant

C > 0. This has the effect of imposing a Gaussian prior on the latent-space distribution.

Auto-Encoders GANs. A popular way to train neural networks is to use the adversarial

training paradigm. Train a generative network simultaneously with a distinguisher network:

the former’s job is to produce realistic samples whereas the latter is to distinguish generated

samples from training samples. This is called a Generative Adversarial Network (GAN).

Typically, the generator is given random noise as input which makes the technique seedless.

However, GANs can be combined with auto-encoders [26] by collapsing the generator and

the decoder into a single network. This results in an architecture suitable for seedbased

synthesis. We evaluate an AEGAN model, proposed in [26], in Chapter 10.
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Chapter 7: Application: Location Data

In this chapter we evaluate the generative model presented in Section 6.1 using a real-world

dataset of fine-grained location trajectories. We produce synthetic trajectories and evaluate

their quality in two scenarios: sharing locations with Location-Based Services (LBS), and

releasing synthetic location datasets. This evaluation study originally appeared in [33].

Note that we sometimes refer to the synthetic trajectories as fakes because this term is

often used in the location privacy literature.

7.1 DATASET

The dataset we use for the evaluation is collected through the Nokia Lausanne Data

Collection Campaign (see [56]). We pre-process the data in two phases, filling gaps in the

traces and discretizing the time and location.

The raw dataset contains events of three types: GPS coordinates, WLAN and GSM

identifiers. We construct valid traces (out of partial traces) by filling gaps. We interpolate

along the path of consecutive GPS points, using the WLAN and GSM information.

We then extract two days of traces for each user, such that each trace (of one day) contains

a sequence of 72 locations, with one location reported every 20 minutes. Some locations are

visited very rarely only by very few users. So, we reduce the number of locations from 1491

to 400 by clustering close-by locations together. We use a hierarchical clustering algorithm

for this purpose, and place the locations that are geographically close or have very few visits

in one cluster. The geographical distribution of visits of all users over the locations in the

considered area is shown in Fig. 7.1-(left).

7.2 SETUP

From all traces, we then sub-sample 30 user traces. The 1st day of traces for these users is

used as input dataset DS, whereas the 2nd day of traces will be used as baseline (testing set)

during the evaluation. Using the input dataset, we compute the mobility profiles of all 30

users, and then the semantic location graph by calculating a similarity score for each pair of

locations, averaged across all users. After clustering this semantic location graph, we obtain

20 location clusters. We choose this number of clusters as it provides optimal clustering i.e.,

it maximizes the ratio of inter-cluster similarity over intra-cluster similarity. This clustering

is illustrated in Fig. 7.1-(right), where each location is drawn with the color of the cluster it
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Figure 7.1: 400 locations visited around Lausanne and nearby towns by the 30 users. Some users
commute between two towns whereas the majority of them live and work in the same city of
Lausanne (the area with higher concentration).

belongs to. The figure allows us to distinguish some patterns, for example locations at the

center of cities are mostly in blue, while many locations representing roads and highways

are colored in red. Also notice that the semantic clustering does not seem to depend on the

geographical distance of locations.

To illustrate our geographic and semantic similarity metrics, we compute those metrics

pairwise over all 30 users.1 The result is shown in Fig. 7.2. The first histogram shows that

the 30 users are not strongly geographically similar to each other, except for a few pairs of

users. This is expected given the range of locations they explore overall, as seen in Fig. 7.1-

(left). On the other hand, the distribution of the semantic similarity across all distinct pairs

of users has a larger variance, and a large number of users are highly similar.

Simulation setup. Recall that from the input dataset, we sub-sampled 30 user traces (day

1) that we use for the input seed dataset DS. As for the parameters of the Synthesizer()

algorithm (Section 6.1.1), we set pc = 0.25, pm = 0.75, pl = 1.0, and pv = 4.

For each of the 30 input (seed) traces, we generated about 500 synthetic traces. We then

select and use these traces according to the scenario evaluated. For example, for the LBS

scenario, we sampled traces (for each user) according to the synthetic traces likelihoods.

Evaluation metrics . We evaluate the use of synthetic traces in two popular scenarios:

(i) using fake locations along with real locations when accessing location-based services

(Section 7.4), and (ii) releasing synthetic location datasets to be used for various geo-data

analysis tasks (Section 7.3). There are some differences in terms of the adversary model

1We exclude the geographic/semantic similarity of a user with herself because it is 1.0.
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Figure 7.2: Normalized histogram of the geographic similarity and semantic similarity between
all distinct pairs of 30 users in the input dataset. Mobility models of different individuals is
geographically very specific to themselves, i.e., they are unique. This is well reflected in the skewed
distribution of geographic similarity towards very small values. As hypothesized in Section 6.1,
most of individuals have high semantic similarities between their mobility models.

between different scenarios. Therefore, there are additional considerations regarding the

privacy of users in location-based services, e.g., their privacy against inference attacks, that

we discuss in the corresponding section. The utility metric is also dependent on the scenario

and is measured differently in each case.

7.3 EVALUATION: SYNTHETIC DATA RELEASE

In this scenario, the synthetic traces form a location dataset that is meant to be used for

various geo-data analysis tasks in place of real location traces.

Setup. We generate a large number of synthetic traces out of which we ultimately select:

10 datasets each containing 30 traces. This is done in order to have each synthetic dataset

of the same size and format as the input (seed) dataset.

Utility . Because we release a set of synthetic traces to be used instead of a real location

dataset, to evaluate utility we must take into account how the released traces are to be

used. Specifically, we must determine to what extent the key features and statistics, which

are relevant for the considered applications, are preserved. Clearly, we cannot expect all

statistics (of real traces) to be preserved in the synthetic dataset. An example of property

that we do not preserve is the relationship in the mobility of input traces, e.g., individuals

commuting to work together. Indeed, if two individuals carpool to work, the corresponding

synthetic traces will not exhibit analogous co-traveling behavior (since synthetic traces are

generated independently). However, we their common semantic features should be preserved.
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From the literature, we identify the following prominent geo-data analysis tasks.

(1) Points of Interests (PoIs) extraction. The goal is to discover locations that

are frequently visited and are prominently of interest to the public. PoIs can be used to

provide travel recommendations. In particular, [57] proposes techniques to mine the top n

interesting locations in a given region. A key feature to preserve is the distribution of visits

among locations, specifically the most visited (i.e., popular) locations.

(2) Semantic annotation / labeling of locations. The goal is to automatically assign

labels to locations according to their semantics (e.g., restaurant, bar, shopping mall). For

example, [58] proposes an SVM classifier to assign multiple labels to location-based social

network check-ins. In contrast, [59] proposes to do automatic labeling of locations into 10

semantic categories using smartphone recorded GPS, WiFi, and cell-tower data. In all cases,

the distribution of visitors (and unique visitors) per location are key features of the input

data. In addition, [58, 59] use users’ temporal behavioral data, such as the amount of time

a user spends in a location.

(3) Map inference. [60] evaluates the two main approaches to infer road maps from a

large scale GPS traces: using the sample coordinates themselves, or using the transitions

between samples. A related task is the discovery of semantic regions in a city [61]. In

both cases, key features of the input data include the distribution of visited locations, and

transitions, particularly the popular ones.

(4) Modeling human mobility. [62] proposes to learn a multi-layer spatial density

model from social network check-ins. In this case, temporal features of location data are

largely overlooked. Rather the focus is on features such as the spatial location distribution

in aggregate and at individual level.

(5) Determining optimal locations for retail stores. The goal is to find ideal

geographic placement for a retail store, or a new business. In particular, [63] proposes

to mine online location-based services to evaluate the retail quality of a geographic area.

Specifically, the focus is on a combination of mobility features such as popularity of an area,

and semantic features such as visits to semantically similar venues (e.g., coffee shops of the

same franchise) or transitions between venues.

Based on the features that prominent geo-data analysis tasks require, we identify six

statistics that need to be preserved to ensure that such tasks can reasonably be performed

on a set of synthetic traces instead of a real dataset. As baseline, we use the value of the

statistic on the testing (day 2) dataset, which consists of location traces of the same users as

the input (day 1) dataset. When appropriate, we also use uniformly random location traces

as a baseline.
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(a) Distribution of the number of visits. Tasks such as (2) and (3) exploit the fact

that some locations are more frequently visited than others. In fact, [59] explicitly mention

“how often places are visited” as a major feature.

In order to evaluate this, we do the following. For each dataset, we compute the spatial

allocation, i.e., for each location (from least to most popular, for that dataset), we calculate

the number of visits spent in that location across all traces in the dataset. We then normalize

this quantity to obtain a probability distribution over locations (sorted by popularity), i.e.,

for each location we have the probability of a random visit to that location. From these

distributions, we compute the KL-divergence of the real (day 1) dataset to each of our

synthetic datasets, and to a variety of baselines.2 Some related work such as [64] uses the

relative error of counting queries as a metric instead of the KL-divergence. Therefore, we

additionally calculate the relative error by interpreting the number of visits to each location

as the answer to a counting query. That is, if the number of visits to location x is n1 for

dataset 1 and n2 for dataset 2, then we calculate the relative error as |n1−n2|
max (n1,0.001·N)

, where

N is the total number of visits to any location (the same for all the datasets) [64]. We

report the average relative error over all locations. The results of both metrics are shown

in Section 7.3. The results suggest that a lot of information is preserved in this case: while

the error for the synthetic datasets is greater than that for the real (testing, day 2) dataset,

the error is significantly lower than the other baselines.

Table 7.1: KL-divergence and relative error of the location visiting probabilities of the real (day
1) dataset against the 10 synthetic datasets, and various baselines. “Real” is the testing (day
2) portion of the real dataset (see Section 7.2). “Uniform” is the uniform distribution over all
locations. “Single” is the distribution where all users always visit the same location.

Real Synthetic Uniform Single

KL-divergence 0.037 0.384 ± 0.043 1.191 4.666

Relative error [64] 0.144 0.370 ± 0.010 1.621 0.542

(b) Distribution of number of visits for top 50 locations. For most tasks, featu-

res of the most popular locations (i.e., the most frequently visited locations) are the most

important ones to preserve. In particular, this is consistent with the results provided in [59]

for automatic labeling.

To evaluate this, we use the same procedure as for (a), except that we only consider the

top 50 locations, and plot the distribution instead of calculating the KL-divergence. Fig. 7.3

2We set zero probabilities to 0.1, before normalizing, for the sake of computing KL-divergence (that requires nonzero
probabilities). This is required because there may be locations which are visited in the synthetics but not in the real traces, or
vice-versa.
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Figure 7.3: Distribution of visiting probabi-
lity for top-50 locations; real versus synthetic
datasets. We overlay the histograms of the
three datasets (i.e., day 1, in black; real day
2, in red; synthetics, in yellow).
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Figure 7.4: Relative coverage of top n (most
frequently visited) locations. The coverage
is reported relative to the real (testing, day
2) dataset. Uniform visiting of all locations
(400 in total) is used as comparative base-
line.

shows the results for this case, which plots a histogram where the distributions for different

datasets are overlayed (with some transparency). The error (of the synthetic dataset) for this

case (i.e., top 50) is significantly lower than that for the entire distribution. This strongly

indicates that the information about the popular locations (i.e., the most important ones)

is largely preserved.

(c) Top n coverage of locations. For tasks such as (1), (3), and (5), it may not be

sufficient to ensure that the distribution of visits is preserved. Indeed, it may be required to

ensure that if a location is in the top n most frequently visited locations in the real dataset,

it is also in the top n most frequently visited locations in the released (synthetic) dataset.

Therefore, we measure across two datasets (e.g., one real and one synthetic), how many

locations in their respective top n they have in common, for various values of n.

Specifically, we take the n most frequently visited locations of the real (day 1) dataset.

For each of the other datasets, we then compute how many top n locations (from the input

dataset) are also in the top n most frequently visited locations of that dataset. For the

synthetic datasets and the uniform baseline, we report the relative coverage as the ratio of

the coverage of that dataset and of the testing (day 2) dataset. That is, if the coverage

of the real (testing, day 2) dataset is y (of the top n locations of the input dataset), and

the average coverage of the synthetic datasets is x, then we report the relative coverage as

min (x
y
, 1.0). The results are shown in Fig. 7.4. The relative coverage of the synthetic traces

is in the [61%, 100%] range, whereas for the uniform baseline it is in the [11%, 24%] range,

indicating a high-level of preservation.
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(d) Users’ time allocation. For semantic labeling (2) and other tasks, the users’

temporal behavior cannot be ignored. Indeed [58, 59] use the amount of time spent per

location for each user as a major feature.

In order to evaluate this, we do the following: for each dataset and each user, we calculate

the time spent at each location, among the locations visited. That is, we calculate, for the

three most popular locations of that user, what proportion of the time is spent in each.

We perform this calculation across all 30 users and normalize the result. We compare this

distribution for the real and synthetic datasets. Section 7.3 shows the KL-divergence of

the real (seed, day 1) dataset to the synthetic datasets and baselines: real (testing, day 2)

dataset; uniform time allocation (each user spends 1/k proportion of time at each of the k

locations); random time allocation (each user spends a uniformly random proportion of time

at the location). To visualize those results further, Fig. 7.5 shows the distribution across

all 30 users (for each dataset) for the most popular location (only). The statistic is highly

preserved in the synthetic traces; sometimes the synthetics’ distribution is closer to that of

the real (day 1) dataset, than the distribution of the real (testing, day 2) dataset is.

Table 7.2: KL-divergence of the distribution of users’ time allocation among the three most popular
locations (of each user) of the real (day 1) dataset against synthetic datasets and baselines.

Real (day 2) Synthetics Uniform Random

1st 0.0189 0.0125 ± 0.0022 0.1652 0.6794

2nd 0.0026 0.0092 ± 0.0031 0.0778 0.5360

3rd 0.0114 0.0089 ± 0.0036 0.0779 0.5092

(e) Spatiotemporal mobility features. When constructing mobility models from

location data (4), the overall geographic and temporal behavior of users’ mobility is used.

To evaluate this, we compare the basic mobility statistics obtained from the real and

synthetic datasets. We compute the aggregate mobility model for each synthetic dataset,

and compare its geographic similarity with the real (day 1) dataset. More precisely, for a

synthetic dataset Y , we compute 〈p̄Y , π̄Y 〉 and compute its similarity to 〈p̄, π̄〉. The statistical

similarity of p̄Y with p̄ over all synthetic datasets is

[0.8061 (average), 0.8073 (median), 0.0060 (std)],

and the results for the statistical similarity of π̄Y with π̄ is

[0.7856 (average), 0.7867 (median), 0.0152 (std)].

Both these results show a strong correlation between average/aggregate mobility information
of real and synthetic datasets.
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Figure 7.5: Distribution of the proportion of time spent in the most popular location (of each user)
of the real datasets against synthetic datasets. The information is presented as an area plot, where
the distribution for each dataset is plotted as surface of a different color (i.e., day 1, in blue; real
day 2, in red; synthetics, in yellow). The areas are overlayed on top of one another. Therefore, the
distance between the distribution of two datasets is represented by their non-overlapping area. For
example, the yellow and orange regions represent areas where the synthetics’ distribution is either
non-overlapping (yellow) or overlaps with the real day 2 dataset’s distribution, but not with the
input (day 1) dataset. The majority of the colored area is a region where the real and synthetics
distributions overlap (i.e., purple region). This indicates a high-level of preservation.

(f) Semantic mobility features. In contrast to other applications, identifying areas

for new businesses, i.e., task (5) explicitly takes into account semantic features of the input

location data. Specifically, it takes into account visits to semantically similar venues and

transitions between different types of venues. Consequently, it is meaningful to measure the

extent to which semantic features of a real dataset are preserved in a synthetic dataset.

To evaluate this, we proceed in two steps. We first compute the semantic similarity of each

synthetic trace with its own seed trace to check if the semantic features of the original traces

are indeed preserved. Fig. 7.7 illustrates the distribution of this value over all synthetic

traces. Clearly, the distribution is biased towards higher similarity values. So, the synthetic

traces considerably preserve the semantic features of the real traces.

In the second step, we look at whether the set of synthetic traces preserves the inner

similarity between the set of traces. In Fig. 7.8, we present the correlation between two

distributions: semantic similarity among real traces, and semantic similarity among synthetic

traces. The Q-Q plot shows a significant correlation between these two distributions; they
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Figure 7.6: Histogram of the
differential semantic similarity
between synthetic and real tra-
ces. The distribution of the
absolute difference |simS(s, y)−
simS(s′, y)|, for all pairs of y
(plus its seed s) and s′.
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Figure 7.7: Normalized his-
togram of the semantic simi-
larity of all distinct pairs of:
each of the 30 real traces, al-
ong with their associated synt-
hetic traces.
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Figure 7.8: Q-Q plot compa-
ring two distributions: seman-
tic similarity among all real
seed traces, and semantic simi-
larity among all synthetic tra-
ces. The two distributions are
strongly correlated.

are strongly linearly related. This reflects that in addition to maintaining the information

about each seed, we also preserve the statistical relation among the traces.

7.4 EVALUATION: LOCATION-BASED SERVICES

In this section, we consider the use of synthetic trajectories (fakes) in accessing location-

based services (LBS). Specifically, we compare our proposed technique with existing methods.

We evaluate the utility and privacy according to well-established metrics for this scenario

and measure how well our fakes perform against state-of-the-art inference attacks.

7.4.1 Setup

In this setting, a user shares her current location with a location-based service. The service

provider, in return, provides contextual information about the shared locations (e.g., list of

nearby restaurants, current traffic information on the road). The user makes such queries

over time whenever she wishes to obtain contextual information.

In order to protect her location privacy, i.e., hiding her location at the time of access to

the LBS and also preventing the inference of the full trajectory, the user’s device sends a

number of fake locations along with her true location. For example, if two fake locations are

used, then every time the user makes a query, the device sends locations x, y, z to the service

provider. Out of {x, y, z}, one location is the user’s actual (i.e., true) location and the other

two are fakes. The service provider does not know which of x, y, z is the true location, but

may be able to filter out fake locations over time (i.e., over multiple queries over time), if the
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Figure 7.9: Location privacy versus utility loss for different fake generation algorithms. The privacy
is measured as probability of error of adversary in guessing the correct location of users ( [41,65]).
We plot the median location privacy across all LBS users. A user makes, on average, an LBS query
every 40 minutes. We evaluate the use of 1, 5, 10 fake traces, hence three dots for each algorithm.
(We repeat the experiment 20 times and take the average: 4 times with a different selection of fake
traces, and for each of such selection, 5 times to eliminate the randomness.) The utility loss is (left)
the bandwidth overhead ( [66,67]), i.e., number of distinct locations sent to the server; and (right)
the profile pollution, i.e., the number of distinct semantic classes exposed for each LBS access.

fake locations are not believable (i.e., plausible). This is why it is crucial to use synthetic

traces as opposed to independent fake locations.

The fake locations are obtained as followed. First, we generate a collection of synthetic

traces. The users can select from these traces and store them in their devices. Then, when a

user makes an LBS query, say at time t, she picks the ith fake location (reported to the LBS)

as the location which is visited at time t in fake trace i. All existing fake location generation

methods (i.e., [65–71]) work this way; but the techniques differ in how the fake locations are

generated. Existing fake locations generation methods can be classified into four categories.

Uniform IID [65]: Generate each fake location independently and identically distributed

from uniform probability distribution.

Aggregate Mobility IID [65]: Generate each fake location independently and identically

distributed from the aggregate mobility probability distribution π̄.

Random Walk on Aggregate Mobility [66–68, 70]: Generate a fake trace by doing

a random walk on the set of locations following the probability distribution p̄.

Random Walk on User’s Mobility [69, 71] 3: Do a random walk on the set of

locations following the probability distribution p(u) to generate a fake trace.

3 [69, 71] make fakes dependent on the user’s location over time (used to establish the position of dum-
mies). We make this probabilistic and so assume usage of the user’s mobility profile instead. This leads to
overestimating the privacy gain of the original algorithm.
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For Uniform IID and Aggregate Mobility IID, we evaluate exactly the method described

in [65]. For the other two we evaluate a representative method in each case. In addition

to this, we evaluate our proposed technique, which only differs from these in that the fake

traces are generated using the method described in Section 6.1.1. In all cases, when a user

makes use of a location-based service, both a query for her real location and queries for the

fake locations are sent to the LBS. Because of this, the user’s device must, upon receiving

the responses from the service provider, filter out information not related to her true query.

7.4.2 Privacy Metric

The adversary (e.g., the service provider) who observes the LBS queries made by the

user’s device wants to find the true sequence of locations visited by the user. To do this,

the adversary runs an inference attack which (if successful) results in filtering out the fake

locations. For this, he makes use of the aggregate mobility model 〈p̄, π̄〉 and uses state-of-

the art location inference attack [41]. The attack is a localization attack which consists in

finding the user’s (true) location at each time, given the observation (i.e., the sequence of

locations queried to the LBS). This is a well-known inference problem for Hidden Markov

models which can be solved efficiently using dynamic programming.

The metric to quantify the privacy is the probability of error of inference attack on guessing

the correct location. This is the metric predominantly used in the literature, in works such

as [41,65]. To put it simply, this metric consists in calculating the fraction of true locations

that are missed by the adversary. For example, if the user queries LBS on three different

occasions, but the adversary only correctly infers the true location once (i.e., the inference

attack correctly filters out the fake locations) then the user’s location privacy is 2/3.

7.4.3 Utility Metric

With all synthetic generation techniques (i.e., ours and [65–71]) for the LBS scenario, the

user’s real location will always be among the locations queried to the LBS. Therefore, as

identified by related work, there is no utility loss in terms of quality of service degradation.

That is, the user will always obtain an accurate response to her query (after filtering out

responses corresponding to fake location queries).

Therefore, we measure the utility loss as the bandwidth overhead which is used in the lite-

rature on fake generation techniques (e.g., [66,67,69]). The bandwidth overhead is calculated

as the number of locations (i.e., real plus fakes) sent to the LBS for each user query.

Beyond traditional location-based services, some service providers (e.g., Google Now) pro-

file the user’s interest over time based on the type of locations she visits. This is to provide
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recommendations or reminders. In such cases, queries that are sent to the server can “pol-

lute” the user’s profile, hence reduce the predictability power of the service provider to

provide useful recommendations. To further evaluate utility for such location-based recom-

mender services, we calculate the number of (distinct) semantic clusters among the locations

sent by the user at each time. We call this metric: profile pollution.

7.4.4 Results

Fig. 7.9-(left) shows the tradeoff between location privacy and utility for various methods

of generating fake traces. We evaluate the utility loss in terms of two metrics: bandwidth

overhead (Fig. 7.9-(left)) which is predominantly used in the literature, and also the profile

pollution (Fig. 7.9-(right)). We evaluate the privacy for three different number of fake traces:

1, 5, 10. Although the number of fake traces are the same, across different algorithms, the

average number of distinct locations sent to the LBS is not the same. This is because of

the potential overlap between fake traces available to the user. Methods such as Uniform

IID, Agg Mobility IID, and RW Agg Mobility have a high randomness in selecting fake traces

from all possible locations. Thus, the chance of overlap is small. Our method and the RW

User Profile method have both lower bandwidth overhead.

Results show that our method clearly outperforms all the existing techniques, especially

the random strategies. For the case of RW User Profile method, the privacy level against the

tracking attack gets closer to what we achieve (which is almost maximum), due to the fact

that the fake traces generated by RW User Profile are semantically very similar to the user’s

locations, and hence creates high confusion, hence error, for the adversary. However, it is

very important to note that the RW User Profile is never a privacy-preserving fake injection

method as the adversary can easily de-anonymize the user, no matter if he makes mistakes

on exactly tracking the user at each access time (as shown here).

Overall, the plot shows that our method is the strongest fake generating algorithm. Note

that the absolute privacy levels changes if the adversary knowledge changes. But, what we

are interested in is the relative gain of our method to others.
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Chapter 8: Application: Census Data

In this chapter, we apply the framework to synthesize census data records in a privacy-

preserving way. This case study on census data originally appeared in [32]. We use Mecha-

nism 3.1 with the privacy test based on plausible deniability (Section 4.1) and the generative

model described in Section 6.2.

8.1 DATASET

The 2013 American Community Survey (ACS) [72] contains upwards of 3 million of indi-

vidual records. Each record includes a variety of demographics attributes such as age, sex,

race, as well as attributes related to the individual’s income such as yearly income in USD.

The ACS dataset has been used for various purposes ranging from examining the relati-

onship between education and earnings [73] to looking at current language use patterns of

children of immigrants [74]. Furthermore, the prominent UCI Adult dataset, which provi-

des a well-established benchmark for machine learning tasks, was extracted from the 1994

Census database. The 2013 ACS dataset contains similar attributes so we process it in a

manner similar to how the Adult dataset was extracted. In particular, we extract the same

attributes whenever possible.

As pre-processing, we discard records with missing or invalid values for the considered

attributes (Table 8.1). Table 8.2 shows some statistics of the data cleaning and extracted

dataset. This is a highly dimensional dataset despite having only 11 attributes, there are

more than half a trillion possible records and out of the roughly 1.5 million records obtained

after cleaning, approximately two third are unique.

We aggregate (Section 6.2.3) values of the age attribute in bins (i.e., buckets) of 10, i.e.,

17 to 26, 27 to 36, etc. (Following the rules used to extract the Adult dataset, we only

consider individuals older than 16.) We also aggregate the values of: hours worked per week

(HPW), in bins of 15 hours; education, to aggregate education level below a high-school

diploma in a single bin, and high-school diploma but not college into (another) single-bin.

This aggregation step is performed based on the data format and the semantics of attributes

(and thus is privacy-preserving). It is done only for structured learning (Section 6.2.3); both

the input and output data format remain the same.
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Table 8.1: Pre-processed 2013 ACS dataset attributes.

Name Type Cardinality (Values)

Age (AGEP) Numerical 80 (17 to 96)

Workclass (COW) Categorical 8

Education (SCHL) Categorical 24

Martial Status (MAR) Categorical 5

Occupation (OCCP) Categorical 25

Relationship (RELP) Categorical 18

Race (RAC1P) Categorical 5

Sex (SEX) Categorical 2 (male or female)

Hours Worked per Week (WKHP) Numerical 100 (0 to 99+)

World Area of Birth (WAOB) Categorical 8

Income Class (WAGP) Categorical 2 (≤ 50K, > 50K)[USD]

Table 8.2: 2013 ACS data extraction and cleaning statistics.

Records 3, 132, 796 (clean: 1, 494, 974)

Attributes 11 (numerical: 2, categorical: 9)

Possible Records 540, 587, 520, 000 (≈ 239)

Unique Records 1, 022, 718 (68.4%)

Classification Task Income class

8.2 SETUP

We split the 2013 ACS dataset (Section 8.1) into three disjoint parts D, DT and DP such

that each of DT and DP contain about 280, 000 records while D contains the rest (735, 000

records). We use DT and DP as training data to learn the model’s structure and parameters.

We follow Section 6.2 to train the generative model in a way that satisfies differential privacy

for ε = 1 (though we also give some results for ε = 0.1) and δ = 2−30 ≈ 10−9.

We want to compare the quality of our generated synthetics with real records (coming

from the input dataset) and privacy-preserving marginals (Section 6.2.2) which we refer

to as reals and marginals, respectively. The synthetics we generate are referred by their

generation parameters (e.g., ω = 10). Unless otherwise stated, we set k = 50, ε0 = 1, r = 4,

and ω is set to vary between 5 and 11.

We maintain an independent test set of roughly 100, 000 records. Evaluation of classifiers

(in this chapter) uses at least 100, 000 records for training and a (disjoint) testing set of size

at least 30% of the size of the aforementioned training set.

72



A
G

E

W
C

E
D

U

M
S

O
C

C

R
E

L
R

A
C

E

S
E

X

H
P

W

W
A

O
B

IN
C

C

Attribute

-10%

0%

10%

20%

30%

40%

50%
R

e
la

ti
v
e

 I
m

p
ro

v
e

m
e

n
t

No Noise

ǫ = 1

ǫ = 0.1

Figure 8.1: Relative improvement of model accuracy of the un-noised, ε = 1, and ε = 0.1 models,
with respect to the baseline (marginals). Overall, the improvement for ε = 1 or ε = 0.1 is compa-
rable to that for the un-noised version. Adding noise to achieve differential privacy for structure
learning (Section 6.2.3) can lead to a different acyclic graph of the model. (This is why there is a
significant difference in improvement for attributes RACE and WAOB between ε = 1 and ε = 0.1.)

8.3 EVALUATION

The evaluation is divided into four parts: (Section 8.3.1) statistical measures (how good

are the synthetics according to well-established statistical metrics); (Section 8.3.2) machine

learning measures (how good are the synthetics for machine learning tasks, specifically clas-

sification); (Section 8.3.3) distinguishing game (how successful is an adversary at distinguis-

hing between a real record and a synthetic one); and (Section 8.3.4) performance measures

(how computationally complex it is to generate synthetics).

8.3.1 Statistical Measures

We evaluate the quality of the synthetics in terms of their statistical utility, i.e., the ex-

tent to which they preserve the statistical properties of the original (input) dataset. We can
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Figure 8.2: Model accuracy. The difference between the random forest accuracy and the marginals
accuracy indicates how informative the data is about each attribute.

do this at the level of the generative model (Section 6.2.1) itself. Concretely, we directly

quantify the error of the privacy-preserving generative model before any synthetic record

is generated. We do this for each attribute by repeatedly selecting a record from the in-

put dataset (uniformly at random) and using the generative model to find the most likely

attribute value (of that attribute) given the other attributes. The generative model error

is then measured as the proportion of times that the most likely attribute value is not the

correct (i.e., original) one. We repeat this procedure millions of times to quantify the average

error of the model for each attribute. Because the generative model is made differentially

private by adding noise (Section 6.2.5) we additionally repeat the whole procedure 20 times

(learning a different private model each time) and take the average.

The results are shown in Figs. 8.1 and 8.2. Fig. 8.1 shows the relative decrease in model

error (i.e., improvement of model accuracy) over the (privacy-preserving) marginals; it shows

this improvement for the un-noised, ε=1-differential privacy, and ε=0.1-differential privacy

generative models. There is a clear accuracy improvement over marginals, in addition to a

low decrease in improvement between the un-noised model and the ε=1 and ε=0.1 cases.
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Figure 8.3: Statistical distance for individual attributes of two distributions: reals and (other)
reals; reals and marginals; reals and synthetics (for varying ω). The smaller the statistical distance
the more information is preserved. The distance of reals and ω = 11 and ω = 10 synthetics is
similar to that of reals and marginals.

Fig. 8.2 shows the accuracy of the un-noised generative model against the (un-noised)

marginals, random guessing (baseline), and the best classifier we could find (trained on as

many records as the generative model), the random forest (RF). While RF’s accuracy is

sometimes higher than that of the generative model, the accuracy of the latter is in many

cases significantly higher than that of marginals and random guessing. We conclude that

while the proposed generative model does not perform as well as RF (though making RF

differentially private would certainly lower its performance) it does perform significantly

better than marginals (or random guessing).

In addition to the model loss, we directly evaluate whether the generated synthetics pre-

serve statistical properties by comparing the probability distributions of the synthetics with

the reals and marginals. Specifically, for reals, marginals and synthetics datasets, we com-

pute the distribution of each attribute and of each pair of attributes. We compare each of

these distributions to those computed on (other) reals and quantify their statistical distance.

75



R
ea
ls

M
ar
gi
na
ls

ω
=
11

ω
=
10

ω
=
9

ω
∈
R

[9
−

11
]

ω
∈
R

[5
−

11
]

0

0.05

0.1

0.15

0.2

0.25

0.3
S

ta
ti
s
ti
c
a

l 
D

is
ta

n
c
e

Figure 8.4: Statistical distance for pairs of attributes of two distributions: reals and (other) reals;
reals and marginals; reals and synthetics (for varying ω). The smaller the statistical distance the
more information is preserved. The distance of reals and synthetics is significantly smaller than
that of reals and marginals.

The results are shown in Figs. 8.3 and 8.4, where Fig. 8.3 shows box-and-whisker plots

for the distance of the distributions of each attribute separately, and Fig. 8.4 shows box-

and-whisker plots for the distance of the distributions of all pairs of attributes. While

marginals do well for single attribute and sometimes outperform our synthetics (though the

statistical distance for all datasets is small), synthetics clearly outperform marginals for

pairs of attributes. We conclude that the generated synthetics preserve significantly more

statistical information than marginals.

8.3.2 Machine Learning Measures

In addition to preserving statistical properties of the original (input) dataset, the synthe-

tics should also be suitable to various machine learning tasks. In particular, given a learning

task, we can evaluate the extent to which synthetics are suitable replacements for a real

76



dataset. For this kind of census data, a natural classification task is to predict a person’s

income class (i.e., ≥ 50K or < 50K) using the other attributes as features.

Table 8.3: Classifier comparisons. The agreement rate is the proportion of times that the classifier
makes the same prediction as a classifier trained on real data.

Accuracy Agreement Rate
Tree RF Ada Tree RF Ada

Reals 77.8% 80.4% 79.3% 80.2% 86.4% 92.4%

Marginals 57.9% 63.8% 69.2% 58.5% 65.4% 75.6%

ω = 11 72.4% 75.3% 78.0% 73.9% 79.0% 83.0%

ω = 10 72.3% 75.2% 78.1% 73.8% 78.9% 83.6%

ω = 9 72.4% 75.2% 77.5% 73.9% 79.2% 82.4%

ω ∈R [9− 11] 72.3% 75.2% 78.1% 73.7% 79.0% 83.9%

ω ∈R [5− 11] 72.1% 75.2% 78.1% 73.6% 79.2% 83.3%

We train various classifiers on the synthetic datasets and on the real (input) dataset. We

then compare: the classification accuracy obtained, and the agreement rate of the learned

classifiers. Specifically, for two classifiers trained on different datasets (but with the same

classification task), we define the agreement rate to be the percentage of records for which

the two classifiers make the same prediction (regardless of whether the prediction is correct).

Given that we look at the agreement rate of classifiers trained on reals and synthetics, the

agreement rate reveals the extent to which the classifier trained on synthetic data has learned

the same model as the classifier trained on real data.

Table 8.3 shows the obtained results for three (best) classifiers: Classification Tree (Tree),

Random Forest (RF), and AdaBoostM1 (Ada). The accuracy and agreement rate are calcu-

lated as the average over 5 independent runs, that is, for each run, we use different (randomly

sampled) training and testing datasets. Overall, both the accuracy and the agreement rates

of the synthetics are significantly closer to that of the reals than the marginals are.

In addition to comparing the best classifiers trained on real data versus those trained on

synthetic data, we can also compare privacy-preserving classifiers trained on real data versus

non-private classifiers trained on (privacy-preserving) synthetic data. In particular, Chaud-

huri et al. [75] propose two techniques based on empirical risk minimization to train logistic

regression (LR) and support vector machines (SVM) binary classifiers: output perturbation

(noise is added to the learned model), and objective perturbation (noise is added to the ob-

jective function of the minimization problem). To train such classifiers, we first pre-process

our datasets following the instructions in [75]: we transform each categorical attribute into

an equivalent set of binary attributes, and normalize features so that each feature takes

values in [0, 1] and subsequently further normalize each training example such that its norm
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is at most 1. The target attribute for classification is again the person’s income class. The

method proposed in [75] has two parameters: the privacy budget ε which we set to 1 (the

same as for our generative model), and λ which is a regularization parameter. We use the

code of [75], which we obtain courtesy of the authors, to train the LR and SVM classifiers.

Because the classification models vary greatly depending on λ, we vary its value in the set

{10−3, 10−4, 10−5, 10−6} and (optimistically) pick whichever value maximizes the accuracy

of the non-private classification model.

We report the accuracy obtained in each case in Table 8.4, where we compare non-private,

output perturbation differential privacy, and objective perturbation differential privacy clas-

sifiers trained on real data with non-private classifiers trained on our synthetic datasets (for

various values of ω). Non-private LR and SVM classifiers trained on our (privacy-preserving)

synthetic datasets are competitive with differentially-private LR and SVM classifiers trai-

ned on real data. The classifiers trained on our privacy-preserving synthetics outperforms

ε-differential privacy LR classifier and only achieves 1% lower accuracy than the objective-

perturbation ε-differential privacy SVM. This is significant because the technique to train

the ε-differential privacy LR and SVM is specifically optimized for that task. In contrast,

our synthetics are not specifically generated to optimize any particular classification task;

instead the general objective is to preserve the statistical properties of real data.

Table 8.4: Privacy-preserving classifiers comparison.

LR SVM

Non Private 79.9% 78.5%

Output Perturbation 69.7% 76.2%

Objective Perturbation 76.3% 78.2%

Marginals 68.9% 68.9%

ω = 11 77.6% 77.2%

ω = 10 77.7% 77.1%

ω = 9 77.5% 77.1%

ω ∈R [9− 11] 77.5% 76.9%

ω ∈R [5− 11] 77.7% 77.3%

Table 8.5: Distinguishing game. Random forest (RF) and classification tree (Tree) easily dis-
tinguish marginals from reals but perform significantly less well in distinguishing synthetics from
reals.

Reals Marginals
ω = or ∈R

11 10 9 [9− 11] [5− 11]

RF 50% 79.8% 62.3% 61.8% 63.0% 60.1% 61.4%

Tree 50% 73.2% 58.9% 58.6% 59.8% 57.9% 58.4%
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8.3.3 Distinguishing Game

We evaluate the quality of synthetic datasets by the extent to which the synthetics can be

distinguished from real records. For this, we use the methodology from the distinguishing

game (Definition 5.1) introduced in Section 5.1. The role of the adversary is played by

the two best classifiers (those that best distinguish synthetics from reals): Random Forest

(RF) and Classification Tree (Tree). Specifically, we provide 50, 000 records from both a real

dataset and a synthetic dataset (i.e., 100, 000 total) as training examples to the (binary)

classifier. We then evaluate the accuracy on a 50% mix of real and synthetic records which

were not part the training set. Table 8.5 shows the results: both classifiers achieve reasonably

high (79.8% and 73.2%) accuracy in distinguishing marginals from real records. However,

both classifiers achieve lower accuracy (63%) in distinguishing synthetics from reals.

8.3.4 Performance Measures

In addition to how much utility they preserve, synthetics also need to be easy to gene-

rate. The generation is a parallel process, so we measure the time taken for learning the

privacy-preserving generative model (model learning) and synthetics generation (synthesis).

Fig. 8.5 shows the time taken to produce various number of synthetics records (totaling over

1 million). The machine used for the experiment runs Scientific Linux and is equipped with

an Intel Xeon E5-2670 processor (2.60GHz) with 32 processing units and 128GB of RAM.

We ran 96 instances (16 in parallel at a time) and picked a random maximum runtime for

each instance between 3 and 15 minutes.
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The generator outputs all synthetics produced regardless of whether they pass the privacy

test. Naturally, only those which pass the test should to be released. Thus, the extent to

which we can synthesize large (privacy-preserving) datasets depends on how easy it is to find

synthetics that pass the privacy-test (Section 4.1). To evaluate this, we set r = 2 but vary

k and ω. We measure the proportion of synthetics which pass the privacy test. The results

are shown in Fig. 8.6: even for stringent privacy parameters (e.g., k = 100) a significant

proportion (i.e., over 50% for ω ∈R [5− 11]) of synthetics pass the test.
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Chapter 9: Application: Medical Data

In this chapter, we synthesize medical records.

9.1 DATASET

We use the 2013 HCUP Nationwide Inpatient Sample (NIS) [76] which contains millions

of fine-grained medical discharge records. As pre-processing, we clean the data by remo-

ving records with missing/invalid attribute values and extract cancer diagnosis (i.e., the

corresponding CCS categories [77]). Table 9.6 shows the attributes selected.

The processed data contains over 6 millions records of moderately high dimension, i.e.,

|U | = 242. We split the dataset into three disjoint subsets of records. We use the first for

training the generative models, the second as independent (holdout) test set, and the last

as input data to the mechanism.

9.2 SETUP

We use two different latent-space models architectures (Section 6.3): PCA and VAE.

PCA-5 . This generative model is based on principal components analysis with w = 5 prin-

cipal components. To “train” the model, we follow the procedure described in Section 6.3.4

using the training set. This process results in obtaining a mean vector and a projection ma-

trix. We remark that the procedure can also be performed in a way that satisfies differential

privacy using the technique from [55].

To perform synthesis, we use the input dataset and follow the procedure from Section 6.3.4

using the mean vector and projection matrix obtained from training.

VAE-3 . This generative model is a variational auto-encoder with latent width w = 3.

The encoder and decoder networks each have a single hidden layer with 6 neurons. Unless

otherwise stated, the Gaussian KL-divergence regularization constant is C = 0.5. We train

the model for 200 epochs with a batch size of 500, and the Adam optimizer with a learning

rate of 0.004. The loss function is the Bernoulli negative log-likelihood (Section 6.3.4).

For both PCA-5 and VAE-3, we use the probabilistic projection technique (Section 6.3.2).

Seedless baseline . As a baseline, we define seedless generative models for both PCA-5 and

VAE-3. The seedless variants consists in sampling Gaussian samples from the latent-space

and applying the decoder, followed by probabilistic projection. Specifically, we draw samples

from N (µ, βI), where µ and β are estimated by encoding records from the test set. Due to

regularization, we typically have µ ≈ 0 and β ≈ 1.
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9.3 EVALUATION

For PCA and VAE, we produce privacy-preserving synthetic datasets using Mechanism 3.1

with Privacy Test 3.2 (geometric noise), denoted as PP PCA-5 and PP-VAE-3, respectively.

Unless otherwise stated experiments are performed on datasets of at least 100′000 records.

We evaluate our synthetics with regards to the following aspects.

• In Section 9.3.1, we evaluate the quality of synthetics produced by the PCA-5 and

VAE-3 generative models compared to the holdout test dataset across various distance

metrics and using our distinguishability metric (Section 5.1).

• In Section 9.3.2, we explore the relationship between privacy guarantee, synthetic da-

taset size, and filtering loss. Unless otherwise stated, we guarantee (1, 2−40)-differential

privacy for our privacy-preserving synthetics.

• In Section 9.3.3, we investigate the seedless variants of our PCA-5 and VAE-3 genera-

tive models with the goal of understanding the trade-offs in using seedbased synthesis

versus seedless synthesis.

• In Section 9.3.4, we apply the theory developed in Chapter 5 to quantify experimentally

the filtering loss with respect to the PCA-5 and VAE-3 generative models, as measured

by distinguishability and statistical distance.

9.3.1 Quality

We perform comparisons on various metrics between our seedbased synthetics (PCA-5 and

VAE-3), our (seedbased) privacy-preserving synthetics (PP PCA-5 and PP VAE-3), and the

(holdout) test dataset. For the privacy-preserving synthetics we set the parameters of the

privacy test so that the entire synthetic dataset is obtained with (1, 2−40)-differential privacy.

(See Section 9.3.2 for a discussion on setting the privacy parameters.)

Probability Distance Metrics . We evaluate the extent to which the datasets preserve

the statistical properties through computation of the one-way (and two-ways) marginals

distribution over attributes (and pairs of attributes). In each case, then marginals are com-

pared to that of the test dataset across three probability distance metrics: (i) the statistical

distance (SD), (ii) the Hellinger distance (HEL), and (iii) the KL-divergence (KL). Because

the KL-divergence is undefined for 0-probability events, we add a (very) small smoothing

factor ε = 0.0001 to all of the probabilities before calculating the KL-divergence.
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Table 9.1: Probability distribution metrics (statistical distance, Hellinger distance, and KL-
divergence) of various datasets compared to real records. For each dataset, we compute the mean
and standard deviation of each metric for both one-way and two-way marginals.

Dataset Marginals
Statistical (SD) Hellinger (HEL) KL-Divergence (KL)

Mean (± Standard Deviation)

Reals
1-way 0.000 (±0.000) 0.001 (±0.001) 0.000 (±0.000)
2-way 0.001 (±0.001) 0.002 (±0.001) 0.000 (±0.000)

PCA-5
1-way 0.001 (±0.001) 0.003 (±0.004) 0.000 (±0.000)
2-way 0.002 (±0.002) 0.006 (±0.004) 0.000 (±0.000)

PP PCA-5
1-way 0.002 (±0.003) 0.006 (±0.010) 0.001 (±0.002)
2-way 0.003 (±0.005) 0.012 (±0.013) 0.001 (±0.003)

VAE-3
1-way 0.001 (±0.001) 0.003 (±0.002) 0.000 (±0.000)
2-way 0.001 (±0.001) 0.006 (±0.003) 0.000 (±0.000)

PP VAE-3
1-way 0.003 (±0.005) 0.014 (±0.020) 0.004 (±0.014)
2-way 0.007 (±0.008) 0.026 (±0.028) 0.010 (±0.022)

Results are shown in Table 9.1 where we give both the mean and standard deviation (of

the three distance metrics) for both one-way and two-way marginals. It can be seen that for

all three distance metrics, the synthetics have higher distance to the test data than real data

records, and that achieving differential privacy degrades slightly the quality of the synthetics.

Distinguishability . We evaluate the extent to which synthetics can be distinguished from

real records. For this, we use the theory developed in Section 5.1. Specifically, we let various

classification algorithms play the role of the adversary in the distinguishing game (Defini-

tion 5.1). We train the classifiers using a training set composed of 50% real records (from the

test dataset) and 50% “synthetic” records. We calculate the classification accuracy over a

test set both containing real and “synthetic” records with the same 50% split as the training

set but that does not overlap. We compute distinguishability as twice the absolute difference

between the classification accuracy and random chance (50%). Fig. 9.1 shows the results for

five popular classifiers. We observe that, for all classifiers, our synthetics and our privacy-

preserving synthetics all have distinguishability in the 0.05 to 0.1 range. Albeit this is higher

than reals which have near 0 distinguishability, this is low and suggests that the synthetics

are close in distribution to real records. We also observe that the distinguishability is lower

for PCA-5 than VAE-3 which indicates a lower model loss. We conjecture that this is the

result of larger latent width: w = 5 for PCA and w = 3 for VAE. Finally, we remark that

decision trees and random forest classifiers outperform others, which suggests that they are

a better choice when it comes to experimentally evaluating distinguishability.
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Figure 9.1: Distinguishability (for various classifiers as distinguishers) of the five datasets with
respect to the real (input) data.

9.3.2 Privacy and Size

We explore the relationship between privacy, synthetic dataset size, and distinguishability.

If we target a fixed privacy level, then there is a trade-off between privacy parameters (i.e.,

k, t, ε0) and the number of synthetics (m) we can produce. Both the privacy parameters and

the number of synthetics impact the quality of the produced synthetic dataset.

We follow the composition methodology described in Section 4.3 to set the parameters and

partition the input data into 4 disjoint sets which we subsequently use to produce synthetic

datasets of sizes ranging from 1000 to 50000 synthetics with the mechanism (using both

PCA-5 and VAE-3). The parameters chosen are shown in Table 9.2. For this experiment,

the overall privacy budget if we release the entire synthetic dataset is ε = 1 and δ = 2−40.

Table 9.2: Privacy vs. synthetic dataset size: examples of parameters. See Section 4.3 for details
on the composition methodology.

Synthetic Dataset Size
1000 5000 10000 20000 30000 40000 50000

m 250 1250 2500 5000 7500 10000 12500

k 5500 12800 18400 26500 32700 38000 42700

t 900 1700 2400 3300 5000 5800 5600

ε0 0.0072 0.0031 0.0022 0.0016 0.0013 0.0011 0.0010
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Figure 9.2: Synthetic dataset size vs distinguishability. The privacy parameters (k, t, ε0) are set
as in Table 9.2. (We exclude the 1000 and 5000 cases which do not contain enough samples to
train and evaluate robust classifiers.) The overall privacy budget if we release the entire synthetic
dataset is ε = 1 and δ = 2−40.

We compare the synthetic datasets across both generative models using the distinguishing

game methodology described in Section 9.3.1. But use only the two best distinguishers,

i.e., random forest and decision trees. The results are shown in Fig. 9.2. It can be seen

that the distinguishability, which is (relatively) low in all cases, increases with the size of

the synthetic data. This is expected as the larger the synthetic dataset size, the larger the

privacy parameters k and t must be, which makes passing the privacy test more difficult and

increases the filtering loss (whereas the model loss is the same).

To separately investigate the model loss and filtering loss, we use the distinguishing game

methodology to measure the model loss and then vary the privacy budget (by varying the

privacy parameters) and measuring the filtering loss each time. Specifically, we measure the

model loss by comparing the distribution of real records with that of seedbased synthetics

with no filtering (i.e., no privacy test). The results are shown in Table 9.3. It can be seen

that the filtering loss is overall lower for PCA-5 than VAE-3, which is consistent with earlier

results. Also, for values of ε ≥ 1, we see that for both VAE-3 and PCA-5, the model loss is
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actually the main component of the utility loss. This indicates that the quality degradation

of synthetics is mostly due to the model as opposed to the filtering (of the privacy tests)

that is needed to achieve privacy. Finally, we observe that as ε increases, the filtering loss

decreases towards 0, which is what we expect.

Table 9.3: Model loss and filtering loss. For both VAE-3 and PCA-5, we measure experimen-
tally the model loss and filtering losses (for varying ε) using the distinguishing game methodology
(Section 5.1). For the filtering loss, we use a dataset of 10′000 synthetics produce to satisfy (ε, 2−40)-
differential privacy. The privacy parameters are: k = 39000, t = 3000, ε0 = 0.001 for ε = 0.5;
k = 18400, t = 2400, ε0 = 0.0022 for ε = 1.0; k = 12460, t = 460, ε0 = 0.003 for ε = 2.0; k = 7400,
t = 200, ε0 = 0.005 for ε = 4.0; and k = 4100, t = 100, ε0 = 0.009 for ε = 8.0.

Model loss
Filtering loss

ε = 0.5 ε = 1.0 ε = 2.0 ε = 4.0 ε = 8.0

VAE-3 0.064 0.136 0.053 0.039 0.035 0.026

PCA-5 0.047 0.099 0.036 0.022 0.017 0.012

9.3.3 Seedfulness

We investigate the quality of seedless compared to seedbased synthetics. Experimentally,

we observe that seedless synthetics are of lower quality than seedbased. For example, using

random forests classifiers: our privacy-preserving PCA-5 synthetics have a distinguishability

of 0.05 whereas the seedless PCA-5 synthetics have a distinguishability of 0.24.

Latent-space sampling . We conjecture that a reason for the poor performance of the

seedless technique is that sampling from the latent-space distribution is difficult. Speci-

fically, since the seedless technique consists of sampling from a Gaussian distribution, if

encoded real records do not follow a similar distribution, we should not expect that the pro-

duced synthetics will be of high quality. The question is therefore what is the latent-space

distribution of real records?

For PCA, if the input data is not Gaussian distributed, there is no guarantee that the

components will be independent. As a result, it is difficult to characterize the latent-space

distribution. In contrast, for VAE, the latent space distribution is constrained to be approx-

imately Gaussian through the regularization term added to the loss function (Section 6.3.4).

Thus, we expect that the larger the regularization constant C is, the closer the performance

of seedbased and seedless synthetics will be. At the same time, if C is too large then the

reconstruction performance of the VAE model may be poor (due to high model loss) which

in turns decrease the quality of the produced synthetics.
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Figure 9.3: Distinguishability of VAE-3 seedbased (SB) and seedless (SL) for varying C (for the
two best classifiers as distinguishers) with respect to the real (input) data.

To test this conjecture we train VAE-3 models with C ∈ {0, 0.25, 0.5, 0.75, 1, 1.5, 2}. In all

cases we produce synthetics both through seedless and seedbased synthesis and compare the

two in terms of distinguishability. For this we use the two best distinguishers, i.e., random

forest and decision trees. The results are shown in Fig. 9.3. Given that increasing C increases

the regularization of the model, we expect the model loss to increase with C (which is what

we observe experimentally). We see that the larger C is the lower the distinguishability

of seedless synthetics; simultaneously, the larger C is the higher the distinguishability of

seedbased synthetics. This can be explained as follows. When C is low, the constraint on

the latent-space distribution being Gaussian is weak which results in poor performance for

seedless synthesis. In this case, seedbased synthesis performs well because the model loss

is low. In contrast, when C is large, the constraint on the latent-space distribution being

Gaussian is strong which improves seedless synthesis but increases model loss.

Sub-population synthesis . We illustrate an advantage of seedbased synthesis compared

to seedless synthesis: it can be used produce synthetics from a sub-population (or a different

population) than that used to train the model. As an example, suppose we want to synthesize

records using input data with a different distribution than the training data. This is possible

with seedbased synthesis. To capture this experimentally, we use a subset of the HCUP NIS

discharge medical records that have alcohol-related disorders (CCS category cat660) as input
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data to the mechanism.1 In this case, we expect the produced synthetics records to be similar

to the input data records (as opposed to the model’s training data records).

Using this input data, we produce 10′000 synthetics using the mechanism with the VAE-

3 model. The distinguishability of the produced synthetics compared to the mechanism’s

input data is 0.026. In contrast, the distinguishability of the input data compared to model’s

training data is 0.365, showing that the two distributions are very different. To further

illustrate this scenario, we evaluate the following four queries on the synthetics, the model’s

training data (10′000 records), and the input data (10′000 records).

1. Number of records for female patients.

2. Number of records with patient outcome: death.

3. Number of records with hospital birth.

4. Number of records with elective procedure.

The results are shown in Table 9.4. We observe a significant difference between the

training data (representative of the overall HCUP NIS dataset) and the input data (the

sub-population of patients with alcohol-related disorders). For example, in the HCUP NIS

data is about 57% of patients are female whereas, in the sub-population, only about 28% of

patients are female. Further, we see that the query results for the synthetics (VAE-3) are

very close to that of the sub-population. This is expected as similarity between input data

records and synthetics is the point of seedbased synthesis!

Table 9.4: Queries over synthetics produced from a sub-population. In all cases, we use a sample
of 10′000 records.

Q1 (female) Q2 (died) Q3 (hospbirth) Q4 (elective)

Training 5766 191 2205 1007

Sub-pop 2787 204 979 2

VAE-3 2896 206 922 9

9.3.4 Utility Bounds

We explore utility in the sense of filtering loss using the theory developed in Chapter 5.

Specifically, we follow the approach from Section 5.2.2 to quantify experimentally βt and

eventually derived bounds such as Lemma 5.2.

Recall from Chapter 5 that βt is a quantity which is reflective of the relative sensitivity

of the model. Informally, the smaller βt, the higher the utility we can expect. We follow

the methodology outlined in Section 5.2.2 and measure β̂t according to Eq. (5.5) for varying

values of t for both VAE-3 and PCA-5. We plot the results as a graph (Fig. 9.4).

1Note that this attribute is not one of our selected attributes (Table 9.6).
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Figure 9.4: Empirical measurement of βt for varying values of t and both VAE-3 and PCA-5. It
can be seen that if we choose t ≤ 50′000, then βt is (relatively) small.

Table 9.5: SD bound (Lemma 5.2) for varying p1arameters t and k based on empirical measure-
ments of βt. We also show δ(t) and α̂t (Section 5.2.2). In all cases, we set ε0 = 0.001.

k t β̂t δ(t) α̂t
SD bound
(Lemma 5.2)

VAE-3

1000 5000 0.006 0.991 1.015 0.0103
5000 10000 0.049 0.997 1.055 0.0509
10000 15000 0.070 0.997 1.079 0.0713
20000 25000 0.080 0.997 1.091 0.0819
50000 55000 0.174 0.997 1.214 0.1754

PCA-5

1000 5000 0.013 0.991 1.022 0.0171
5000 10000 0.023 0.997 1.027 0.0246
10000 15000 0.034 0.997 1.039 0.0359
20000 25000 0.050 0.997 1.057 0.0522
50000 55000 0.154 0.997 1.186 0.1558

Using β̂t, we can set values of k and ε0 to obtain αt (Section 5.2.2) and thus in turn obtain

bounds on the statistical distance (Lemma 5.2). We set ε0 = 0.001 and choose varying values

of t > k. The results are shown in Table 9.5 where it can be seen that for some choices of

parameters, the bounds are quite low.
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Table 9.6: Selected HCUP-NIS data attributes. All attributes are binary valued.

Attribute Description

FEMALE Female indicator

DIED Patient death indicator

ELECTIVE Elective admission

HOSPBRTH In-hospital birth

ORPROC Major operating room procedure

CAT11 Cancer of head and neck

CAT12 Cancer of esophagus

CAT13 Cancer of stomach

CAT14 Cancer of colon

CAT15 Cancer of rectum and anus

CAT16 Cancer of liver and intrahepatic bile duct

CAT17 Cancer of pancreas

CAT18 Cancer of other GI organs; peritoneum

CAT19 Cancer of bronchus; lung

CAT20 Cancer; other respiratory and intrathoracic

CAT21 Cancer of bone and connective tissue

CAT22 Melanomas of skin

CAT23 Other non-epithelial cancer of skin

CAT24 Cancer of breast

CAT25 Cancer of uterus

CAT26 Cancer of cervix

CAT27 Cancer of ovary

CAT28 Cancer of other female genital organs

CAT29 Cancer of prostate

CAT30 Cancer of testis

CAT31 Cancer of other male genital organs

CAT32 Cancer of bladder

CAT33 Cancer of kidney and renal pelvis

CAT34 Cancer of other urinary organs

CAT35 Cancer of brain and nervous system

CAT36 Cancer of thyroid

CAT37 Hodgkins disease

CAT38 Non-Hodgkins lymphoma

CAT39 Leukemias

CAT40 Multiple myeloma

CAT41 Cancer; other and unspecified primary

CAT42 Secondary malignancies

CAT43 Malignant neoplasm without specification of site

CAT44 Neoplasms of unspecified nature or uncertain behavior

CAT45 Maintenance chemotherapy; radiotherapy

CAT46 Benign neoplasm of uterus

CAT47 Other and unspecified benign neoplasm
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Chapter 10: Application: Images

In this chapter, we show how to synthesize realistic images in a privacy-preserving way.

10.1 DATASET

Figure 10.1: Samples from the CelebA dataset [78].

The CelebFaces Attributes Dataset (CelebA) [78] contains over 200′000 images of celebrity

faces. Fig. 10.1 shows sample images from the dataset. As a pre-processing step, we ensure

that all images are 64 by 64 pixels through a sequence of cropping and scaling operations.

We split the resulting collection of images into two disjoint subsets of roughly equal size, and

use the first part for model training and the second part as input data to the mechanism.

10.2 SETUP

As generative model, we use the VAE/GAN model from Larsen et al. [26] which combines

a VAE with a GAN by collapsing the generator and decoder. As an implementation of the

generative model, we use of the authors’ code (as a black-box) which is available online [79].

We train the model using the training set for 250 epochs using the (default) parameters

suggested by the authors, and use a latent width of w = 32.

To generate synthetics from the model, we use the latent-space noise adding technique

presented in Section 6.3.1. Specifically, we add noise drawn from Gaus(0, βI), and we set β =

0.8. We set the parameters of the privacy test (k, t, and ε0) in order to guarantee (1, 2−40)-

differential privacy for each privacy-preserving synthetic image released. As a baseline, we

also consider a seedless synthesizer based on the same model. For this we simply draw a

latent space point z over its latent space distribution Gaus(0, I) and feed it to the decoder

to obtain its corresponding image.
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10.3 EVALUATION

To evaluate whether we can generate realistic images of faces with differential privacy, we

produce a few synthetics using the mechanism. We also produce a few synthetics using the

seedless baseline. The two sets are shown side-by-side in Figs. 10.2(a) and 10.2(b).

(a) Seedless (b) Privacy-Preserving Seedbased

Figure 10.2: Synthetic faces produced using the VAE/GAN model of Larsen et al. [26].

As an example, we pick out two synthetic faces produced through the seedbased mechanism

(shown in Fig. 10.2(b)). For each, we select a set of four input faces among the plausible seeds

according to their synthesis probability. We then reconstruct each of these faces using the

model and show them alongside their input and the synthetic in Figs. 10.3(a) and 10.3(b). It

can be seen that the synthetics are similar (in terms of their facial features) to the plausible

seeds (as expected). This illustrates a use case of seedbased synthesis: synthetics are similar

to their seeds, but not so similar that this would violate privacy!

(a) Example 1 (b) Example 2

Figure 10.3: Synthesizing faces. Process explained by examples. Leftmost image: (privacy-
preserving) synthetic face y. Rightmost images: (some) plausible seeds, i.e., input images with the
highest probability of synthesizing the synthetic y.

One advantage of the latent-space noise adding technique over other latent-space synthesis

techniques is that it allows us to further manipulate the synthetic over the latent space before

decoding (Section 6.3.1). To illustrate this, we give two examples of additional latent-space

processing in Fig. 10.4. The first (top row of Fig. 10.4) is sampling around the synthetic

z by adding low-magnitude noise, i.e., Gaus(0, 0.25 · I), to obtain different samples of the

same (synthetic) face. For the second (bottom row of Fig. 10.4), we use the attributes

annotation of the CelebA dataset to add the corresponding features to the (synthetic) face

using latent-space vector addition.
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Figure 10.4: Examples of additional latent-space processing on seedbased privacy-preserving faces.
Synthetic face from Fig. 10.3(a). Top row: additional samples through low-magnitude noise adding.
Bottom row: vector-space operations to add attributes; (from left to right) blond hair; black hair;
bangs; heavy makeup; pale skin; rosy cheeks; straight hair; young.
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Chapter 11: Related Work

This chapter briefly surveys the relevant literature.

11.1 DATA ANONYMIZATION

The first systematic attempt at privacy-preserving data publishing came about with k-

anonymity [1, 80, 81]. The idea behind k-anonymity is to prevent an adversary from re-

identifying an individual in anonymized published data (i.e., point to that individual’s re-

cord) by ensuring that identifiers present in the dataset be identical for at least k records

(so that an adversary does not know which among k is the target record). The key concept

is quasi-identifiers, attributes such as age, gender, or ZIP code which do not on their own

uniquely identify an individual but may serve as unique identifiers when used in combina-

tion with other quasi-identifiers. The definition of k-anonymity states that there must be

at least k records in the dataset for each combination of quasi-identifiers values. To address

drawbacks of k-anonymity, l-diversity [82], t-closeness [83], and many other metrics [84–86]

were proposed. For example, l-diversity stipulates that there must be l distinct sensitive

attribute values for each combination of quasi-identifiers values. Moreover, k-anonymity,

l-diversity, and t-closeness are called syntactic metrics because they declare that a dataset

is safe to publish if it satisfies a specific syntactic condition.

Syntactic metrics are popular due to their ease of use. But privacy researchers have

expressed concerns [84,86–90]. A particular concern is that syntactic metrics are not robust

to adversarial background knowledge [91]. Nevertheless, syntactic metrics are often used

for many applications that prioritize utility and practicality. For example, [92–96] aim to

achieve k-anonymity in the context of location privacy. Similarly, k-anonymity has also been

used for privacy-preserving data mining of query logs [97, 98], to anonymize social network

data [99], and for data publishing of medical data [100–103].

11.2 DIFFERENTIAL PRIVACY

Though there has been work on privacy in statistical databases for decades [104], a series

of work [12, 28, 105, 106] in the early 2000s led to the definition of differential privacy [28].

Since then, the case for differential privacy has been strengthen [29,31,107–112] and there is

now a vast surrounding literature [75,113–117]. Though it is has been criticized [118,119], a

major advantage of differential privacy over other privacy notions is that is makes (almost)

no assumption on adversary background knowledge.
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There has been several attempts at relaxing and/or generalizing differential privacy. This

has led to notions such as crowd-blending privacy [120], local privacy [121], adversarial pri-

vacy [122], random differential privacy [123], computational differential privacy [124], and

outlier privacy [125]. In addition, some related work propose full-fledged data privacy fra-

meworks of which differential privacy is an instance under some conditions. This is the case

for example for pufferfish [126], coupled-worlds privacy [127], and membership privacy [30].

Substantial efforts have been made to connect popular privacy notions. For example, Li

et al. [128] show a connection between k-anonymity and differential privacy through the

sub-sampling of the input data records. This technique can be used to reduce the privacy

budget of a mechanism that already satisfies differential privacy [129]. In addition, it allows

mechanisms guaranteeing weaker notions of privacy to satisfy differential privacy [120,127].

Differential privacy is most commonly achieved through a mechanism which adds noise to

the output of a query on a database. In this case, the noise distribution must be calibrated

to the sensitivity of the query [28]. As a result, the concept of sensitivity which measures the

query’s output worst-case change for any two neighboring databases, is a central concept

in the design of mechanisms. But the sensitivity of a query for databases pairs that are

neighbors of the input database, called the local sensitivity, is often much lower than the

global sensitivity. Unfortunately, calibrating the noise to the local sensitivity is insufficient

to achieve differential privacy, as the sensitivity itself may leak information. This observation

was made by Nissim, Raskhodnikova, and Smith [108] and led the authors to propose the

notion of smooth sensitivity.

If noise is properly calibrated to the global sensitivity or the smooth sensitivity of the query,

many distributions of noise are acceptable. For example, instead of using the popular Laplace

distribution, adding Gaussian noise with zero mean and appropriate variance leads to (ε, δ)-

differential privacy [29, 108]. For queries which guarantee integer-valued responses, adding

noise from the symmetric geometric distribution is possible [130]. Another example is the

staircase mechanism which uses a geometric mixture of uniform random variables [131,132].

There is a broad range of techniques that yield differential privacy (not only noise adding).

For example, [129] points out that posterior sampling achieves differential privacy “for free”

if the log-likelihood is bounded. More generally, a variety of different techniques such as

the sparse-vector technique [29, 133, 134] or the exponential mechanism of McSherry and

Talwar [31] can be used to achieve differential privacy. In fact, the exponential mechanism is

often used as a building block in other mechanisms that seek to achieve differential privacy.

There has been work on composition of differential privacy showing that the privacy

budget need not increase linearly with the number of compositions [135]. More recent work

such as Kairouz et al. [35] has further improved the composition results. Unfortunately,
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as pointed out by Murtagh and Vadhan in [136] computing the privacy budget under the

best composition result is difficult in practice. That said, Meiser and Esfandiar [36] recently

proposed an efficient technique to numerically approximate the privacy budget of differential

privacy under composition.

The closest idea in the literature to the idea of privacy tests (Chapter 4) is the Propose-

Test-Release (PTR) framework of Dwork and Lei [137] which guarantee differential privacy

by testing candidate bounds for the sensitivity. If a suitable bound is found, then a noisy

answer with noise calibrated to it is produced. Otherwise, the output is “no answer” (⊥).

For example, PTR can be used to calculate the median of a dataset when the scale of the

data is not known a priori. Though not designated as such, an early example of privacy test

using the noisy threshold technique (Chapter 3) is used by Korolova et al. [138] to produce

web search logs with differential privacy.

11.3 SYNTHETIC DATA

Synthetic data is used in various applications as a substitute for real data when the latter

is hard to obtain. For example, it has been used for software testing [139, 140], testing an

OCR system [141], and performance evaluation in the context of database systems [142]. In

particular, database systems benchmarks sometimes rely on synthetic data [143–145].

As Rubin [11] proposed in 1993, synthetic data can also be used for privacy. The idea

of Rubin is to use multiple imputation to create synthetic datasets. Multiple imputation

is the repeated use of a function that proposes values for missing fields in a record. This

and subsequent work in releasing synthetic data such as [146–149] have attracted significant

interest from practitioners. For example, some of the techniques have been adopted by the

U.S. Census Bureau [150–152].

Despite some negative hardness results such as [153, 154], there is a large body of work

on releasing datasets privately. Blum et al. [155] show that it is possible (in theory) to

create synthetic datasets that are useful for some queries. There are also more practical

techniques achieving differential privacy. Abowd and Vilhuber [156] propose a technique for

count data, Machanavajjhala et al. [157] sample from a dirichlet-multinomial distribution,

Wasserman and Zhou [158] explore different techniques that sample from histogram in a

differentially-private way. These and similar mechanisms have been analyzed in an effort

to understand their utility [159, 160]. Li et al. [116] propose a generative technique based

on Copula functions. Xu et al. [161] use a random projection technique to synthesize data.

Chanyaswad et al. [55] use a similar idea based on principal component analysis. Liu [162]

proposes a technique called model-based data synthesis. All of these are example of private
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model learning: privacy is achieved by learning a model from data privately. A notable

example is PrivBayes [163] which constructs a differentially-private generative model based

on Bayesian networks. Their construction is similar to that of Section 6.2, except seedless.

A notable exception to this private model learning paradigm is the multiplicative weights

algorithm [164] which describes a way to efficiently release synthetic data with differential

privacy, provided one has a set of linear queries. The algorithm starts with a uniform sample

as synthetic dataset and iteratively improves it by scaling up or down the contribution of

each synthetic record according to that record’s influence on the set queries. The exponential

mechanism is used internally for each iteration as a way to select a query among the set, in

a differential private way.

There is also a large collection of work [117, 165–168] which shows how to release histo-

grams and contingency tables in a differentially-private way. Note that techniques producing

contingency tables, histograms or other low-dimension synopses do not necessarily fall under

our definition of data synthesis as they may not be equivalent to producing full data records

or preserving the input data format. For example, an algorithm producing 2D-histograms

does not qualify if the input data records have more than two attributes.

The rise in popularity of neural networks and deep learning has led to the design of techni-

ques such as Variational Auto Encoders (VAE) [14] and Generative Adversarial Networks

(GANs) [15]. These and other techniques have been used to generate synthetic data of

many types such as speech [16, 169], music [17], text and handwriting [20], textures [21],

images, and 3D-shapes [170], as well as for many applications such as face rotation [18],

super resolution [171–173], scene completion [174], generating time series for medical appli-

cations [175], forecasting from a static image [19], creating images from a label [22,176,177],

and translating one image into another [23].

A key feature distinguishing these generative models from graphical models and more tra-

ditional probabilistic models is not only that they are based on a neural-network architec-

ture. Rather, it is that their output is typically obtained through some form of conditioning:

the output is obtained through sampling the model conditional on some input. In parti-

cular, Mirza and Osindero introduced the concept of Conditional Generative Adversarial

Networks [178]. Conditioning can be viewed as a form of seedbased synthesis.

There is a collection of papers describing techniques to train neural networks (e.g., using

gradient descent) with differential privacy [179–182]. These techniques can make neural

networks private, but not the application of such neural networks to synthesize data with

conditioning. In addition, there has been recent attention on making generative neural

networks differentially private [183–185]. These techniques fall within the seedless category.

In contrast, this thesis proposes a framework for seedbased data synthesis.
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Chapter 12: Discussion

This chapter discusses limitations of the framework and avenues for future research.

12.1 LIMITATIONS AND FUTURE RESEARCH

Synthesizing multiple records per invocation . The seedbased mechanism proposed in

this thesis has the special form of selecting a single seed to produce a single synthetic record.

But one could take a broader view on seedbased synthesis. For example, one could design a

mechanism that uses multiple seeds to produce multiples synthetic records (per invocation).

Ultimately, synthesizing m > 1 records at once may yield superior privacy guarantees than

synthesizing a single record (per invocation) and composing the process m times.

Dependent data records . A synthetic dataset is obtained by taking i.i.d. samples from

the seedbased mechanism which ignores statistical relationships between data records. As

a result, some properties of the input data are not preserved. For example, in the case of

facial images, if the input data contains a certain number of identical twins, this will not

(in general) be reflected in the produced synthetic dataset. Preserving such properties is

typically not an important requirement for many applications and data types. But, it may

be a desirable goal when synthesizing complex data types such as graphs.

Distinguishing game . When quantifying distinguishability experimentally, the difficulty

of the distinguishing game depends on the amount of training data given to the classifier.

Thus, the classifier should be trained using as much data as possible to reduce the chance

of underestimating distinguishability. The limitation is that while one can produce as many

synthetics as desired for the purpose of estimating distinguishability, the number of real

records available is finite. Further research could explore the relationship between training

dataset size and accuracy of the resulting distinguishability estimate.

Validating tentative conclusions . A major obstacle to the deployment of privacy-

preserving data analysis techniques, including data synthesis, is providing ways to validate

tentative conclusions. Indeed, whether one uses a statistical database with queries performed

through a differential privacy process, or privacy-preserving seedbased data synthesis; an

analyst will make tentative conclusions on the basis of noisy or distorted data or queries

answers. Future work could explore ways to validate such tentative conclusions, for example

through a privacy-preserving protocol which would check whether the same conclusions hold

of the real (input) dataset.
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Navigating the landscape of generative models. The framework presented in this

thesis assumes we are given a generative model as a black box. How can we instantiate

accurate seedbased generative models or customize a model to a specific application? This

is a question that future research should investigate.

A possible starting point is to leverage the distinguishing game methodology to iteratively

improve a generative model through a feedback loop: given a generative model, one uses

the distinguishing game to experimentally quantify its model loss; then, based on the kind

of synthetic records that are easily distinguished from real records, one refines the model by

tweaking its parameters or hyperparameters. Application-specific utility requirements may

be incorporated in this process if they can be formulated as a set of adversaries capable of

playing the distinguishing game.

Privacy testing . The idea of using a privacy test as a technique to achieve provable privacy

guarantees is worthy of further exploration. And it may be of independent interest for data

privacy outside of the context of data synthesis. We conjecture that privacy tests which act

as probabilistic filters could be used in place of noise-adding in other contexts such as for

statistical queries or aggregation.

12.2 Q&A

This section addresses, in a question-and-answer format, common concerns and criticism

about the framework and the idea of seedbased synthesis.

• Can one really analyze data that is noisy or synthetic? What if this yields a wrong answer?

Real-world datasets are messy. It is a characteristic of big data to have to deal with messy

and incomplete datasets [13]. We are used to dealing with uncertainty when analyzing data.

This is why statistical tools like confidence intervals have been developed. What matters is

that we understand how the synthetic data is generated and how it differs from the original

(real) data.

Given the distortion induced by all of the techniques that provide strong privacy guaran-

tees (including ours) we do not advocate that synthetic datasets be used in a context where

accuracy is critical such as for clinical decision making. Nevertheless, we believe that synt-

hetic data can be an asset for scientific research or data analysis tasks, especially early-stage

data exploration. We envision our technique to be used in scenarios where synthetic data

is easy to obtain so that it can be used by an analyst to make tentative findings which can

later be verified on real data (perhaps in a privacy-preserving way).
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• How do you know that the produced synthetic data will be useful?

We cannot provide utility guarantees that hold regardless of the generative model and of

the input data because there are pairs of generative models and datasets for which no privacy-

preserving technique can also provide utility. This does not mean that we can say nothing

about utility. Indeed, as we show in Chapter 5, the framework allows us to derive utility

bounds in certain situations and make predictions about the utility of privacy-preserving

synthetics produced from a given generative model and input dataset.

For data sharing, in general, even without any privacy constraints, there are no guarantees

that a particular dataset will be useful for a specific analysis task.

• Why not use traditional techniques to achieve differential privacy like the Laplace mecha-

nism or Exponential mechanism?

These mechanisms simply do not apply to synthetic data. For instance, the Laplace

mechanism works for real-valued output, not arbitrary data records. The Exponential me-

chanism can be used to generate synthetic data but the process is intractable when the data

universe is large. Real-world data is often complex, sparse, and high dimension.

There is prior work which proposes techniques to produce synthetic datasets with pri-

vacy guarantees (see Section 11.3). All of them are seedless. This thesis proposes the first

framework for privacy-preserving seedbased data synthesis.

• Why is seedbased data synthesis useful? Why not do seedless instead?

Seedless is a special case of seedbased synthesis. We propose seedbased data synthesis

to bridge a gap between the kinds of techniques for which we know how to achieve privacy

(and differential privacy in particular) and the state-of-the-art applications which produce

synthetic data using generative models based on neural networks through conditioning.

Seedbased synthesis is particularly useful if one wishes to sample records from a population

different than that used to train a model as we illustrate experimentally in Chapter 9.

• With seedbased data synthesis, you can only generate a finite set of synthetic records before

you exhaust the privacy budget. What if that’s not enough?

The number of synthetics required is dependent on the application. For some applications,

only a few synthetic records may be needed. Each synthetic produced through a seedbased

process increases the privacy budget because it bring new information (from its seed). In

contrast, one can sample an arbitrarily large synthetic dataset from a seedless generative

model, but the information is finite and bounded to whatever is captured in the model itself.
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Chapter 13: Conclusions

This thesis proposes a new approach to sharing sensitive datasets through data synthe-

sis. We describe, discuss, and experimentally evaluate a framework for privacy-preserving

seedbased synthesis. In contrast to prior work, the framework has two distinctive novel

features: (1) it produces synthetic records from probabilistic generative models through a

form of conditioning, and (2) it achieves meaningful privacy guarantees such as differential

privacy using privacy tests which are algorithms that probabilistically reject outputs deemed

to leak sensitive information. We validate the framework experimentally use five different

generative models to synthesize records of four different data types: location traces, census

microdata, medical records, and facial images. We show that the framework can produce

highly realistic synthetic output and we believe the experimental results provide compelling

preliminary evidence of the viability of seedbased data synthesis in certain scenarios.

This work is a step towards the design of a practical technique for privacy-preserving data

synthesis. We hope that this work will spur further research in this direction. And that the

idea of privacy tests will be of interest beyond data synthesis.
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Appendix A: Proofs

A.1 PROPERTIES OF THE PRIVACY TEST

The noisy threshold test (Privacy Test 3.2) is well-behaved (Definition 3.2) for the Laplace

distribution and the symmetric geometric distribution. Indeed, let δ denote Privacy Test 3.2

function, and let k > 0 and ε0 > 0 be parameters. Then: δ(x) = Pr{Z ≥ k − x}, where

Z has distribution Lap( 1
ε0

) for the Laplace case, or distribution Geom(α) with α = e−ε0 for

the symmetric geometric case.

In both cases, observe that:

1 ≤ Pr{Z < k − x)}
Pr{Z < k − (x+ 1)}

≤ eε0 and 1 ≤ Pr{Z ≥ k − (x+ 1)}
Pr{Z ≥ k − x}

≤ eε0 (A.1)

In other words: 1 ≤ δ(x+1)
δ(x)

≤ eε0 and 1 ≤ 1−δ(x)
1−δ(x+1)

≤ eε0 which shows that the test is

well-behaved for c0 = 1 and β0 = eε0 .

This observation has previously been used in related work such as Korolova et al. [138].

A.2 SENSITIVITY OF ENTROPY

Lemma A.1 (Sensitivity of H).

Let z be a discrete random variable with a probability distribution estimated from n ≥ 1 data

records. The sensitivity of H(z) is:

∆H ≤
1

n
[2 +

1

ln(2)
+ 2 log2 n] .

Proof. Let z and z′ be the random variables associated with two histograms (of dimension

m) computed from two neighboring datasets D and D′, respectively. Both datasets have n

records but differ in exactly one record.

Let zc = (c1, c2, . . . , cm) and z′c = (c′1, c
′
2, . . . , c

′
m) represent the histograms over the m

values of the attribute for z and z′, respectively. The entropy is computed over the probability

distribution represented by a histogram.

Remark that the histograms of the considered neighboring datasets D and D′ can only

differ in two positions. If they do not differ in any position, then the Lemma trivially holds

(∆H = 0). That is, without loss of generality, there exists j1 and j2 (with j1 6= j2) such that
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c′j1 = cj1 + 1 and c′j2 = cj2 − 1. Also, n − 1 ≥ cj1 ≥ 0 which means that n ≥ c′j1 ≥ 1, and

n ≥ cj2 ≥ 1 which means that n − 1 ≥ c′j2 ≥ 0. Furthermore for i 6= j1, j2, we have c′i = ci,

and also:
m∑
i=1

ci =
m∑
i=1

c′i = n .

Now:

H(z) = −
m∑
i=1

ci
n

log2

ci
n

= − 1

n

[
m∑
i=1

ci log2 ci − n log2 n

]

= log2 n−
1

n

(
cj1 log2 cj1 + cj2 log2 cj2 +

∑
i 6=j1,j2

ci log2 ci

)
.

Similarly,

H(z′) = log2 n−
1

n

∑
i 6=j1,j2

ci log2 ci

− 1

n
[(cj1 + 1) log2 (cj1 + 1) + (cj2 − 1) log2 (cj2 − 1)] .

We have that ∆H = maxcj1 ,cj2 |H(z)− H(z′)|. We analyze this quantity with respect to

the values of cj1 and cj2 to show that the lemma holds in each case.

Observe that:

∆H = |H(z)− H(z′)|

=
1

n
|cj1 log2 cj1 − (cj1 + 1) log2 (cj1 + 1)

+ cj2 log2 cj2 − (cj2 − 1) log2 (cj2 − 1)| .

• Case 1: cj1 = 0. We have

∆H =
1

n
|cj2 log2 cj2 − (cj2 − 1) log2 (cj2 − 1)| .

Clearly, if cj2 = 1 then ∆H = 0 and the Lemma trivially holds. So assume cj2 > 1. We
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have:

∆H =
1

n
|cj2 log2 cj2 − (cj2 − 1) log2 (cj2 − 1)|

=
1

n

∣∣∣∣cj2 log2

(
cj2

cj2 − 1

)
+ log2 (cj2 − 1)

∣∣∣∣
≤ 1

n

∣∣∣∣cj2 log2

(
cj2

cj2 − 1

)∣∣∣∣+
1

n
log2 (cj2 − 1)

≤ 1

n
log2 (n− 1) +

1

n

∣∣∣∣(a+ 1) log2

(
1 +

1

a

)∣∣∣∣ ,
where a = cj2 − 1 ≥ 1. It is easy to see that (a+ 1) log2(1 + 1

a
) ≤ 2. We conclude that:

∆H ≤ 1
n
(2 + log2 n).

• Case 2: cj2 = 1. We have

∆H =
1

n
|cj1 log2 cj1 − (cj1 + 1) log2 (cj1 + 1)| .

Again if cj1 = 0, then the Lemma trivially holds. So assume cj1 > 0. We have:

∆H =
1

n
|cj1 log2 cj1 − (cj1 + 1) log2 (cj1 + 1)|

=
1

n

∣∣∣∣cj1 log2 (
cj1

cj1 + 1
)− log2 (cj1 + 1)

∣∣∣∣
≤ log2 n

n
+

1

n

∣∣∣∣cj1 log2 (
cj1

cj1 + 1
)

∣∣∣∣
=

log2 n

n
+

1

n
cj1 log2 (

cj1 + 1

cj1
)

=
log2 n

n
+

1

n
cj1 log2

(
1 +

1

cj1

)
.

Using L’Hopital’s rule we have cj1 log2

(
1 + 1

cj1

)
≤ 1

ln 2
. We conclude that: ∆H ≤

1
n
( 1

ln 2
+ log2 n).
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• Case 3: cj1 ≥ 1, cj2 ≥ 2. We have:

∆H =
1

n
|cj1 log2 cj1 − (cj1 + 1) log2 (cj1 + 1)

+ cj2 log2 cj2 − (cj2 − 1) log2 (cj2 − 1)|

≤ 1

n
|cj1 log2 cj1 − (cj1 + 1) log2 (cj1 + 1)|

+
1

n
|cj2 log2 cj2 − (cj2 − 1) log2 (cj2 − 1)| ,

where it is seen that the two terms have been bounded for cases 1 and 2. Thus, putting

it all together, we conclude that ∆H ≤ 1
n

(
2 + 1

ln 2
+ 2 log2 n

)
.

A.3 PLAUSIBLE DENIABILITY AND DIFFERENTIAL PRIVACY

In this section, we prove Theorem 4.1.

Theorem 4.1. Let F denote Mechanism 3.1 with Privacy Test 4.2 and parameters k ≥ 1,

r > 1, and ε0 > 0. For any neighboring datasets D and D′ such that |D|, |D′| ≥ k, any set

of outcomes Y ⊆ U , and any integer 1 ≤ t < k, we have:

Pr{F(D′) ∈ Y } ≤ eεPr{F(D) ∈ Y }+ δ ,

for δ = e−ε0(k−t) and ε = ε0 + ln (1 + r
t
).

Let D and D′ denote two neighboring datasets, i.e., either D = D′ ∪ {d} for some d ∈ U ,

or D′ = D ∪ {d′} for some d′ ∈ U . Assume that D and D′ have at least k records, and we

have parameters k ≥ 1, r > 1, ε0 > 0. For convenience we write pd(y) = Pr{y ←M(d)},
(referring to M only implicitly).

Given a dataset D?, we want to reason about the probability that synthetic record y

is released: Pr{y ← F(D?)}. Observe that given synthetic record y ∈ U , the records of

D? can be partitioned (into disjoint sets) by the privacy criterion. Concretely, let Id(y) be

the partition number of a record d ∈ D? with respect to y. The partition number Id(y)

is the unique non-negative integer such that r−(Id(y)+1) < pd(y) ≤ r−Id(y). In other words,

Id(y) = b− logr pd(y)c. If pd(y) = 0 then the partition number is undefined. Similarly, we

define the partition (or partition set) for i ≥ 0 as Ci(D
?, y) = {d : d ∈ D?, Id(y) = i}. That

is, partition i is the set of records with partition number i.
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A key step is to express Pr{y ← F(D?)} in terms of: (1) the probability of generating y

from a specific partition (i.e., the seed is in that partition) and (2) the probability of passing

the test. For (2) remark that the probability of passing the privacy test depends only on the

partition of the seed (see Privacy Test 4.2).

Observation A.1. For any dataset D?, if the seed is in partition i, the probability of passing

the privacy test is given by: δ(D?, i, y) = Pr{Z ≥ k − |Ci(D?, y)|}, where Z ∼ Lap( 1
ε0

).

Observation A.2. For any dataset D?, the probability of producing y from partition i is:

q(D?, i, y) = δ(D?, i, y)
∑

s∈Ci(D?,y)

ps(y) .

The following expresses Pr{y ← F(D?)} in terms of (1) and (2).

Lemma A.2. For any dataset D? and any synthetic record y ∈ U we have:

Pr{y ← F(D?)} =
1

|D?|
∑
i≥0

q(D?, i, y) . (A.2)

In other words, the probability of releasing y (from D?) can be expressed as the sum, over

all partitions, of the probability of generating y from a given partition and then releasing it.

Proof of Lemma A.2. Fixing a y and following the description of Mechanism 3.1, we have:

Pr{y ← F(D?)} =
1

|D?|
∑
s∈D?

ps(y) δ(D?, s, y) ,

Further, observe that terms of the sum for which ps(y) = 0 can be omitted and that we

can partition the set {d : d ∈ D?, pd(y) > 0} with respect to the partition number of its

elements. That is:

{d : d ∈ D?, pd(y) > 0} = ∪i≥0Ci(D
?, y) ,

where for each d ∈ D? such that pd(y) > 0, there exists a unique non-negative integer j such

that d ∈ Cj(D?, y).
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Thus:

Pr{y ← F(D?)}

=
1

|D?|
∑
s∈D?

ps(y) δ(D?, s, y)

=
1

|D?|
∑
i≥0

∑
s∈Ci(D?,y)

ps(y) δ(D?, s, y)

=
1

|D?|
∑
i≥0

Pr{Z ≥ k − |Ci(D?, y)|}
∑

s∈Ci(D?,y)

ps(y)

=
1

|D?|
∑
i≥0

q(D?, i, y) ,

given that the privacy score depends only on the partition of the seed (and not on the seed

itself). (See the description of Privacy Test 4.2 with Z drawn from Lap( 1
ε0

).)

Note that q(D?, i, y) = 0 if and only if Ci(D
?, y) = ∅. Also, observe that if a record is

added to or subtracted from D? then only one partition changes. As a result, we can analyze

case-by-case the change in the probability of releasing y from partition i, when adding or

removing a record to partition i.

The following is a consequence of the fact that the privacy test is well-behaved. See Ap-

pendix A.1 and Eq. (A.1).

Lemma A.3. Given any y ∈ U , any neighboring datasets D and D′ such that D′ = D∪{d′}.
For any partition i we have:

δ(D, i, y) ≤ δ(D′, i, y) ≤ eε0δ(D, i, y) .

Proof of Lemma A.3. There are two cases: i = Id′(y) or i 6= Id′(y). If i = Id′(y) then d′ falls

into partition i and so Ci(D
′, y) = Ci(D, y) ∪ {d′}. We have:

δ(D′, i, y) = Pr{Z ≥ k − |Ci(D′, y)|}

≤ eε0Pr{Z ≥ k − |Ci(D′, y)|+ 1}

= eε0Pr{Z ≥ k − |Ci(D, y)|} = eε0δ(D, i, y) ,

Also, we have that: δ(D′, i, y) > δ(D, i, y).

Otherwise, if i 6= Id′(y) then Ci(D
′, y) = Ci(D, y), and so: δ(D′, i, y) = δ(D, i, y).
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To quantify the change in q(D?, i, y) due to adding a record to partition i we need to

separate two cases: (1) the partition is initially empty (or more generally has initially less

than t records) and (2) the partition is not empty (or more generally has at least t records).

Lemma A.4. For any y ∈ U and any dataset D. Let D′ = D ∪ {d′} for some d′ ∈ U . Let

j be the partition number of d′ (i.e., Id(y) = j). The following holds.

(a) For all i 6= j, we have q(D′, i, y) = q(D, i, y).

(b) If |Cj(D, y)| < t:

q(D, j, y) < q(D′, j, y) ,

and

q(D′, j, y) ≤ e−ε0(k−t)
∑

s∈Cj(D′,y)

ps(y) ≤ t e−ε0(k−t) .

If |Cj(D, y)| ≥ t:

q(D′, j, y)

q(D, j, y)
≤ eε0

[
1 +

r

t

]
.

Corollary A.1 (of Lemma A.4). For any y ∈ U and any dataset D. Let D′ = D ∪ {d′} for

some d′ ∈ U . We have q(D, i, y) ≤ q(D′, i, y), for all i ≥ 0.

Proof of Lemma A.4. Fix y and let j be the partition that d′ falls into.

For part (a), note that for i 6= j: Ci(D, y) = Ci(D
′, y). So q(D, i, y) = q(D′, i, y).

For part (b), we have that:

q(D, j, y) = δ(D, j, y)
∑

s∈Cj(D,y)

ps(y)

< δ(D, j, y)

 ∑
s∈Cj(D,y)

ps(y) + pd′(y)


= δ(D, j, y)

∑
s∈Cj(D′,y)

ps(y)

≤ δ(D′, j, y)
∑

s∈Cj(D′,y)

ps(y) = q(D′, j, y) ,

given that pd′(y) > 0 and δ(D′, j, y) ≥ δ(D, j, y) (Lemma A.3).
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Now, if |Cj(D, y)| < t, then:

q(D′, j, y) = δ(D′, j, y)
∑

s∈Cj(D′,y)

ps(y)

≤ e−ε0(k−t)
∑

s∈Cj(D′,y)

ps(y)

≤ t e−ε0(k−t) ,

given that |Cj(D′, y)| ≤ t and pd(y) ≤ 1 for any d. Here, the first inequality follows from

the fact that δ(D′, j, y) = Pr{Z ≥ k − |Cj(D′, y)|} ≤ Pr{Z ≥ k − t} = 1
2
e−ε0(k−t).

If |Cj(D, y)| ≥ t, we have:

q(D′, j, y) = δ(D′, j, y)
∑

s∈Cj(D′,y)

ps(y)

= δ(D′, j, y) [
∑

s∈Cj(D,y)

ps(y) + pd′(y)]

≤ eε0 δ(D, j, y) [
∑

s∈Cj(D,y)

ps(y) + pd′(y)]

≤ eε0 [1 +
r

t
] δ(D, j, y)

∑
s∈Cj(D,y)

ps(y)

= eε0 [1 +
r

t
] q(D, j, y) ,

given Lemma A.3 and the fact that pd′(y) ≤ r ps(y) for any s ∈ Cj(D, y) and so pd′(y) ≤
r
t

∑
s∈Cj(D,y) ps(y).

The following is the core result underlying Theorem 4.1.

Lemma A.5. Let F denote Mechanism 3.1 with Privacy Test 4.2 and parameters k ≥ 1,

r > 1, and ε0 > 0. Take any dataset D with |D| ≥ k and let D′ = D ∪ {d′} for any d′ ∈ U .

Then for any integer 1 ≤ t < k and synthetic record y ∈ U , we have:

Pr{y ← F(D)} ≤ eεPr{y ← F(D′)} ,

and

Pr{y ← F(D′)} ≤ eεPr{y ← F(D)}+ δ ,
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where δ = δ(D′, d′, y) ≤ e−ε0(k−t) and ε = ε0 + ln (1 + r
t
). Here,

δ(D′, d′, y) = e−ε0(k−t)|D′|−1
∑

s∈Cj(D′,y)

ps(y) ,

with j = Id′(y).

Proof of Lemma A.5. Fix an arbitrary synthetic record y ∈ U and an arbitrary dataset

D with |D| ≥ k. Let D′ = D ∪ {d′} for some arbitrary d′ ∈ U . Applying Lemma A.2

to D we have: Pr{y ← F(D)} = 1
|D|
∑

i≥0 q(D, i, y). Also, from Corollary A.1 we have

q(D, i, y) ≤ q(D′, i, y) for all i. Thus:

Pr{y ← F(D)} =
1

|D|
∑
i≥0

q(D, i, y)

≤ 1

|D|
∑
i≥0

q(D′, i, y) =
|D′|
|D|

Pr{y ← F(D′)}

≤
(

1 +
1

k

)
Pr{y ← F(D′)} .

Observe that since (by assumption) r > 1 and 1 ≤ t ≤ k, we have: 1
k
≤ 1

t
, and so

1 + 1
k
< 1 + r

t
≤ eε0(1 + r

t
) = eε. This shows the first part.

For the second part, apply Lemma A.2 to D′, and let j be the partition number of d′, i.e.,

j = Id′(y). We have:

Pr{y ← F(D′)} =
1

|D′|
∑
i≥0

q(D′, i, y)

=
1

|D′|

[ ∑
i≥0:i 6=j

q(D′, i, y) + q(D′, j, y)

]

=
1

|D′|
∑

i≥0:i 6=j

q(D, i, y) +
q(D′, j, y)

|D′|
.

The last equality follows from Lemma A.4 part (a).

Applying Lemma A.4 part (b), we obtain two cases.
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• Case 1: |Cj(D, y)| < t. We have:

Pr{y ← F(D′)} =
1

|D′|
∑

i≥0:i 6=j

q(D, i, y) +
q(D′, j, y)

|D′|

≤ 1

|D′|
∑

i≥0:i 6=j

q(D, i, y) + δ(D′, j, y)

≤ 1

|D′|
∑
i≥0

q(D, i, y) + δ(D′, j, y)

=
|D|
|D′|

Pr{y ← F(D)}+ δ(D′, j, y)

≤ Pr{y ← F(D)}+ δ ,

where δ(D′, j, y) = 1
|D′|e

−ε0(k−t)∑
s∈Cj(D′,y) ps(y).

• Case 2: |Cj(D, y)| ≥ t. We have:

Pr{y ← F(D′)} =
1

|D′|

[ ∑
i≥0:i 6=j

q(D, i, y) + q(D′, j, y)

]

≤ 1

|D′|

[ ∑
i≥0:i 6=j

q(D, i, y) + eε0 [1 +
r

t
]q(D, j, y)

]

≤ eε0 [1 +
r

t
]

1

|D′|
∑
i≥0

q(D, i, y)

= eε0 [1 +
r

t
]
|D|
|D′|

Pr{y ← F(D)}

≤ eεPr{y ← F(D)} ,

for ε = ε0 + ln (1 + r
t
) given that |D||D′| < 1.

Letting δ(D′, d′, y) = δ(D′, Id′(y), y) finishes the proof.

With this, we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Fix dataset D with |D| ≥ k and any record d′ ∈ U . Let D′ = D∪{d′}.
The range of F is U and so any outcome Y is a non-empty subset of U . Fix an arbitrary

Y ⊆ U with Y 6= ∅.
We will show that Pr{F (D1) ∈ Y } ≤ eεPr{F (D2) ∈ Y } + δ, whether D1 = D and

D2 = D′, or D1 = D′ and D2 = D.
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Consider first the case D1 = D and D2 = D′. Applying Lemma A.5, we obtain:

Pr{F(D) ∈ Y } =
∑
y∈Y

Pr{y ← F(D)}

≤
∑
y∈Y

eεPr{y ← F(D′)}

= eεPr{F(D′) ∈ Y } .

Now, consider the case D1 = D′ and D2 = D. Define c(d′, y) = |CId′ (y)(D, y)|. Given

d′, we can partition Y between those y ∈ Y such that the partition in which d′ falls has

at least t and those such that the partition has less than t. That is, Y = Yt− ∪ Yt+, with

Yt− = {y : y ∈ Y, c(d′, y) < t} and Yt+ = {y : y ∈ Y, c(d′, y) ≥ t}. We have:

Pr{F(D′) ∈ Y } =
∑
y∈Y

Pr{y ← F(D′)}

≤
∑
y∈Yt+

eεPr{y ← F(D)}

+
∑
y∈Yt−

[eεPr{y ← F(D)}+ δ(D′, Id′(y), y)]

= eε
∑
y∈Y

Pr{y ← F(D)}+
∑
y∈Yt−

δ(D′, d′, y)

= eεPr{y ← F(D)}+
∑
y∈Yt−

δ(D′, d′, y) ,

where the inequality applies cases of Lemmas A.4 and A.5 separately to each y depending

on whether y ∈ Yt− (case 1 in the proof of Lemma A.5) and y ∈ Yt+ (case 2 in the proof

of Lemma A.5).

It remains to show that
∑

y∈Yt− δ(D
′, d′, y) ≤ e−ε0(k−t). For this define C(D′, d′, y) =

CId′ (y)(D
′, y). We have:

∑
y∈Yt−

δ(D′, d′, y) =
∑
y∈Yt−

e−ε0(k−t)

|D′|
∑

s∈C(D′,d′,y)

ps(y)

=
e−ε0(k−t)

|D′|
∑
s∈D′

∑
y∈Yt−

1Id′ (y)=Is(y) ps(y)

≤ e−ε0(k−t) ,

given that
∑

y∈Yt− 1Id′ (y)=Is(y) ps(y) ≤
∑

y∈U ps(y) ≤ 1 for all s ∈ D′.
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A.4 IMPROVED TEST DIFFERENTIAL PRIVACY

In this section, we prove Theorem 4.2.

Lemma 4.1. For any dataset D with |D| ≥ 1 and D′ = D ∪ {d′} for some d′ ∈ U , and any

y ∈ U :

κ(D, d, y) ≤ κ(D′, d, y) ≤ κ(D, d, y) + 1 , (4.5)

for any d ∈ D.

Proof of Lemma 4.1. Fix arbitrary D and D′ as in the Lemma.

By definition: κ(D, d, y) ≤ κ(D′, d, y).

Assume towards a contradiction that there exists d ∈ D such that κ(D′, d, y) > κ(D, d, y)+

1. By the definition of κ this can only be true if there exists d̂ such that κ(D′, d, y) =

ms(D′, d̂, y) with Pr{y ←M(d̂)} ≥ Pr{y ←M(d)}. There are two cases:

• If d̂ = d′ then there must exist some d̃ ∈ D with the largest probability that is less

than Pr{y ←M(d′)}. We have:

ms(D′, d′, y) =

∑
s∈Sd′\{d′}

Pr{y ←M(s)}
Pr{y ←M(d′)}

≤ ms(D, d̃, y) + 1 ,

where d̃ is such that Pr{y ←M(d̃)} ≥ Pr{y ←M(d)}.

• If d̂ ∈ D then: either ms(D′, d̂, y) = ms(D, d̂, y) ≤ κ(D, d, y) if Pr{y ←M(d′)} >
Pr{y ←M(d̂)} which leads to an immediate contradiction, or Pr{y ←M(d′)} ≤
Pr{y ←M(d̂)} so that:

ms(D′, d̂, y) = ms(D, d̂, y) +
Pr{y ←M(d′)}
Pr{y ←M(d̂)}

≤ ms(D, d̂, y) + 1 .

Both cases lead to a contradiction.

For clarity, we restate Theorem 4.2 here.

Theorem 4.2. For any two neighboring datasets D1, D2 of at least n ≥ 1 records, any

y ∈ U , if F denotes Mechanism 3.1 with Definition 4.2 as privacy score function, and any

well-behaved privacy test function δ (Definition 3.2) for c0 = 1, β0 ≥ 1, then for any integer

1 ≤ t ≤ n:

Pr{y ← F(D1)} ≤ eεPr{y ← F(D2)}+ δ(t) ,

with ε = ln β0(1 + 1
t
).
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Proof of Theorem 4.2. Fix an arbitrary privacy test function δ that is well-behaved for c0 =

1, β0 ≥ 1, synthetic y ∈ U and dataset D′ with |D′| ≥ 1. Also, fix an arbitrary d? ∈ U and

let D = D′ ∪ {d?}.
We use the shorthand: pd(y) = Pr{y ←M(d)}. We have:

|D′|Pr{y ← F(D′)} =
∑
d∈D′

pd(y) δ(D′, d, y)

≤
∑
d∈D′

pd(y) δ(D, d, y)

≤
∑
d∈D

pd(y) δ(D, d, y) .

The first inequality holds because the test is non-decreasing, i.e., for all d ∈ D′: δ(D′, d, y) ≤
δ(D, d, y) since κ(D′, d, y) ≤ κ(D, d, y) (Lemma 4.1). Therefore:

Pr{y ← F(D′)} ≤ |D|
|D′|

Pr{y ← F(D)} .

Now consider Pr{y ← F(D)}. To partition the sum depending on whether κ exceeds t,

define: Dt− = {d ∈ D : κ(D, d, y) < t} and Dt+ = {d ∈ D : κ(D, d, y) ≥ t}. We have:

|D|Pr{y ← F(D)} =
∑
d∈D

pd(y) δ(D, d, y)

≤ δ(t)
∑
d∈Dt−

pd(y) +
∑
d∈Dt+

pd(y) δ(D, d, y)

≤ δ(t)|D|+
∑
d∈Dt+

pd(y) δ(D, d, y)

For d ∈ D′ ∩ Dt+ we can apply Lemma 4.1 and the bounded increment property of the

privacy test so that:

δ(D, d, y) ≤ β0 · δ(D′, d, y) (A.3)

There are two cases depending on the value of κ(D, d?, y):
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• Case (i): d? ∈ Dt− . In this case:

|D|Pr{y ← F(D)} ≤ δ(t)|D|+ β0

∑
d∈Dt+

pd(y) δ(D′, d, y)

≤ δ(t)|D|+ β0

∑
d∈D′

pd(y) δ(D′, d, y)

= δ(t)|D|+ β0|D′|Pr{y ← F(D′)}

• Case (ii): d? ∈ Dt+ . Move the d? term out of the sum before using Eq. (A.3). Let

D′t+ = D′ ∩Dt+ .∑
d∈Dt+

pd(y) δ(D, d, y) ≤ β0

∑
d∈D′

t+

pd(y) δ(D′, d, y) + pd?(y) δ(D, d?, y)

Let D? = {d ∈ D′ : κ(D, d, y) ≥ κ(D, d?, y)}. Because κ(D, d?, y) ≥ t then it must be

the case that:

pd?(y) ≤ 1

t

∑
d∈D?

pd(y) ,

so that because the test is non-decreasing:

pd?(y) δ(D, d?, y) ≤ t−1
∑
d∈D?

pd(y) δ(D, d, y) .

Since D? ⊆ D′ and δ(D, d, y) ≤ β0 δ(D
′, d, y) by bounded increments:

|D| [Pr{y ← F(D)} − δ(t)] ≤ β0

∑
d∈D′t

pd(y) δ(D′, d, y) + pd?(y) δ(D, d?, y)

≤ β0 (1 + t−1)
∑
d∈D′

pd(y) δ(D′, d, y)

= β0 (1 + t−1) |D′| Pr{y ← F(D′)} .

Given that |D′| = |D| − 1, we conclude that for both D1 = D, D2 = D′ and D2 = D,

D1 = D′:

Pr{y ← F(D1)} ≤ eεPr{y ← F(D2)}+ δ ,

with ε = ln [β0(1 + t−1)] and δ = δ(t).
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