
Distributed and Secure ML with Self-tallying
Multi-party Aggregation

Yunhui Long ∗
UIUC

Urbana, Illinois
ylong4@illinois.edu

Tanmay Gangwani ∗
UIUC

Urbana, Illinois
gangwan2@illinois.edu

Muhammad Haris Mughees
UIUC

Urbana, Illinois
mughees2@illinois.edu

Carl A. Gunter
UIUC

Urbana, Illinois
cgunter@illinois.edu

Abstract

Privacy preserving multi-party computation has many applications in areas such
as medicine and online advertisements. In this work, we propose a framework for
distributed, secure machine learning among untrusted individuals. The framework
consists of two parts: a two-step training protocol based on homomorphic addition
and a zero knowledge proof for data validity. By combining these two techniques,
our framework provides privacy of per-user data, prevents against a malicious user
contributing corrupted data to the shared pool, enables each user to self-compute
the results of the algorithm without relying on external trusted third parties, and
requires no private channels between groups of users. We show how different ML
algorithms such as Latent Dirichlet Allocation, Naïve Bayes, Decision Trees etc.
fit our framework for distributed, secure computing.

1 Introduction

Machine learning models are being increasingly deployed to harness useful information from raw
data. Availability of large amounts of training data prevents over-fitting in the models and improves its
generalization. However, there is an important tension between the need for large training datasets and
the privacy concerns of owners of those datasets. This is best exemplified when considering ML for
health and medicine. For instance, assume multiple hospitals, each with access to high-quality (albeit
limited in quantity) data about patient medical records. Jointly training a Latent Dirichlet Allocation
(LDA) topic model on the union of data would provide insightful information for all the hospitals [18].
However, there is a huge privacy concern for sharing this data as it may contain sensitive information.
In this work, we propose a framework for distributed training of ML algorithms among untrusted
parties. The framework is secure since the parties can collaboratively train models without revealing
their data. Checks for data validity provide robustness against a malicious party contributing illegal
data. Furthermore, model aggregation is performed without relying on any external trusted agents.

Related Work. The problem of distributed and secure machine learning falls under the broad regime
of secure multi-party computation (SMPC) [8]. Gentry proposed Fully Homomorphic Encryption
(FHE) [11] as a means to achieve SMPC. Current FHE schemes are inefficient and only work with
small circuits [7]. Homomorphism under addition, however, has been extensively studied, and many
robust implementations exist [5, 13]. Hao et al. [13] apply additive homomorphism to create an
∗These two authors contributed equally to the work.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

ar
X

iv
:1

81
1.

10
29

6v
1

 [
cs

.C
R

]
 2

6
N

ov
 2

01
8

anonymous voting application. Their construction enables self-tallying of votes, precluding the need
for trusted third parties for counting. Corrigan et al. [6] propose a more scalable secure aggregation
protocol and apply it to linear regression.

Contributions. Our protocol broadens the scope of the ideas presented in [6, 13]. Our contribution is
three-fold. First, we examine various ML algorithms under the lens of SMPC through homomorphic
addition; second, we incorporate input validity checks to dissuade users with malicious data; and
third, we propose efficient constructions using basic cryptographic tools like zero-knowledge proofs
and ElGamal encryption. We also implement the protocol and present some empirical analysis.

2 Distributed and Secure ML

In the following subsections, we first outline our protocol for secure aggregation of arbitrary integer
data vectors from different users. Following that, we detail the reduction of various ML algorithms
to generalized vector addition, thereby making them compatible with our framework and enabling
secure, distributed training on aggregated data.

2.1 Threat Model and Notations

Suppose there are n users. Each user Ui owns an integer data vector Ti of size m. We then desire the
output of the vector addition T =

∑n
i=1 Ti with the following properties:

• Privacy: The contents of Ti should be kept a secret from users other than i. In our protocol,
this secrecy is maintained unless all of the other users have been compromised.

• Input validity: A malicious user should not be able to corrupt T by providing unexpected
values. Depending on the ML algorithm, this could mean preventing a large integer input
which can disturb cumulative statistics, or a negative input for an always-positive variable.
• Self-tallying: Any user should be able to compute T without relying on external talliers.
• No private channels: We assume only the availability of a publicly verifiable ledger (e.g.

blockchain) and no user-to-user private channels. This offers dispute-freeness.

The zero-knowledge proof-of-knowledge (ZKPoK) used in our protocol are expressed in Camenisch-
Stadler notation [4]: ZKPoKx(w) : L(w, x). Here, x is the public statement, w is the secret witness
and L represents the conditions that the statement and witness must satisfy.

2.2 Two-round Protocol for Homomorphic Vector Addition

Let C be a finite cyclic group of prime order q in which the discrete log problem is hard, and g be a
generator in C. There are n users, each with a secret key ski, and they agree on (C, g). User Ui’s
contribution to the aggregate (T) is a m-dimensional vector (Ti).

First Round: Each user Ui selects m random values (xi1, xi2, . . . , xim) ∈R Zq, publishes to the
public ledger the values (gxi1 , gxi2 , . . . , gxim) and a ZKPoK of discrete log (ZKPoKA(a) : g

a = A)
for each xij (1 ≤ j ≤ m). At the end of this round, each Ui checks the validity of the ZKPoKs on
the ledger, and computes:

hij = gyij =

∏i−1
k=1 g

xkj∏n
k=i+1 g

xkj
, ∀1 ≤ j ≤ m.

Second Round: Each user Ui computes the ElGamal encryption of Tij for 1 ≤ j ≤ m as

E[Tij] = (gxij , gTijh
xij

ij).

Ui then publishes the encrypted vector (E[Ti1],E[Ti2], . . . ,E[Tim]). Our construction of the public
keys (hij) is similar to that in the first round of anonymous voting in [13]. Hence, it follows that by
multiplying the correct ciphertext values, any user can compute g

∑
i Tij for 1 ≤ j ≤ m. Although

computing
∑

i Tij requires taking a discrete log, the range of
∑

i Tij is generally not large, and a
baby-step/giant-step approach [16] is practical. At the end of the second round, each user can produce
the vector summation T by self-tallying the values for each index (j) of the vector.

2

To discourage malicious users from submitting encryptions of corrupted (or disallowed) Ti in the
second round, we augment the protocol with input validity checks. Specifically, along with the
encrypted Ti, each user is required to submit another proof to the ledger which can be validated by
others for compliance of the input data. We consider two such compliance conditions - L2-norm
and L1-norm of Ti. In many algorithms, such as collaborative filtering (Appendix 5.3.4), imposing a
bound on L2-norm, i.e. ‖Ti‖2, serves as a reasonable precondition. In notation, we want the ZKPoK:

ZKPoK(~x,~y,B)(~a,~r) : (xi, yi) = (gri , hri · gai) ∧ ‖~a‖2 ≤ B (1)

Bounding the L2-norm does not guarantee that all (or any) of the entries in the vector Ti are
non-negative. Non-negative inputs are required in some algorithms like LDA and decision trees
(Appendix 5.3.1). Moreover, it is more useful to bound the L1-norm, i.e. ‖Ti‖1, than the L2-norm:

ZKPoK(~x,~y,B)(~a,~r) : (xi, yi) = (gri , hri · gai) ∧ ‖~a‖1 ≤ B ∧ ai ≥ 0 (2)

The ZKPoKs in Equations (1) and (2) are constructed from other simpler ZKPoKs mentioned in
Appendix 5.1. We deem this construction to be an important contribution of this work. It is detailed
in Appendix 5.2, along with the complete steps run by the prover and the verifier to generate and
validate the proofs. We also mention future work on optimizing these proofs.

2.3 Reduction of Algorithms to Vector Addition

We now discuss several algorithms which fit into our framework for distributed and secure computa-
tion. In each case, it can be shown that the algorithm decomposes into a simple addition of integer
vectors (or matrices) created from disjoint data pieces. This enables the various untrusting parties to
safely engage in joint training of ML models using the protocol from previous subsection. Table 1
summarizes the algorithms, along with a validity check (L1, L2-norm) for it, and the significance of
the check. Note that the L1-norm bound check (Eq. 2) also includes the non-negativity constraint.
We explain one algorithm (LDA) in detail here; reduction of other algorithms is in Appendix 5.3.

Application Validity Significance of Check

Latent Dirichlet Allocation L1-norm Limit number of times a word is assigned to
a topic by each user; disallow negative values

Decision Trees L1-norm Limit number of training samples per user;
disallow negative values

Naïve Bayes L1-norm Limit number of training samples per user;
disallow negative values

Cumulative Voting L1-norm Limit total number of votes by each voter;
disallow negative values

Linear Regression L2-norm Limit contribution to β, prevent over-fitting
Collaborative Filtering L2-norm Limit contribution to the preference matrix

Table 1: Summary of Algorithms

Latent Dirichlet Allocation. LDA is a generative probabilistic modelling technique for collections
of discrete data such a text documents [2]. For each document j, there is a multinomial distribution
θj over K hidden topics. Also, the kth topic is represented by a multinomial distribution φk over
the word vocabulary. xij , which is the ith word in document j, is associated with a latent topic
assignment zij . Given all words in all documents x = {xij}, the inference task in LDA is to compute
the posterior over z = {zij}, θj and φk.

We summarize the approximate distribued LDA algorithm proposed by Newman et al. [17] which uses
collapsed Gibbs sampling to sample the posterior zij at each state of the Markov chain. The algorithm
initially divides the document corpus among different processors. We consider different processors as
different users. Each user does local Gibbs sampling for a few iterations before synchronizing with
other users. We encourage interested readers to look at Algorithm 1. in [17]. The synchronization
involves a matrix reduction operation and is the only medium through which the privacy of a user’s
data could be violated: Nwk ←

∑
u∈users N

(u)
wk .

3

Computing Nwk: After local Gibbs sampling for few iterations, each user computes N (u)
wk , which

is a matrix containing counts of the number of times a particular word is assigned to a particular
topic. The encrypted matrix from each user can be homomorphically added and the result Nwk can
be obtained by each user independently by self-tallying. To prevent a malicious user from including
large or negative values in N (u)

wk , the parties can decide on a bound for the L1-norm of the input, and
require that each user provide the corresponding range proofs.

3 Implementation

In this section, we evaluate the homomorphic vector addition protocol through the application of
cumulative voting, and summarize some observations. In cumulative voting, each voter is given B−1
number of votes, and can arbitrarily distribute these votes among the candidates. A voter’s input
is considered legal as long as the total number of votes given by her is less than B. The voters are
allowed to vote for more than one candidate and to put more than one vote on preferred candidates.
Suppose there are n voters and m candidates. Let the vector Ti = (Ti1, Ti2, . . . , Tim) (1 ≤ i ≤ n)
be the votes of voter i, where Tij is the number of votes given by voter i to candidate j. The result of
cumulative voting can be tallied by adding the vote vectors from all voters:

Tresult = (

n∑
i=1

Ti1,

n∑
i=1

Ti2, . . . ,

n∑
i=1

Tim).

To guarantee the fairness of cumulatve voting, it is necessary for each user to provide a ZKPoK for
L1-norm bound on each voting vector Ti. This limits the total number of votes by each voter and
disallows negative votes (Table 1).

Our implementation2 consists of the following layers: an ElGamal Encryption library implemented
over elliptic curves, ZKPoK libraries, an interfacing client, which we call Zorro client, and a cumu-
lative voting application (Figure 1). To simulate the environment of the blockchain, we implement a

Figure 1: Structure of Implementation

public ledger class that stores the en-
crypted data and ZKPoKs. In practice,
the public ledger can be replaced by
a smart contract and deployed on the
Ethereum block chain. Further details
on the components of the implemen-
tation are in Appendix 5.4. Therein,
we also include an analysis on the ma-
chine time taken to generate and ver-
ify the ZKPoKs. The computational
cost for ZKPoKs depends on the vec-
tor length (total candidates) and the
bound (maximum votes allowed per
voter), with the former being the more
dominant factor. We provide some
discussion on the time-complexity of
baby-step/giant-approach [16], show-
ing that it speeds up the discrete-log step. We also measure the effects of using integer precision rather
than floating point precision for a simple linear regression problem, concluding that the accuracy-loss
can be controlled. A more extensive study is interesting future work.

4 Conclusion
In this paper, we outline a protocol for secure, distributed computing with multiple mutually dis-
trusting parties. It includes input validity checks (bound on L1-norm and L2-norm) to guard against
malicious users. It uses efficient constructions to prove information in zero-knowledge, uses a public-
ledger to offer dispute-freeness, and is self-tallying, thus obviating presence of trusted third parties.
We show how popular ML algorithms such as LDA, Naïve Bayes, Decision Trees etc. can be used
with our framework. Furthermore, we implement our protocol on top of cryptographic constructs and
open-source our Zorro client for multi-party cumulative voting.

2https://github.com/tgangwani/Zorro_SMPC

4

References
[1] libsnark. https://github.com/scipr-lab/libsnark.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of machine Learning research,
3(Jan):993–1022, 2003.

[3] J. Camenisch, R. Chaabouni, et al. Efficient protocols for set membership and range proofs. In International
Conference on the Theory and Application of Cryptology and Information Security, pages 234–252.
Springer, 2008.

[4] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In Annual International
Cryptology Conference, pages 410–424. Springer, 1997.

[5] J. Canny. Collaborative filtering with privacy. In Security and Privacy, 2002. Proceedings. 2002 IEEE
Symposium on, pages 45–57. IEEE, 2002.

[6] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation of aggregate statistics.
In NSDI, pages 259–282, 2017.

[7] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. In Advances in Cryptology–CRYPTO 2012, pages 643–662. Springer, 2012.

[8] W. Du and M. J. Atallah. Secure multi-party computation problems and their applications: a review and
open problems. In Proceedings of the 2001 workshop on New security paradigms, pages 13–22. ACM,
2001.

[9] W. Fang, C. Zhou, and B. Yang. Privacy preserving linear regression modeling of distributed databases.
Optimization Letters, 7(4):807–818, 2013.

[10] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems.
In Conference on the Theory and Application of Cryptographic Techniques, pages 186–194. Springer,
1986.

[11] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

[12] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering
algorithm. Information Retrieval, 4(2):133–151, 2001.

[13] F. Hao, P. Y. Ryan, and P. Zielinski. Anonymous voting by two-round public discussion. IET Information
Security, 4(2):62–67, 2010.

[14] C. Hazay and Y. Lindell. Efficient secure two-party protocols: Techniques and constructions. Springer
Science & Business Media, 2010.

[15] J. Kun. Elliptic curves finite fields. https://github.com/j2kun/
elliptic-curves-finite-fields, 2014.

[16] A. Lenstra and H. Lenstra Jr. Algorithms in number theory, handbook of theoretical computer science, vol.
a, 673–715, 1990.

[17] D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed algorithms for topic models. Journal of
Machine Learning Research, 10(Aug):1801–1828, 2009.

[18] M. J. Paul, B. C. Wallace, and M. Dredze. What affects patient (dis) satisfaction? analyzing online doctor
ratings with a joint topic-sentiment model. In AAAI Workshop on Expanding the Boundaries of Health
Informatics Using AI, 2013.

[19] K. Peng and F. Bao. Batch range proof for practical small ranges. In International Conference on
Cryptology in Africa, pages 114–130. Springer, 2010.

[20] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[21] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering. In
Proceedings of the 24th international conference on Machine learning, pages 791–798. ACM, 2007.

[22] P. Tüfekci. Prediction of full load electrical power output of a base load operated combined cycle power
plant using machine learning methods. International Journal of Electrical Power & Energy Systems,
60:126–140, 2014.

5

https://github.com/scipr-lab/libsnark
https://github.com/j2kun/elliptic-curves-finite-fields
https://github.com/j2kun/elliptic-curves-finite-fields

5 Appendix

5.1 Zero Knowledge Proof-of-knowledge

We express the various zero-knowledge proof-of-knowledge (ZKPoK) used in our protocol in Camenisch-Stadler
notation:

ZKPoKx(w) : L(w, x),

where x is the public statement, w is the secret witness and L represents the conditions that the statement and
witness must satisfy. We use the following ZKPoKs:

ZKPoKA(a) : g
a = A (3)

ZKPoK(g,h,u,v)(w) : g
w = u ∧ hw = v (4)

ZKPoK(x,y)(r) : (x, y) = (gr, hr) ∨ (x, y) = (gr, hr · g) (5)

ZKPoK(xa,ya,xb,yb)(a, b, ra, rb) : (xa, ya) = (gra , hra · ga) ∧ (xb, yb) = (grb , hrb · gb) ∧ b = a2 (6)

In words, (1) is the ZKPoK of discrete log; (2) proves that (g, h, u, v) forms a Diffie-Hellman 4-tuple [14];
(3) is ZKPoK for ElGamal encryption of m ∈ {0, 1}; (4) proves the square relationship between pre-images
of two ElGamal encryptions. In our implementation, we make them non-interactive by using Fiat-Shamir’s
heuristics [10].

Proof of Discrete Log, Eq. 3

Prover(a,A = ga) Verifier(A)

k←$Zq

K := gk K c←$Zq

s := k + ca c

s gs
?
= KAc

Proof of Diffie-Hellman Tuple, Eq. 4

Prover(G, q, g, h, u, v) Verifier(G, q, g, h, u, v)

w | u = gw, v = hw

r←$Zq | a = gr, b = hr a, b e←$ {0, 1}t | 2t < q

z = r + ew(mod q) e

e gz
?
= aue, hz ?

= bve

Proof of encryption of xj ∈ {0,1}, Eq. 5

6

Prover Verifier

w, r1, d1 ∈R Zq| w, r2, d2 ∈R Zq

x← gxj x← gxj

a1 ← gr1xd1 a1 ← gw

b1 ← hr1yd1 b1 ← hw

a2 ← gw a2 ← gr2xd2

b2 ← hw b2 ← hr2(y/g)d2 x, y, a1, b1, a2, b2 c←$Zq

d2 ← c− d1 d1 ← c− d2 c c
?
= d1 + d2

r2 ← w − xjd2 r1 ← w − xjd1 d1, d2, r1, r2 a1
?
= gr1xd1

b1
?
= hr1yd1

a2
?
= gr2xd2

b1
?
= hr1yd1

Proof of square relation, Eq. 6

Prover(sa, sb ∈R Zq) Verifier

A← (gsa , γahsa) mod p

B ← (gsb , γbhsb) mod p

x, ra, rb ←$Zq

Ca ← (gra , γxhra)Cb ← Ax(grb , hrb) Ca, Cb c←$Zq

v ← ca+ x(mod q) c

za ← csa + ra(mod q)

zb = c(sbasa) + rb(mod q) v, za, zb (gza , γvhza)
?
= AcCa

Av(g, h)zb
?
= BcCb

7

5.2 Range Proofs

5.2.1 Range-proof for L2-norm

In notation, we want the ZKPoK:

ZKPoK(~x,~y,B)(~a, ~r) : (xi, yi) = (gri , hri · gai) ∧ ‖~a‖2 ≤ B

We now show how we compose this ZKPoK using the basic ZKPoKs (Eq. 3- 6).

Step 1: Each user Ui generates an ElGamal public key (hi) from its private key ski, and encrypt each Tij as:

E∗[Tij] = (gxij , gTijh
xij

i). (7)

Then, Ui proves that E[Tij] and E∗[Tij] encrypt the same plaintext. For this, it’s sufficient to prove that
(g,

hij

hi
, gxij ,

E[Tij]

E∗[Tij]
) is a Diffie-Hellman 4-tuple using ZKPoK (Eq. 4). This is because of the following

equation:
E[Tij]

E∗[Tij]
= (1, (

hij

hi
)xij).

Step 2: Each user Ui calculates the square vector (wi), encrypts it using the ephemeral key detailed below in
Eq. 11, and publishes the encryption on the public ledger. It also provides a proof of the square relation (ZKPoK
(Eq. 6))

wi = (wi1, wi2 , . . . , wim) = (T 2
i1, T

2
i2, . . . , T

2
im).

Let B be the bound on ‖Ti‖2. Ui needs to prove the following:

s =

m∑
j=1

wij < B2.

We provide a range-proof for s by decomposing s into binary representations [5]. Let L = 2 log2B. Then, s
can be represented by an L-digit binary value, and expressed as a weighted sum of each digit:

s =

L−1∑
l=0

2lsil.

To prove that ‖Ti‖22 < B2, we need two sub-proofs. Firstly, we need to show that sil ∈ {0, 1} for all
0 ≤ l ≤ L− 1. This can be easily done by ZKPoK (Eq. 5). The second challenge is to prove that each sil is
indeed a digit in the binary representation of

∑m
j=1 wij . That is, the user should show the following, without

revealing the values of wij and sij :
m∑

j=1

wij =

L−1∑
l=0

2lsil. (8)

The protocol to validate Eq. 8 is as follows:
First, each user Ui selects L random values x′i1, x

′
i2, . . . , x

′
iL ∈R Zq , and encrypts each sil 0 ≤ l ≤ L− 1 as:

E[sil] = (g
x′i(l+1) , gsilh

x′i(l+1)

i). (9)

Then, each user Ui selects m random values x∗i1, x
∗
i2, . . . , x

∗
im ∈R Zq . For all 1 ≤ j ≤ m, Ui calculates:

rij = (

j−1∑
k=1

x∗ik −
m∑

k=j+1

x∗ik)x
∗
ij . (10)

Assuming m > L, Ui encrypts each wij (1 ≤ j ≤ m) as:

E[wij] =

{
(grij+x′ij2

(j−1)

, gwijh
rij+x′ij2

(j−1)

i) if j ≤ L
(grij , gwijh

rij
i) if j > L

. (11)

To verify Eq. 8, a verifier needs to check that:

m∏
j=1

E[wij] =

L−1∏
l=0

E[sil]
2l .

8

Or equivalently, 

L∏
j=1

grij+x′ij2
(j−1)

m∏
j=L+1

grij =

L−1∏
l=0

g
x′i(l+1)2

l

L∏
j=1

gwijh
rij+x′ij2

(j−1)

i

m∏
j=L+1

gwijh
rij
i =

L−1∏
l=0

gsil2
l

h
x′i(l+1)2

l

i

. (12)

Since
∑m

j=1 rij = 0, the noise terms rij cancels out. Eq. 12 should hold if and only if
∑m

j=1 wij =
∑L−1

l=0 2lsil,
thereby completing the proof for Eq. 8. An alternative to using encryptions where the noise terms rij nullify
each other is to use a Diffie-Hellman proof (ZKPoK (Eq. 4)) for Eq. 8. It achieves the same goal, albeit at the
cost of an extra ZKPoK. Below we summarize the complete steps run by the prover and the verifier to generate
and validate the range proof for L2-norm, respectively.

As mentioned previously, Ui provides a proof that wij = T 2
ij , for all 1 ≤ j ≤ m (ZKPoK (Eq. 6)). We use

the construction by Canny [5] for this ZKPoK. Canny’s proof requires that wij and Tij to be encrypted under
exponential ElGamal encryption with the same public key. Therefore, in the proof, we use E[wij] and E∗[Tij],
which are both encrypted under the same key hi.

Algorithm 1 Proof generation by user i

Require: (Ti1, Ti2, . . . , Tim), (E[Ti1],E[Ti2], . . . ,E[Tim]),
(hi1, hi2, . . . , him), (xi1, xi2, . . . , xim),
ElGamal parameters (g, hi), L = 2 log2B

1: Encrypt each Tij as E∗[Tij] (Eq. 7)
2: For each Tij , generate proof for Diffie-Hellman 4-tuple (g,

hij

hi
, gxij ,

E[Tij]
E∗[Tij]

)

3: Calculate wij = T 2
ij , and s =

∑m
j=1 wij

4: Calculate si0, si1, . . . , si(L−1) such that s =
∑L−1

l=0 sil2
l

5: Generate L random values x′i1, x
′
i2, . . . , x

′
iL ∈R Zq

6: Encrypt each sil as E[sil] (Eq. 9)
7: Generate proof for sil ∈ {0, 1}, for each sil
8: Generate m random values x∗i1, x

∗
i2, . . . , x

∗
im ∈R Zq

9: Calculate rij (Eq. 10) and encrypt each wij as E[wij] (Eq. 11)
10: Generate proof for (wij = T 2

ij), for each wij

11: Send the following messages to the verifier:
(E[Ti1],E[Ti2], . . . ,E[Tim]), (E∗[Ti1],E∗[Ti2], . . . ,E∗[Tim]),
(hi1, hi2, . . . , him), hi, ZKPoK(g,

hij

hi
, gxij ,

E[Tij]
E∗[Tij]

) for each Tij ,
(E[si0],E[si1], . . . ,E[si(L−1)]), (E[wi1],E[wi2], . . . ,E[wim]),
ZKPoK(sil ∈ {0, 1}) for each sil, ZKPoK(wij = T 2

ij) for each wij

Algorithm 2 Proof verification

Require: Messages received from user i in Algorithm 1
1: Verify ZKPoK(g, hij

hi
, gxij ,

E[Tij]
E∗[Tij]

) for each Tij
2: Verify

∏m
j=1 E[wij] =

∏L−1
l=0 E[sil]

2l

3: Verify ZKPoK(sil ∈ {0, 1}) for each sil
4: Verify ZKPoK(wij = T 2

ij) for each wij

5.2.2 Range-proof for L1-norm

In notation, we want the ZKPoK:

ZKPoK(~x,~y,B)(~a, ~r) : (xi, yi) = (gri , hri · gai) ∧ ‖~a‖1 ≤ B ∧ ai ≥ 0

With slight abuse of terminology, we’ll call this proof as range-proof for L1-norm, although it is much stronger
and includes the additional proof for non-negativity of values. The proof proceeds in a manner very similar to

9

section 5.2.1, but we now require a range-proof for each element (Tij) of the vector Ti. Like before, we do this
by decomposing Tij into binary representations [5].

5.2.3 Optimizations

The range-proof for L1-norm of a vector requires range-proofs for all the elements of the vector. This leads
to large time and space overheads in practice. There are a few approaches in literature which we can use to
overcome this. Camenisch et al. [3] use a base B, (B > 2) decomposition of a number s rather than base 2.
This reduces the number of ciphertexts sent from the prover to the receiver. The authors use an elegant protocol
to prove set membership si ∈ φ = {0, . . . , B − 1}. The basic idea is to have the verifier provide a signature
on each element of the set φ. The prover then proves in zero knowledge that it possesses a signature on the
committed value si. The proof is sound because the prover can’t fake a signature on a value outside the set φ.
The efficiency of the protocol stems from the fact that the same set of signatures from the verifier can be used
multiple times to commit to different si values.

Peng et al. [19] propose an approach called batched range proofs to improve computational efficiency. They
also use a higher base decomposition and reduce the problem to proof of membership in a set of size k. Set
membership is proved using a proof of knowledge of 1-out-of-k discrete logarithms. The novelty of their
protocol is in batching (or combining) n such instances of 1-out-of-k discrete logarithms proof into one single
proof, using generalized Pedersen commitments. This reduces the complexity of the overall protocol.

10

5.3 Reduction of ML Algorithms to Vector Addition

5.3.1 Decision Trees

Decision Trees are widely used for non-linear multi-class classification. The ID3 algorithm [20] for decision
trees forms the tree by a recursive process. In each step of the recursion, a metric known as entropy gain is
calculated for each feature in the feature-vector using the data-set available in the step. The feature with the
highest entropy gain is selected as the root of the ensuing sub-tree. The recursion is usually terminated after a
short depth to prevent over-fitting, with the leaves of the tree forming the class labels.

In the equations below, D is the complete dataset and qj is the fraction of samples with label j in D. Let f be
any feature which takes values v ∈ F . Dv is the set of samples from D where the feature f has a value v.

entropy(D) = −
∑
j

qj log qj

gain(f) = entropy(D)−
∑
v∈F

|Dv|
|D| entropy(Dv)

Computing entropy(D): Let Di be the fraction of the complete dataset in possession of user i. If the total
number of labels is k, each user creates an encrypted vector (c1, . . . , ck), where cj is the number of samples
of label j in Di. To prevent a malicious user from supplying large values for cj which can corrupt the model
parameters, range proofs for cj and L1-norm of the vector are required. Each user can then calculate qj , and
hence entropy(D), by homomorphically adding all the vectors.

Computing gain(f): For ease of exposition, assume that F = {0, 1}, and there is only one feature f . User
i creates two encrypted vectors (p1, . . . , pk) and (q1, . . . , qk), where pj is the number of samples in Di with
{f = 0, label = j}, and qj is the number of samples in Di with {f = 1, label = j}. For input validity, a proof
for cj = pj + qj is required. As before, using homomorphic addition, each user can compute entropy(Dv),
and hence gain(f).

5.3.2 Naïve Bayes

Naïve Bayes classifiers are probabilistic classifiers which utilize the naïve assumption of conditional indepen-
dence of the features, given the class label. Given a data sample (x1, . . . , xn), it uses Bayes’ theorem to calculate
the likelihood that the sample belongs to a particular class label:

Pr(y|x1, . . . , xn) =
Pr(y) Pr(x1, . . . , xn|y)

Pr(x1, . . . , xn)
.

Using Naïve Bayes assumption and simplifying, the classification rules is given by-

ŷ = argmax
y

Pr(y)

n∏
i=1

Pr(xi|y).

The model parameters that are learned from the training data are Pr(y) and Pr(xi|y). Although different
assumptions can be made on the distribution of the parameters, we estimate them empirically using the counts
from the training data:

Pr(y = l) =
|y = l|
|D| ,

Pr(xi = m|y = l) =
|xi = m, y = l|
|y = l| .

Computing Pr(y = l): Identical to the computation of qj in ID3. Each user contributes a vector (c1, . . . , ck),
along with range proofs.

Computing Pr(xi = m|y = l): Identical to the computation of entropy(Dv) in ID3. Each user creates as
many vectors as the number of possible values for xi, along with a proof that the vectors sum to (c1, . . . , ck).

11

5.3.3 Linear Regression

Given data samples of the form (~x, y), linear regression models y, which is referred to as the dependent variable,
as a linear combination of ~x, which are called explanatory variables. More formally, the learning problem is the
calculation of a vector β such that

y = ~xTβ + ε.

Least-squares method is a popular approach for estimating β. Let X be the design matrix with n data samples
and Y be the corresponding vector of labels. The model parameters are then given by

β = (XTX)−1XTY. (13)

Let Xi and Yi be a horizontal partitioning of the design matrix and label vector, respectively. Each user i only
has access to Xi and Yi. As noted by the authors in [9], the following equations hold

XTX =
∑
i

XT
i Xi,

XTY =
∑
i

XT
i Yi.

Therefore,
β = (

∑
i

XT
i Xi)

−1
∑
i

XT
i Yi. (14)

Computing β: Let the dimension of the data (~x) be d. Each user independently computes a d × d matrix
(XT

i Xi)
−1 and a d dimensional vector XT

i Yi. The encrypted tensors are submitted along with range proofs on
the L2-norm to bound the influence of each user on the final model parameters. The tensors are homomorphically
added to calculate β as per equation 13.

5.3.4 Collaborative Filtering

Collaborative Filtering (CF) is a technique most commonly used in recommender systems to predict the
preferences of a user by accumulating preferences of multiple users. Among the various approaches that exist in
literature for CF [5, 12, 21], we focus on the one used by Canny [5]. This work uses the ideas of secret sharing
and threshold decryption to achieve CF with privacy. It relies on a majority vote among untrusted tallying
authorities to get the result of the computation. In contrast, our approach gets rid of the tallying authorities by
carefully designing the encryptions. We only mention the key computation steps of the algorithm by Canny;
interested readers should refer to [5] for details.

Let there be n users providing integer ratings to m items. Let Pn×m be the user preference matrix such that Pij

is the rating given by user i to item j. Pij is 0 if the item is unrated. The first step is the derivation of a low
dimensional approximation to P . Let Ak×m (k is small) be such an approximation:

A = sup
U :UUT=I

tr(PUTUPT).

Starting from a random matrix, A is computed iteratively using conjugate gradient. Let A(t) be value of the
matrix at iteration t, and Pi denote the 1×m matrix of data from user i. The gradient for the current iteration
can be calculated as

G(t) =

n∑
i=1

A(t)Pi
TPi(I −AT

(t)A(t)).

After A(t) is updated using the gradient, the process is repeated (until convergence). Generating new
recommendations from A entails more steps like partial SVD and probabilistic latent variable modeling [5].

Computing G in every iteration: SinceG =
∑

iGi, we can use homomorphic encryption to securely calculate
the gradient in a distributed setting. Each user creates an encrypted matrix Gi

k×m. To limit the effect of each
Gi on the final gradient, a range proof on the L2-norm of Gi is required.

12

5.4 Evaluations

ElGamal Encryption and ZKPoK libraries: To achieve higher efficiency, we write our own lightweight
ZKPoK libraries instead of using existing general ZKPoK libraries such as zk-SNARK [1]. We implement
ElGamal encryption over elliptic curve using Jeremy Kun’s elliptic curve library [15] in Python. For each proof
mentioned in Appendix 5.1, we implement a ZKPoK library to generate and verify the proof based on ElGamal
encryption.

Zorro Client: This is an interfacing client that takes an input vector (Ti) from the application, and returns
a vector summation (

∑
i Ti) computed over all the parties involved in the protocol. Developers who want to

implement applications in Table 1 can use the Zorro client as a black-box and do not need to be aware of the
underlying ZKPoKs or the interactions with the public ledger. Specifically, the Zorro client handles the following
3 tasks for the higher level application:

• Generate ZKPoKs for input validity and commit them to the ledger;
• Verify ZKPoKs commited by other users;
• Calculate vector summation by homomorphic vector addition over encrypted inputs of all the users.

To evaluate the efficiency of Zorro client, we measure the ZKPoK generation and verification time for each user
for the application of cumulative voting. Considering that users of the application (i.e., voters) would not have
access to specialized hardware, the evaluations are done on a regular laptop with 2.7 GHz Intel Core i5. The
Zorro client implements the two-round homomorphic vector addition protocol introduced in Section 2.2. The
first round of the protocol consists of one ZKPoK of discrete log (Eq. 3) for each element in the input vector. The
time complexities of ZKPoK generations and verifications for the first round increase linearly with the length of
vector, and do not depend on any L1-norm constrains on the input. Therefore, we focus our evaluations on the
second round of the protocol.

ZKPoKGeneration Time The ZKPoK generation time in round 2 depends on two factors: vector length (m)
and maximum bound (B) on the L1-norm. For cumulative voting, the vector length corresponds to the number
of candidates, and the maximum bound corresponds to the number of votes per voter. The former determines the
number of range proofs one client needs to generate, while the latter determines the complexity of each range
proof. Figure 2a shows the variation of ZKPoK generation time per client for vector length 1 ≤ m ≤ 50 and
maximum bound 21 ≤ B ≤ 25. The figure reveals positive correlations between ZKPoK generation time and
vector length, and between ZKPoK generation time and maximum bound. Out of vector length and maximum
bound, we observe the impact of the former to be higher. For example, when m = 1, B = 25 = 32, it takes
only 9.9 seconds to generate ZKPoKs. However, when m = 32, B = 21, the generation time takes around 53.2
seconds. Therefore, Zorro can handle cumulative voting with relatively large number of votes per user, but is
more suitable for a small number of candidates. When the number of candidates exceeds 35, it takes more than
one minute to generate the ZKPoKs even when only one vote is allowed per voter.

ZKPoK Verification Time The ZKPoK verification time depends on three factors: vector length (m),
maximum bound (B), and total number of users (n). Since each client needs to verify ZKPoKs of all the users,
ZKPoK verification time per client increases linearly with the number of users. Figure 3 shows the increase
in average per-client verification time (when m = 1 and B = 2) as the number of total users increases from
1 to 10. On average, it takes around 5 seconds to verify the ZKPoKs of each user. Therefore, when there
are thousands of users, the verification phase can take hours. However, since the verification for different
users is independent, the overall time can be greatly reduced by using multi-core parallelism. Furthermore,
the optimization techniques discussed in section 5.2.3 can also be applied to improve efficiency. Similar to
ZKPoK generation time, ZKPoK verification time is also influenced by vector length and maximum bound.
Figure 2b shows ZKPoK verification time with 1 ≤ m ≤ 50, 21 ≤ B ≤ 25, and n = 1. On average, the time it
takes to verify ZKPoKs is slightly higher than the time it takes to generate them.

Taking the Discrete Log As mentioned in Section 2.2, each user calculates g
∑

i Tij by multiplying the
correct ciphertexts, and uses the baby-step/giant-step algorithm [16] to obtain the discrete log. The algorithm has
a time complexity of O(

√
N), for a search space of N numbers. In Figure 4a, we plot the time to compute the

discrete log as a function of the bound on the input from each user. We simulate 1000 users, each with an integer
input Tij in the range [0, B], generated using a uniform distribution. It then follows that the sum

∑
i Tij is a

value in the range [0, 1000×B], distributed according to a Irwin-Hall distribution. We record the time taken to
compute the discrete log of the sum, average it over 10 observations and plot. Figure 4a shows that the algorithm
has sub-linear time complexity. Moreover, the discrete log can be calculated in less than a second even with
B=32. Hence, this step is very fast compared to the ZKPoK generation and verification steps mentioned above.

Impact on Accuracy Our elliptic curve cryptography system uses a finite field of integers modulo p, Zp.
Therefore, the input vectors to our homomorphic vector addition algorithms can only be integers from this field.

13

(a) ZKPoK generation time per user. (b) ZKPoK verification time per user. (n = 1)

Figure 2: Time Complexity Analysis under Varying Vector Length and Maximum Bound

Figure 3: ZKPoK Verification Time Per User against Increasing Number of Users (m = 1, B = 2)

(a) Time to compute discrete log using baby-step/giant-
step (b) Power output prediction using linear regression

Figure 4: (a) Analysis on discrete log computation and (b) Accuracy loss with linear regression

Although sufficient for cumulative voting, this may be restrictive for some machine learning applications which
are sensitive to floating point (FP) precision. We evaluate uni-variate linear regression (Section 5.3.3) on a real
data-set and quantify the loss. Figure 4b plots the variation of the electrical power output from a power plant
with ambient temperature [22]. The input and output values have FP precision. We fit a linear regression model
to the data in three ways, first by using the original values, and then by using floor and ceil on the FP data in
two separate experiments. We observe that floor and ceil models have 8.3% and 8.4% higher mean square

14

error than the FP model, respectively. This shows that the loss in accuracy due to FP rounding-off errors can be
small. Furthermore, we can use FP quantization methods to improve precision, if needed.

15

	1 Introduction
	2 Distributed and Secure ML
	2.1 Threat Model and Notations
	2.2 Two-round Protocol for Homomorphic Vector Addition
	2.3 Reduction of Algorithms to Vector Addition

	3 Implementation
	4 Conclusion
	5 Appendix
	5.1 Zero Knowledge Proof-of-knowledge
	5.2 Range Proofs
	5.2.1 Range-proof for L2-norm
	5.2.2 Range-proof for L1-norm
	5.2.3 Optimizations

	5.3 Reduction of ML Algorithms to Vector Addition
	5.3.1 Decision Trees
	5.3.2 Naïve Bayes
	5.3.3 Linear Regression
	5.3.4 Collaborative Filtering

	5.4 Evaluations

