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ABSTRACT

Smartphone penetration surpassed 80% in the US and nears 70% in Western Europe.

In fact, smartphones became the de facto devices users leverage to manage personal infor-

mation and access external data and other connected devices on a daily basis. To support

such multi-faceted functionality, smartphones are designed with a multi-process architecture,

which enables third-party developers to build smartphone applications which can utilize

smartphone internal and external resources to o↵er creative utility to users. Unfortunately,

such third-party programs can exploit security ine�ciencies in smartphone operating sys-

tems to gain unauthorized access to available resources, compromising the confidentiality of

rich, highly sensitive user data.

The smartphone ecosystem, is designed such that users can readily install and replace

applications on their smarpthones. This facilitates users’ e↵orts in customizing the capabil-

ities of their smartphones tailored to their needs. Statistics report an increasing number of

available smartphone applications—in 2017 there were approximately 3.5 million third-party

apps on the o�fial application store of the most popular smartphone platform. In addition

we expect users to have approximately 95 such applications installed on their smartphones at

any given point. However, mobile apps are developed by untrusted sources. On Android—

which enjoys 80% of the smarpthone OS marketshare—application developers are identified

based on self-sign certificates. Thus there is no good way of holding a developer account-

able for a malicious behavior. This creates an issue of multi-tenancy on smartphones where

principals from diverse untrusted sources share internal and external smartphone resources.

Smartphone OSs rely on traditional operating system process isolation strategies to confine

untrusted third-party applications. However this approach is insu�cient because incidental

seemingly harmless resources can be utilized by untrusted tenants as side-channels to by-

pass the process boundaries. To make things worse, applications might include third-party

libraries, for advertising or common recognition tasks. Such libraries share the process ad-

dress space with their host apps and as such can inherit all the privileges the host app does.

Identifying and mitigating these problems on smartphones is not a trivial process. Manual

analysis on its own of all mobile apps is cumbersome and impractical, code analysis tech-

niques su↵er from scalability and coverage issues, ad-hoc approaches are impractical and

sucseptible to mistakes, while sometimes vulnerabilities are well hidden at the interplays

between smartphone tenants and resources.

In this work I follow an analytical approach to discover major security and privacy issues

on smartphone platforms. I utilize the Android OS as a use case, because of its open-source
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nature but also its popularity. In particular I focus on the multi-tenancy characteristic

of smartphones and identify the resources each tenant within a process, across processes

and across devices can access. I design analytical tools to automate the discovery process,

attacks to better understand the adversary models, and introduce design changes to the

participating systems to enable robust fine-grained access control of resources. My approach

revealed a new understanding of the threats introduced from third-party libraries within an

application process; it revealed new capabilities of the mobile application adversary exploit-

ing shared filesystem resources; and shows how a mobile app adversary can exploit shared

communication mediums to compromise the confidentiality of the data collected by external

devices (e.g. fitness and medical accessories, NFC tags etc.). Moreover, I show how we can

eradicate these problems following an architectural design approach to introduce backward-

compatible, e↵ective and e�cient modifications in operating systems to achieve fine-grained

application access to shared resources. Some of the problems we found are now addressed by

Google, which overhauls the development of Android, the most popular smartphone OS.
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CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Eleven years now, after the first iOS and Android enabled smartphones, the technology

behemoths are now responsible for 90% [1] of total smartphone sales in 2018. These de-

vices have revolutionized the way people communicate and manage personal and business

tasks. Their unprecedented nature, which combines mobility, computational power and a

model of easy to replace applications that can facilitate every facet of our everyday lives,

constitute them an integral tool for people of any age. This very model, designed to leverage

developers’ creativity to provide users with a menagerie of smartphone applications (apps

for short) of any perceived purpose, led to the release of an astounding number of apps in

o�cial application markets. Statista reports an almost exponential increase in the number

of available smartphone apps on the o�cial application store for Android devices, with a

recent gnaw-dropping recorded number of 3.5 million apps [2]. These apps cover a broad

spectrum of functionality: applications for entertainment purposes, like games for children

and for adults; apps for educational purposes that can be used at schools and at home; apps

that render managing financial investments trivial; apps that help people manage their time

and tasks; o�ce apps, data management apps; even apps for medical purposes, facilitating

decision making for doctors, or helping patients manage their treatment or daily activities

to improve quality of life; and recently apps to control and interface with Internet of Things

(IoT) devices, such as connected motion sensors and cameras.

Increasingly, smarpthone apps incorporate third-party libraries for two main reasons: (a)

for advertising; (b) for utility. For example, Grace et.al found that approximately 50%

out of 100,000 collected apps use in-app advertising libraries (ad libraries for short) for

monetization [3]. They further found that a third of them integrate one ad library while

one of the apps they analyzed includes 20 such libraries. In our work, we further found that

33.3% out of 230,000 collected apps that request the camera permission, include at least one

third-party library [4]. These third-party libraries are used for a variety of purposes such as,

location services, character encoding, audio encoding/decoding, text recognition, credit card

scanning and computer vision support among others. This highlights the fact that including

third-party libraries is a common practice on the smarpthone ecosystem. These libraries,

interface with their host apps through APIs which the hosts utilize to pass information to

the libraries for their tasks.
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In turn, the host applications utilize operating system resources and capabilities for their

own functionalities. Smartphone operating systems o↵er a rich API to application devel-

opers for accessing user data such as a user’s contact list, incoming SMSs or collaborate

with other applicaitons on the system. Smartphone APIs also allow processes to leverage

a smartphone’s advanced sensing and communication capabilities. These capabilities allow

contemporary phones to receive and transmit information from and to accessories, remote

servers and devices: Bluetooth is being utilized to allow smartphone users to manage their

medical conditions, keep track of their fitness progress and communicate with other Blue-

tooth enabled phones; NFC made credit card payments fast and seamless and can automate

repetitive tasks through the tap of the phone on an NFC tag; smartphone audio jacks can

be used again for monetary transactions [5] or for receiving sensitive information from ac-

cessories regarding its user’s body functions; SMS can be more than a message exchange

between users as it can be used for sensitive tasks i.e 2-factor authentication; also the ability

to connect through WiFi with remote domains allow app developers to o↵er mobile adver-

tising for monetization or interface with IoT devices in a home area network or across the

world.

Of particular interest, is the Android OS which dominates the smartphone marketshare [1].

Its open source nature led to the adoption of Google’s proud green robot by the vast major-

ity of hardware vendors, o↵ering Android enabled devices for everyone, regardless of their

financial capabilities. Android smartphones are available from $40 to $800 with a variety of

di↵erent specifications. Flagship Android phones and tablets, now feature quad core proces-

sors, 4GB of RAM, in par with modern laptops and notebooks. The computational power

of those devices, in tandem with their ubiquitous, always-present nature and its current

penetration has dictated the use of Android smartphones for personal, business and medical

purposes.

This vast adoption of Android, created an equally large attack surface for malicious ap-

plications aiming to infringe users’ privacy. Unequivocally, investment in malware makes

more sense when a security vulnerability or breach a↵ects a wide user base and Android is

the ideal candidate for doing just that. As malware targeting Android increases, we have

witnessed a large scale of malicious attempts [6] exploiting the system’s vulnerability to

gain root access, or charging users money, by sending SMSs or calling premium numbers [7].

Furthermore the scientific community delineated another spectrum of the popular system’s

vulnerabilities, using more sophisticated attacks such as permission re-delegation [8] and

capability leaks [9]. Lastly, in a data-driven world, multi-billion dollar industries such as

analytics and advertising, rely on building detail user profiles, which in essence incentivizes
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them as well to follow aggressive data harvesting practices, which are not always in accord

with users expectations.

Android marketshare, penetration, use in sensitive settings and the fact that is being

targeted by the vast majority of smartphone malware, analytics and advertising networks,

highlight the significance of an analytical approach for studying the security of the platform

but also the need for designing backward compatible, e�cient and e↵ective defense mecha-

nisms that detect questionable data harvesting behaviors and prevent malicious ones. For

the rest of this thesis I will be using Android as a use case of a modern smartphone operating

system.

1.2 PROBLEM STATEMENT

The Android OS uses various security strategies to control userspace process access to

sensitive resources (Android apps run as userspace processes). Android leverages a Dis-

cretionary Access Control (DAC) scheme to isolate processes and their data. Moreover, it

recently introduced a Mandatory Access Control (MAC) scheme to further strongly isolate

system processes from third-party applications. Both are enforced at process level in the

kernel layer. On top of the kernel, lies the Android middleware which leverages a permission

model to govern process access to system and application resources. For example, when an

app wants to utilize the sensitive system API to record audio, it needs to first get granted

the MICROPHONE permission by the user of the system.

Unfortunately, these mechanisms are inadequate to guarantee the confidentiality of sen-

sitive information. All strategies are applied at the process granularity and as such fail

to identify threats from libraries which share the same privileges with their host pro-

cesses [10, 4]. The DAC scheme which protects filesystem resources is adopted from a

static environment. However, filesystem resources shared across processes in a station-

ary machine sometimes require di↵erent access control management when used on a mobile

platform [11]. The MAC scheme only focuses on isolating system processes from third-party

apps allowing attacks between apps of the latter kind. . Moreover, the Android permission

model mostly depends on user input when protecting access to communication channels and

as such it needs to strike a balance between usability and security granularity. In essense,

this model is both too coarse-grained and users are desensitized to permission prompts.

This allows third-party apps to gain unfetterd access to shared direct communication

resources such as the Bluetooth, NFC and Audio channels [13, 14] and shared indirect

communication channels such as WiFi devices on the same network [15]. This allows

malicious apps to stealthily attack other devices that can connect to the smartphone.
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Previous works have been taking ad-hoc and impractical approaches to mitigate these

issues. Some works simply propose more permissions for controlling access to sensitive

resources at a finer-granularity [16]. However these introduce a permission overbloat problem

and exacerbate the desencitization of users to the permission model. Other works considered

spliting libraries from their host apps so we can utilize process level isolation [17]; these are

both ine�cient and impractical as they break the business model of advertising networks, a

role increasingly assumed by smartphone vendors as well. Other works focus only on code

analysis for prevention which is not scalable and slow to utilize at runtime [3, 18, 19, 20, 21,

22, 23, 24, 25, 26] while other researchers propose ad-hoc approaches for quickly patching

found vulnerabilities; these are hard to maintain and usually do not address the root causes

of the security problems.

Instead, I postulate that we need an analytical approach to systematically reason about

the security challenges on smartphones. Such an approach will allow us to better model

the smartphone adversary and thus design unified, e�cient, scalable and robust systems to

eradicate security problems.

1.3 APPROACH

There is no one-size-fits-all approach to securing smartphone systems. However, thinking

about the resources we need to protect and the principals that try to—or have an incentive

to—access those resources, greatly facilitates the process. Specifically, in my work I focus

on how di↵erent kinds of resources are shared between tenants at di↵erent granularities on

a smartphone platform to unearth security and privacy vulnerabilities. I then utilize these

results to drive design decisions in building tools and systems for detection and prevention

of information leakage through such shared resources. My solutions aim to satisfy the fol-

lowing important design properties: e↵ectiveness; e�ciency; backward compatibility and;

maintainability.

In particular, in my work I systematically analyzed four classes of shared resources and

found how tenants at di↵erent granularities can exploit them to compromise sensitive user

information. These classes are: (a) shared process privileges; (b) shared filesystem resources;

(c) shared indirect communication channels and; (d) shared direct communication channels

(c and d are depicted as connectivity resources). Lastly, in joint work with Tuncay, Ganju

and Gunter [12], we also found issues with the Android permission model which allow an

adversary to gain access to shared system and application resources. Figure 1.1 summarizes

the approach at a conceptual level.
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Figure 1.1: Smartphone shared resources.

First, executable code from di↵erent untrusted sources, might run within the same process

boundaries. Therefore they share privileges at the process level. For example, Android apps

are commonly distributed for free. In turn they o↵er advertising which can result in

monetizing user impressions and clicks among others. To achieve this return of investement

the app developers include ad libraries into their source code which are compiled with the

host application. As a result the advertising code runs within the same process as the host

app. This symbiotic relationship comes with an intrinsic sharing of privileges: a third-party

library can exploit that to access application data and platform resources. Other studies

have focused on the ad libraries’ current behaviors. Such approaches are limited since they

cannot predict future behaviors. In contrast, we model all the di↵erent ways an ad library can

access user data on the Android platform. Since in this case, the OS cannot make a decision

whether advertising data collection constitutes a malicious behavior, I instead designed a

detection system, called Pluto [10], which can be utilized by application markets to quantify

the risk associated with embedding an ad library into an app. Pluto leverages Android OS

domain knowledge combined with natural language processing and frequent pattern mining

techniques to automatically detect sensitive user information that can be inferred by an ad

library due to its vantage placement in a target app. Pluto performs a risk assessment and
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provides a privacy-leakage risk score associated with embedding an advertising library in a

mobile app.

Second, I found that Android su↵ers from information leaks stemming from unprotected

filesystem resources. The protection of such resources on Android, is delegated to the tra-

ditional Linux Discretionary Access Control, where a user or a group of users is granted a

combination of the read, write and execute permissions. However, information seemingly

innocuous on a stationary machine, that is made available to any process, can have grave

privacy implications when used on a smartphone (or any multi-tenant mobile) platform.

Therefore, if some of those resources are transferred from Linux to Android without the

proper access control modifications, then private information leaks are a pragmatic and im-

minent threat. Indeed I found that an adversarial smartphone app can utilize such shared

filesystem resources as side-channels to infer a smartphone user’s identity, medical condition

and financial preferences. Since then a lot of other works followed, utilizing other shared

filesystem resources as side-channels. Google on version 6, introduced restrictions to third-

party application access to such resources.

Third, Bluetooth, NFC, Audio, and SMS constitute shared channels of direct communi-

cation between a smartphone and a remote or external source. Here we use external and

remote interchangeably as remote sources are indeed external resources for the mobile OS

on smartphones. Since these channels carry private information most of the times, Android

OS developers correctly protected access to those channels with permissions. However, not

only permissions are being neglected or granted without scrutiny from users [27] but even if

users bestow the appropriate attention, this work argues that they are very coarse-grained to

protect the resources they guard. Consider for example an app that requires the Bluetooth

permission to supposedly connect to an accessory. Once the permission is granted, that

app gains unfettered access to the Bluetooth channel irrespective of the accessory currently

connected to the phone. Similarly, an app with the NFC permission can access any NFC

device in vicinity. An app with the AUDIO permission cannot only be used to support a

speaker but can read data transmitted to a cable-connected fitness accessory [28]. In my

work, I extended the Android MAC scheme and introduced a flexible DAC scheme to allow

both enterprise administrators (admins for short) and users to construct rules to control at

application-level how these shared direct communication channels can be accessed. Such

control allows a messaging app to read all SMSs except from those that are protected, such

as an SMS from Chase which can be configured to be read only by the Chase Bank app.

It will also allow an app to talk to its Bluetooth headset but restrict it from talking to a

protected Bluetooth blood glucose meter and so on.
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Lastly, smartphones are increasingly used to connect to WiFi smart-home devices. These

IoT devices are typically located behind a home area network router and are controlled

through smartphone apps. A lot of these systems tend to rely on the Wi-Fi router to au-

thenticate other devices [15] or su↵er from common vulnerabilities devices such as hardcoded

credentials, weak or no authentication [29]. This treatment exposes them to attacks from

malicious smartphone apps, particularly those running on authorized smartphones, which

the router does not have information to control. Mitigating this threat cannot solely rely

on IoT manufacturers, which may need to change the hardware on the devices to support

encryption, increasing the cost of the device, or software developers who we need to trust

to implement security correctly. We could tackle such attacks at the smartphone OS with

stronger access control such as in the case of direct communication channels. However, this

would entail assuming that not only the owners, but also all guests of the household, or an

adversary that compromised the WiFi passphrase use our proposed smarpthone OS. Since

these devices are shared by the router, a more practical approach would be to built our

defense there. To tackle this problem I built a system which uses an approach inspired by

software-defined networking (SDN) (see [30] for a survey) to o↵er fine-grained protection:

each phone runs a non-system userspace Monitor app to identify the party that attempts to

access the protected IoT device and inform the router through a control plane of its access

decision; the router enforces the decision on the data plane after verifying whether the phone

should be allowed to talk to the device.

Focusing on analyzing shared resources within a process, across processes and across de-

vices, allows us to discover new adversarial capabilities on smartphones and in environ-

ments where smartphones are introduced (e.g. IoT). This facilitates better modeling of

the smartphone adversary which leads to the design of robust systems for both detection

and prevention of malicious behaviors by untrusted userspace smartphone programs.

1.4 THESIS CONTRIBUTIONS

This thesis makes significant contributions in the analysis of smartphone adversary models

and the design of tools and system enhancements for detecting suspicious behaviors and

preventing malicious behaviors on the smartphone ecosystem.

• Provides a systematic analysis of information reach of advertising libraries embedded in

smartphone apps. Previous work has focused on past and current behaviors of advertising

libraries, overlooking the fact that these behaviors can change opportunistically. This thesis
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focuses on the fact that such libraries share process space and privileges with their hosts

and as such can eventually take advantage of those privileges. It systematically models all

shared privileges a library has with its hosts which leverages for the design of an automatic

open-source tool for estimating the risk of sensitive user information exposure by a host app

to its advertising library.

• Discovers new side-channels hidden in shared filesystem resources and demonstrates new

adversarial inference techniques. An analysis of Android shared filesystem resources led to

the discovery of new side-channels which can be exploited by malicious applications with a

suite of new inference techniques to bypass the process isolation boundaries and infer a user’s

identity, medical condition and financial preferences. This work led to Google introducing

further restrictions on Android filesystem resource access by third-party apps.

• Unearths threats on Android’s communication with external resources. This work system-

atically studies Android’s shared channels of communication with external resources such

as Bluetooth and NFC devices, devices that connect through the Audio port, incoming

SMSs and, WiFi smart-home devices. It defines a new threat, called the device mis-bonding

(DMB) problem, to highlight the system’s incapacity to create application-level bonds. It

further demonstrates that Android’s system permissions are too coarse-grained to support

the utility of the apps while guaranteeing the confidentiality and intergrity of the data com-

municated through these channels. Furthermore it measures the prevalence of the problem

in the Android ecosystem.

• Introduces smartphone OS-level enhancements to safeguard the communication with An-

droid external resources, using both MAC and DAC. This is the first mechanism that provides

comprehensive protection of di↵erent kinds of Android external resources over their channels

in a uniform way. The enhancements are built on top of SELinux on Android and achieve

both MAC and DAC in an integrated, highly e�cient way, without undermining their se-

curity guarantees. These new techniques help both system administrators and ordinary

Android users to specify their policies and safeguard their accessories and other external

resources.

• Introduces a novel distributed application-level access control system to safeguard vulnera-

ble shared smart-home devices from malicious smartphone apps. It shows how smartphones

can collaborate with enforcing points in smart environments to enable fine-grained access

control for WiFi smart-home devices. The design focuses on OS-level enahancement at

the enforcing point (the router) which makes device-level decisions and utilizes trusted ap-

plications on smartphones for application-level decisions. The trusted applications utilize
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novel tra�c monitoring techniques while the overall solution is independent from IoT device

manufacturers.

• Impact on real-world smartphone operating systems. Some of the threats we revealed, are

now at least partially addressed by Google, who overhauls the development of Android (the

most popular smartphone operating system) which is used by millions of users.

• New design principles for the security of systems. Proposed three new principles for the

design of secure systems.

1.5 THESIS ORGANISATION

In Chapter 2, I will present background knowledge on the Android operating system, its

security mehcanisms and its shared resources. In Chapter 3, I will provide a discussion of the

available literature on Android security. In Chapter 4 I will present my analysis on shared

process privileges by libraries and their host apps and discuss how this analysis allowed me to

build an automatic tool for assessign the potential exposure of sensitive user information to

advertising libraries. In Chapter 5 I will introduce new side-channels on Android stemming

from shared filesystem resources. I will also discuss new adversarial inference techniques

which exploit those side-channels to compromise user’s data confidentiality. In Chapter 6

I will analyze the security of shared direct communication channels with external resources

and propose security enhancements on the Android operating system to enable application-

level access control to such resources. In Chapter 7 I will look into new attack surfaces

introduced by smartphones sharing devices in smart-homes and propose a distributed fine-

grained access control scheme to protect smart-home devices from malicious smartphone

apps. In Chapter 8 I propose three new principles to guide the design of secure systems

stemming from my analysis on smartphone operating systems. Lastly, in Chapter 9 I will

conclude this treatise and discuss future directions. Lastly in Section 9 I will conclude this

thesis and discuss its findings.
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CHAPTER 2: BACKGROUND

In this Chapter I provide some background on the Android OS and its security features.

2.1 ANDROID OS

The advent of Android was announced on November 5th, 2007. This exquisite mobile

platform was a result of a partnership of Google with OHA (Open Handset Alliance), a

consortium of telecommunication, software and hardware companies and its source code is

made publicly available. Android is an open source software stack encompassing a kernel

layer, a middleware layer and basic applications.

Since the announcement of the first Android version, a number of new OS releases followed

as depicted in table 2.1, with every version being playfully given a desert name [31]. Google

ships its Nexus devices with the unmodified Android open source code while other hardware

companies such as Samsung and HTC release their devices with appropriate modifications

to satisfy their specific UI or hardware requirements.

Table 2.1: Android Versions [31]

No Release Number Code Name
1 1.0 Android Alpha
2 1.1 Android Beta
3 1.5 Cupcake
4 1.6 Doughnut
5 2.0-2.1 Eclair
6 2.2-2.2.3 Froyo
7 2.3-2.3.7 Gingerbread
8 3.0-3.2.6 Honeycomb
9 4.0-4.0.4 Ice Cream Sandwich
10 4.1-4.3.1 Jelly Bean
11 4.4-4.4.4 KitKat
12 5.0-5.1.1 Lollipop
13 6.0-6.0.1 Marshmallow
14 7.0-7.1.2 Nougat
15 8.0-8.1 Oreo
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2.1.1 Architecture Overview

Android is usually depicted as a software stack featuring a Linux Kernel at the lower

level. On top of that lies the Android middleware which integrates libraries written in C,

the Android runtime, and the application framework written in Java. The Android software

stack is displayed in figure 2.1.

Figure 2.1: Android Software Stack [32]

Applications are also written in Java and can make use of a rich API provided by the

Application Framework to access resources on the device such as the SMSs or contacts and

perform actions such as place a phone call, handle an incoming phone call or SMS, access

the GPS or accelerometer data and so on. Nevertheless, use of native code (C, C++) is

not prohibited and apps can use it although they rarely do. An app can also use the JNI

(Java Native Interface) that allows Java code to interact with native code when use of both

is imperative. An application’s major components are Activities, Services, Content

Providers, Intents, Broadcast Receivers.

Activity: An Activity is usually correlated with a UI screen on the phone. An activity can

display UI elements when in the foreground, invoke another activity (screen) or be invoked
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to be shown on the foreground. It must extend the Android Activity class and follow the

Activity Lifecycle as shown in figure 2.2 given by the o�cial Android documentation [33].

Figure 2.2: Activity Lifecycle [33]

Service: A Service is an application component that does not need a UI to run. It is

being used to perform tasks in the background and can continue running even if the parent

app is not. They have high priority and they are the last being killed by the OS in the event

that resources need to be freed. Even then they are immediately restarted once enough

resources are made available.

Content Provider: A Content Provider is a convenient structure provided by the appli-

cation framework to applications, to access databases on the device. For example if an app

needs to access the SMSs, it can use the appropriate content provider which allows the app

to query the SMS database.

12



Intents: Intents is a powerful inter-component communication tool for applications and

userspace processes. An application (built-in or third-party) can notify other applications

about an event, or even send data to interested applications through this mechanism. Inter-

ested applications can receive such broadcasted intents through Broadcast Receivers.

Broadcast Receiver: An application can register a broadcast receiver to receive specific

intents. For example an app can register to receive the intent sent by a framework app

notifying that the system has booted, or that a bluetooth device has just paired. Another

example is the Activity Manager that can receive intents regarding the intention of an

activity to launch a new activity. We will elaborate on how this works later on.

It is also important to understand that each Android application runs as a separate Linux

process with its own instance of the Dalvik Virtual Machine (DVM) as shown in figure 2.3.

Dalvik is an e�cient process virtual machine with just-in-time (JIT) compilation specially

designed for Android due to its constraints in memory and processor speed. Android pro-

grams are usually written in Java and then compiled to bytecode. Then they are converted

from .class files compatible with the Java Virtual Machine, to Dalvik executable files (.dex).

Subsequently these .dex files are compressed in an apk (Android Application Package) and

installed on the Android device. In version 5.0, Android replaced Dalvik with Android

Runtime (ART) which performs a more e�cient and power preserving ahead-of-time (AOT)

compilation, which compiles entire applications into machine code at installation time.

Figure 2.3: Application Isolation on Android

2.1.2 Android Boot Sequence and the Zygote Process

When an Android device boots, the bootloader runs first, which eventually starts the

kernel. Once the Kernel is up and running it will mount the root filesystem and launch the
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init process. This process will look into a file called init.rc which dictates which system

services will have to be launched next and set up filesystem and other system parameters.

Init will start the Service Manager which is responsible for managing services’ registration

and requests for registered services. The init process will also start the Zygote. The Zygote is

the parent process of every other process. For example since every application is essentially a

process, that must be forked out from the Zygote and this exactly what the Activity Manager

is doing. Next the Zygote initializes the Dalvik VM and forks the GUI process and the

System Server process in their respective DVMs. The System Server process is responsible

for starting the Android system services such as the Activity Manager, Telephony Manager,

Package Manager (handles installation/uninstallation of applications), Bluetooth and so on.

When the System Server starts a Service, that action goes through the Service Manager

which maintains an index of all started services. Now, if an app wants to access a system

service, it has to go through an RPC (Remote Procedure Call) mechanism called Binder

which in turn will deliver the request to the Service Manager. The Manager then will return

again through the Binder, a handle to the application which will allow it to use the service.

The Binder is implemented in the kernel and the app developers do not interact with it

directly when requesting a Service access.

Having a basic understanding of the Android platform and important terms covered we

will now scrutinize over the Android Security Model.

2.2 ANDROID SECURITY MODEL

Android employs a number of security features. We will focus on the inherent Linux

security, the permission model to protect sensitive API calls and the latest integration of

SELinux on Android which enables Mandatory Access Control on the kernel.

2.2.1 Application Sandbox

As stated before, Android features a Linux kernel. As a result it benefits from its

discretionary access control (DAC) on the filesystem. This is an implementation of

access control lists (ACLs), where for each object the system stores a list of users that

can access it. In Unix and in extend Linux and Android, users can be grouped together to

avoid long sparse lists. This is stored in the file’s node and when a user requests access to

it, the OS will check whether the requesting user is the owner of the resource. If that is not

the case it will then check if the user belongs to a group that can access it. Lastly it checks

whether the resource can be accessed by the rest of the world to decide if it will grant
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access. The actions that can be performed by a user on a Linux file are one of three: Read;

Write or Execute.

On Android each application is considered a di↵erent user and runs in its own Linux

process. This way it owns its own memory stack and can access its own resources taking

advantage of Linux’s user-based protection. The system bestows a unique User IDentifier

called UID to every installed application and runs it in a newly forked process. Linux ensures

that no process can access another process’s resources and restrict communication between

them through its secure IPC (interprocess communication) mechanism. This is known as the

Application Sandbox and its implemented in the kernel. Thus it can protect applications

from each other whether they use Java or native code. Consequently, application sandbox

can be compromised only when the kernel itself is compromised.

However Android provides developers the capability to share resources among their own

applications: Apps are signed with certificates whose private key are in the acquisition of

their respective developers. Applications signed with the same certificate, can request to

share UID and thus consider as a single Linux user and share the same resources. This

request to the system, can be defined by the application developer in the app’s manifest

file, namely AndroidManifext.xml. The presence of that file in the app’s root directory is

non optional. It tells the system about the major components the app is using (Content

Providers, Broadcast Receivers, Services, Activities e.t.c), lists libraries that the app must

be linked against, requests permissions to access protected APIs, names the Java package for

the app which can be used to uniquely identify it and contains other essential information

about running the particular app.

2.2.2 Permission Model

Android o↵ers applications a rich API to access resources on the system through its

application framework shown in figure 2.1. The Android sanbox allows access to some basic

resources. To protect access to resources that are considered sensitive, such as accessing

services that might cost users money, or functions that can lead to private information leaks,

Android employs a security mechanism called Permissions. According to this mechanism,

a permission is mapped with one or more sensitive functions. An application must declare

in its manifest all permissions required for it to run properly, according to the function call

(or resource accesses) it makes.

Android Permissions can have di↵erent protection levels. A permission’s protection

level can have the value normal, dangerous, signature or signatureOrSystem. A normal

permission is consider to be of minimal risk to the application, the system or the user. Such
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permissions can be granted automatically by the system without user interaction during

installation unless their revision is explicitly requested by the user. A dangerous permission

is of higher risk as it can provide access to private information or device features that can

adversely impact the user. These kind of permissions must be presented to and accepted

by the user. A signature permission, is granted automatically by the system only if the

requesting application is signed with the same certificate as the application that declared

the permission. Lastly a signatureOrSystem permission that the system automatically grants

to the requesting application, if that application is either signed with the same certificate as

the declaring application or the requesting application is built as part of the Android system

image (i.e a system application). The first comprehensive study on Android Permissions was

conducted by Felt et al. [27].

Android permissions were granted by the user at installation time. In particular, a user

would have to accept all permissions an app requires to be able to even install an app. With

version 6.0 Android introduced the runtime permission model. With this change, dangerous

permissions are now requested and granted at runtime. The application developer decides

when a dangerous permission should be requested from the user. This is performed to

provide more context to the user when making such decisions. To reduce user burden,

dangerous permissions are requested only once, the first time the app requires it, unless the

user has manually revoked the permission. This ask-on-first-use model was first proposed by

Wijesekera et al. [34]. Normal and signature permissions are still granted at installation and

cannot be revoked by the user. Additionally, in version 6.0, Android introduced permission

groups which cluster permissions based on their utility [35]. According to the runtime model,

if a dangerous permission in a permission group is granted to an app, all the dangerous

permissions in that group will also be granted (if explicitly requested by the app) in order

to minimize user’s e↵ort. There are currently nine permission groups on Android: calendar,

camera, contacts, location, microphone, phone, sensors, SMS and storage (Figure 2.4).

The Android OS checks system permissions in 2 ways as shown in Figure 2.5: Either at the

framework level or at the kernel level. Most commonly, an application can request access

to a sensitive API using the appropriate Manager. The Manager provides a convenient

way to apps to query a Service for a resource. The request will go from the Manager,

through the Binder to the Service, which will check whether the calling process has the

permission to access the requested resource. If it does, access is granted, otherwise a Security

Exception is thrown back to the application. Consider for example an application that

wants to connect to a paired Bluetooth device. That app will use the BluetoothAdapter

to find the BluetoothDevice it needs. Then it will obtain a BluetoothSocket handle calling

device.connectRFcommSocket for serial data transfer with the RFCOMM protocol. The
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Permission Groups

Figure 2.4: Permission groups on Android version 7.0 (Nougat).

socket handle can be used to call socket.connect to actually establish the connection.

The connect request will go through Binder RPC to the Bluetooth Manager Service which

binds to AdapterService. The Adapter Service is responsible to establish the connection on

behalf of the app. Before doing so, it checks whether the calling app has the BLUETOOTH

permission.

Alternatively an app can directly request access to a hardware feature. This request can

be checked for permission at the kernel layer. For example when an app is granted the

INTERNET permission during installation, its assigned UID is mapped with the Internet

Group’s ID (GID), which corresponds to the number 3003 and referred to with the constant

AID INET in the kernel. Before an IPv4 or IPv6 socket is created, the kernel first checks

whether the requesting process belongs to the group AID INET. If it doesn’t, it returns an

access error.
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Figure 2.5: Android Permission Check

Custom Permissions. The permissions introduced above, are used to govern access to

system resources. In addition to those, Android allows application developers to define

theor own custom permissions which can be used to protect their applications’ components.

These are called custom permissions.

2.2.3 SELinux on Android

SELinux is a Mandatory Access Control (MAC) security mechanism, designed by United

States National Security Agency, and is integrated in various popular Linux distributions.

Smalley et al. [36] published a detailed solution to port SELinux on Android, called Security

Enhanced Android (SEAndroid).

Security-Enhanced Android is built on top of Android [36]. It is designed to mediate

all interactions of an app with the Linux kernel and other system resources. Furthermore,

SEAndroid confines even system daemons to limit the damage they can cause once they are

compromised. It also provides a centralized policy configuration for system administrators

and device manufacturers to specify their policies.

More specifically, SEAndroid [36] associates with each subject (e.g., process) and object

(e.g., file) a security context, which is represented as a sequence user: role: domain

or type[: level] and indexed by a Security Identifier (SID). The most important
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component here is type1. Under a type enforcement (TE) architecture, a security policy

dictates whether a process running within a domain is allowed to access an object labeled with

a certain type. Following is a policy specified for all third-party apps: allow untrusted app

shell data file:file rw file perms. This policy states that all the apps within the

domain of untrusted app are allowed to perform “rw file perms” operations on the objects

with a type of shell data file within a class2 file.

SEAndroid appeared in Android in version 4.3, running in permissive mode. In this

mode, the system allows a process to access a resource even if that violates the policy.

However it records the violations and reports it in the system’s logs. It is common practice to

test SELinux policies in permissive mode, to identify policy inadequacies or unearth policy

bugs that might result to system crashes. In version 4.4 we saw SEAndroid running in

enforcing mode for several root daemon processes such as installd (responsible for installing

apps), the zygote (responsible for forking new processes for newly launched apps), the vold

process (volume daemon: manages device nodes) and the netd (network daemon: provides

access to the Network). All other processes, including system and third-party apps and

services still run in permissive mode.

The policy files are under external/sepolicy in AOSP’s (Android Open Source Project)

source code and are built with the system such that the resulting policy in binary code

is read-only and unable to be modified without shipping a new binary and rebooting the

phone. The most important files are mac permissions.xml, file contexts, .te files for each

domain that processes can be assigned to and seapp contexts. In mac permissions.xml,

policy engineers can define a label to be assigned to an app, according to the certificate used

to sign it. That label is called seinfo. In file contexts, every Linux file is assigned a security

type. In seapp contexts, domains are defined for seinfo labels. Lastly a domain is defined

by creating a “domain name”.te file. Inside that file the rules dictating what a process that

belongs to that domain can access are defined.

Consider the following example. Let’s say that we want to assign an app called TestApp to

a domain called testdomain app. Then we want to allow that app to open the wallpaper file

/data/data/com.android.settings /files/wallpaper. First we must assign a security

context to the subject, i.e the file. Inside file contexts we add the following line:

/data/data/com.android.settings/files/wallpaper \
u:object r:wallpaper file:s0

1role is for role-based access and level for multi-level security.
2A class defines a set of operations that can be performed on an object.
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This will assign the type wallpaper file to our file in question. Next we must create the

domain that will be allowed to access this file. For that we create under external/sepolicy a

testdomain app.te file. Inside this file we will place all the rules that will dictate what a

process assigned to this domain can access. Thus we include a rule like below:

allow testdomain app wallpaper file:file open;

The class file is defined in the file external/sepolicy/access vectors. In that file the

operation open is defined for subjects that will belong to the class file. Our rule will allow

any subject in the testdomain app domain, to perform the action open on the wallpaper file

object which is a file. We are still missing something though. We haven’t told the system

how to associate our TestApp app with the testdomain app domain. For that we include

the app’s certificate (e.g testApp.x509.pem file) under built/target/product/security. Inside

external/sepolicy/keys.conf we define a tag name (e.g TESTTAG) to refer to our app’s cer-

tificate. To do that we use the following syntax:

[@TESTTAG]

ENG :testApp.x509.pem

Next in mac permissions.xml we associate this certificate with an seinfo tag let’s say

testApp seinfo. To do that we include the following lines of code:

<signer signature="@TESTTAG">

<seinfo value="testApp seinfo" />

</signer>

Lastly we associate the seinfo tag assigned to our app with the testdomain app domain in

seapp contexts by adding the following line:

user= app seinfo=testApp seinfo domain=testdomain app

The SEAndroid module currently incorporated into the AOSP (Android Open-Source

Project) 4.3 and 4.4 defines five domains within its policy files: platform app; shared app;
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media app; release app and untrusted app. The platform domain is assigned to all apps

signed with the platform key, i.e packages that are considered as part of the core platform

such as System UI, Bluetooth, Settings e.t.c. The shared domain is assigned to the launcher

and contacts related packages while the media platform is assigned to the gallery app and

media related providers. The release domain is assigned typically to device’s vendor apps

and google apps. The last one, untrusted domain, is the domain assigned to all applications

installed by the user.

As noted before, these policy files are ready-only and compiled into the Android kernel

code. They are enforced by security hooks placed at di↵erent system functions at the kernel

layer. For example, the function open we saw before, is instrumented to check the compliance

of each call with the policies: it gets the type of the file to be opened and the domain of

the caller, and then runs avc has perm with the SIDs of both the subject (testdomain app)

and object (wallpaper file) to find out whether this operation is allowed by the policies.

Here avc has perm first searches an Access Vector Cache (AVC) that caches the policies

enforced recently and then the whole policy file. In addition to the components built into

the kernel, SEAndroid also includes a separate middleware MAC (MMAC) that works on

the application-framework/library layer. The current implementation of MMAC is limited

to just assigning a security tag (testApp seinfo) to a newly installed application (TestApp)

(through mac permissions.xml). When Zygote forks a process for an app to be launched,

it uses that tag in tandem with a policy file (seapp contexts) to decide which SELinux

domain should be assigned to it.

SELinux integration on Android creates new possibilities for defending the system and

the applications it supports and this work we will take advantage of this it and seamlessly

extend it to protect against critical vulnerabilities that we will discuss on later chapters.

2.3 BACKGROUND ON TECHNIQUES AND METHODOLOGIES USED

NLP Techniques: The NLP community has developed di↵erent approaches to analyze

unstructured data. For example, NLP is used to parse user reviews online or user voice com-

mands to digital personal assistants. Work focused on extracting grammatical information

to understand what the user is trying to convey. Part-of-speech Tagging (POS Tagging),

is a typical technique to achieve that. It is used to determine for each word in a sentence

whether it is a noun, adjective, verb, adverb, proposition, and other part of speach. A com-

mon problem in NLP arises when one needs to perform word sense disambiguation. That is,

to derive a given a word’s semantic meaning. This can be challenging as a word might have
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multiple meanings and complex relationships with other words. To this end, Wordnet [37],

an English semantic dictionary has been proposed, where the community tried to capture

most of senses, of most of the English words. Wordnet also provides relationships between

words, such as whether two words are synonyms, or connected with is-a relationship and so

on. In essence, Wordnet is a graph with words as nodes and relationships as edges. To assist

in better capturing the relationships between words, the community has developed multiple

similarity metrics which are di↵erent ways to parse the Wordnet graph. For example, the

LCH [38] metric, uses the shortest paths between two words to determine how similar the

words are. To accurately determine which of the multiple senses of the word is the most

appropriate, one needs to carefully select the right similarity metric or design a new similar-

ity metric, and design her system in a way that incorporates domain knowledge. These are

challenges we had to overcome in our work to enable extraction of targeted data from local

files. Furthermore, our target files do not contain real words that can be used in an actual

conversation but rather variable names. These are some of the challenges I had to overcome

(see Chapter 4).

2.4 ANDROID’S SHARED RESOURCES

On a par with any multi-process operating system, modern smartphone operating sys-

tems manage process access to resources. This thesis performs a security analysis on such

shared resources across smartphone applications. In particular it focuses on shared process

privileges; shared filesystem resources; and shared connectivity resources.

• Shared Process Privileges. Each app on Android is assigned a unique static UID when

it is installed. This allows the operating system to di↵erentiate between apps during their

lifetime on the device, so it can run them in distinct Linux processes when launched. In

this way Android leverages the traditional Linux process isolation to ensure that one app

cannot access another app’s resources.This is with the exception of apps signed with the

same developer key. In that case, the apps can indicate in their manifests that they should

be assigned the same UID. Developers also commonly utilize third-party libraries for either

utility (avoid reinventing the wheel for common funcitonality) or advertising (allows for

monetization of free apps). However, when developers include a third-party library, the

library is treated as part of the host app. The operating system will assign one UID for the

app as a whole, even though the library and host app have di↵erent package names. Every

time an app is launched, the OS will assign a process identifier (PID) to the app and associate

that with the app’s UID. Again this PID is shared between the host app and its libraries that
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run within the same Linux process. As a result, the host app and the library components

will also share privileges and resources, both in terms of Linux discretionary access control

(DAC) permissions and in terms of Android permissions granted. The former allows the

library to access all the local files the host app is generating. The latter allows it to use the

granted permissions (e.g., ACCESS COARSE LOCATION) to access other resources on the

device (such as GPS), that can expose user information (such as her location).

This multifaceted ecosystem, where there are strong incentives for more data collection

by all stakeholders, needs to be better understood. Of particular interest are advertising

libraries o↵ered by advertising networks which rely on building detailed user profiles to

optimize their services. Studying the current practices of ad libraries is an important place

to start. Indeed our community already found that ad libraries collect some types of data

for themselves even without the cooperation (or with the implicit consent) of the host app

developer. Such behaviors have been observed in the wild since 2012 [3] and as a routine

practice today [40] for certain types of information. Nonetheless, to fully assess the privacy

risk associated with embedding a library into an app, we need to take into account not only

past and current behaviors, but also all allowed events that can lead to breaches of users’

data confidentiality. My work aims to take the first step into the direction of modeling ad

libraries, not based on previous behaviors but based on their allowed actions on the Android

platform. I show how this can be leveraged to design a tool that can assess the targeted

data exposure to ad libraries (Chapter 4).

• Shared Filesystem Resources. Android is built on top of a stripped down version of a Linux

kernel. Linux, historically makes available a large amount of resources considered harmless

to normal users, to help them coordinate their activities. A prominent example is the process

information displayed by the ps command (invoked through Runtime.getRuntime.exec),

which includes each running process’s user ID, Process ID (PID), memory and CPU con-

sumption and other statistics. Most of such resources are provided through two virtual

filesystems, the proc filesystem (procfs) and the sys filesystem (sysfs). The procfs contains

public statistics about a process’s use of memory, CPU, network resources and other data.

Under the sysfs directories, one can find device/driver information, network environment

data (/sys/class/net/) and more. Android inherits such public resources from Linux and

enhances the system with new ones (e.g. /proc/uid stat). For example, the network

tra�c statistics (/proc/uid stat/tcp snd and /proc/uid stat/tcp rcv) are extensively

utilized [41] to keep track of individual apps’ mobile data consumption.

• Shared Connectivity Resources. Android and other mobile systems are routinely employed

by their owners for managing their external resources. Particularly, almost every app running
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(a) Smartphone apps compete for connectivity
resources to access personal IoT devices.

(c) Smartphones and their apps compete for
connectivity resources to access shared IoT
devices.

Figure 2.6: Shared connectivity resources can be used for accessing external devices.

on these systems is supported by a remote service, which interacts with the app through the

Internet or the telephone network (using short text messages). Such services are increasingly

being utilized to store and process private user information, particularly the data related

to online banking, social networking, investment, healthcare, etc. Moreover, the trend of

leveraging smartphones to support the Internet of Things, brings in a whole new set of

external devices, which carry much more sensitive data than conventional accessories (e.g.,

earpieces, game stations). In my work I categorize IoT devices into two classes: Personal

devices are devices which connect to smartphones directly, through a proximity protocol

such as Bluetooth, NFC, WiFi Direct e.t.c. (see Figure 2.6b). Examples include health and

fitness systems (e.g., blood pressure monitors [43], Electrocardiography sensors [44], glucose

meters [45]), and remote vehicle controllers (e.g., Viper SmartStart [46]) among others.

Other devices belong to the Shared class (see Figure 2.6d). Such devices are typically home

automation andvsecurity systems [47]. Examples are smart thermostats [48, 49], cameras

for streaming surveillance video to a mobile phone [50]; the baby monitors [51], the smart

refrigerators [52] and others.
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CHAPTER 3: LITERATURE REVIEW

3.1 ADVERTISING LIBRARIES

Several e↵orts try to characterize the current mobile advertising libraries. MAdScope [40]

and Ullah et al. [53] both found that ad libraries have not yet exploited the full potential of

targeting. My work is driven by such observations and tries to assess the data exposure risk

associated with embedding a library in an app.

Many studies describe alternative mobile advertising architectures. AdDroid [54] enforces

privilege separation by hard-coding advertising functions as a system service into Android

platform. AdSplit [17] achieves privilege separation via making ad libraries and their host

apps run in separate processes. Leontiadis et al. [55] proposes a client-side library compiled

with the host app to monitor the real-time communication between the host app and the

ad libraries to control the exposed information. MobiAd [56] suggests local profiling instead

of keeping the user profiles at the data brokers to protect users’ privacy. Most of these

alternative architectures envision a separation of ad libraries from their host apps. However,

none of these solutions are deployed in practice as they all disrupt the business model of

multiple players in this ecosystem. I take a di↵erent approach by analyzing and modeling

the capabilities of ad libraries in order to proactively assess apps’ data exposure risk.

There are a number of studies that aim to—or can be used to—detect and/or prevent

current privacy-infringing behaviors in mobile ads. Those works mainly fall into three general

categories: (1) static scanning [3, 18, 19, 20, 21], (2) dynamic monitoring [22, 23, 24, 25],

and (3) hybrid techniques using both [26]. A combination of these techniques could detect

and prevent some of the attack strategies of ad libraries we discussed in this work, if they

are adopted in practice. However, such countermeasures can still fail to protect against all

allowed behaviors. For example, TaintDroid [25] and FlowDroid [20] cannot evaluate the

sensitivity of the data carried. Moreover, static code analysis will miss dynamically loaded

code, and code analysis in general cannot estimate the potential reach of libraries. Further,

by merely encrypting local files we cannot prevent libraries within the same process from

using the key the host app uses to decrypt the files. In addition, there is no mechanism to

address data exposure through app bundle information as we reveal in this work because (1)

this is not considered as a sensitive API from AOSP and (2) even if marked as sensitive it is

unclear how access to it by apps and/or libraries should be mediated, as there are legitimate

uses of it. My focus is not on detecting and tackling current behaviors but assessing the
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data exposure given all allowed behaviors. This is critical when trying to assess the privacy

risk of an asset.

SUPOR [57] and UIPicker [58] seek instances where apps exfiltrate sensitive data. These

works also use NLP and machine learning techniques to find data of interest in user interfaces.

However, their focus is on data like account credentials and financial records, whereas I focus

on general targeted data with validation based on data of interest to advertisers. As with

most of the other work in this area, SUPOR and UIPicker seek existing exfiltration instances

rather than allowed instances, although some of their techniques can facilitate finding allowed

instances.

3.2 INFORMATION LEAKS THROUGH FILESYSTEM RESOURCES

Information leaks have been studied for decades and new discoveries continue to be made

in recent years [59, 60, 61]. Among them, most related to my work is the work on the

information leaks from procfs, which includes using the ESP/EIP data to infer keystrokes [62]

and leveraging memory usages to fingerprint visited websites [63]. However, it is less clear

whether those attacks pose a credible threat to Android, due to the high non-determinism

of its memory allocation [63] and the challenges in keystroke analysis [62]. In comparison,

our work shows that the usage statistics under procfs can be practically exploited to infer an

Android user’s sensitive information. The adversarial inference technique I will introduce in

this work is related to prior work on tra�c analysis [64]. However, those approaches assume

the presence of an adversary who sees encrypted packets. Also, their analysis techniques

cannot be directly applied to smartphone. The attack I demonstrate is based upon a di↵erent

adversary model, in which an app uses public resources to infer the content of the data

received by a target app on the same device. For this purpose, we need to build di↵erent

inference techniques based on the unique features of mobile computing, particularly the

rich background information (i.e., social network, BSSID databases and Google Maps) that

comes with the target app and the mobile OS.

Information leaks have been discovered on smartphone by both academia and the hacker

community [8, 9, 65]. Most of known problems are caused by implementation errors, either

in Android or within mobile apps. By comparison, the privacy risks which manifest due

to shared resources in the presence of emerging background information have not been

extensively studied on mobile devices. Up to my knowledge, all prior research on this subject

focuses on the privacy implications of motion sensors or microphones [66, 67, 68, 69, 70].

What has never been done before is a systematic analysis on what can be inferred from the

public resources exposed by both Linux and Android layers.
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New techniques for better protecting user privacy on Android also continue to pop up [25,

71, 9, 72, 73, 74, 8]. Di↵erent from such research, my work focuses on the new privacy risks

emerging from the fast-evolving smartphone apps, which could render innocuous shared

filesystem resources indicative of sensitive user information.

3.3 SHARED COMMUNICATION CHANNELS

Shared communication channels such as Bluetooth, NFC, Audio and SMS, rely on system

permissions for delegating access to third-party apps. The Android permission system has

been under scrutiny for years [75, 76, 77, 25, 78, 79, 77, 80, 81]. Much has been proposed

to extend this security model, allowing the phone user to selectively grant permissions to

apps [81], deny those with dangerous permission combinations [74], utilize app-defined fine

grained access control [75] or leverage IPC provenances for security protection [8]. However,

all these prior approaches are designed to guard a phone’s local resources. In contrast little

has been done on mobile OSes to protect the external devices that connect to smartphones.

In particular, on Android, an app that acquires the permissions to use a channel (e.g.,

Bluetooth, NFC, etc.) is automatically granted the access to any device attached to this

channel. There is nothing to bind a device to its authorized app.

Related to my study on how Android delegated access to SMSs, is Porscha [77], which

controls the content an app can access on a phone for digital rights management. Porscha

controls access to SMS messages through sending an IBE encrypted message to a Porscha

proxy on the phone, which further dispatches the message to authorized apps according

to a set of policies. While e↵ective, this solution is ad-hoc and specific to SMSs. I follow

an architectural approach which allow me to propose a unified, easily maintainable and

extentible design for controlling access to all shared communication channels with external

resources.

Prior works on the security issues of health devices are also closely related to our work.

Rahman et al. [82] identified several vulnerabilities on Fitbit, a wireless wearable fitness

device, which can be leveraged to inject data into the device and launch a denial of service

attack against it. Li et al. [83] look into the security weaknesses of glucose monitoring and in-

sulin delivery systems and proposed the technologies for protecting those devices’ operations

using rolling-code and body-coupled communication. Also, Marti et al. [84] lay out a few

necessary requirements for building a secure mobile health care system. All such prior work

focuses on the security problems of a specific health device or the communication protocol

it uses, whereas my research aims at understanding the security implications of Android’s
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shared communication channels to such external devices in proximity, in the presence of

malicious apps running on the phone.

3.4 SHARED IoT DEVICES

IoT attacks. Recent works demonstrated attacks on IoT devices [85, 86, 87, 88, 89, 90].

Fernandes et.al. found vulnerabilities on SmartThings’ applications [89]. Their work focuses

on a specific IoT hub that can integrate third-party IoT devices, whereas I propose a design

applicable to an infrastructure that exists in almost all households with IoT devices. [86, 87],

revealed vulnerabilities on smart-home devices. However they consider an adversary on a

separate device. [90] considers an intricate mobile adversary which colludes with a cloud. I

illustrate that the mobile adversary can succeed with minimal e↵ort. All reported attacks

further motivate the need for practical smart-home defenses.

Android side-channels and network monitors. [91] used the VPN service on Android

for passive monitoring of mobile apps to collect user tra�c information for analysis. However,

it redirects all packets to a server that further routes the packets. This raises privacy concerns

which I show we can avoid by implementing the routing functionality locally.

Access control. There have been various works on home access control which we classify

in three major areas: surveys [92, 93, 94]; access control systems [95, 96, 97, 98, 88, 99];

and user studies for usable policy specifications [100, 101]. More relevant to my study on

shared devices is the second. Nonetheless, most of these systems assume a clean-slate design

where the OSes of participating nodes can be modified. My proposed solution is backward

compatible: it requires just a software upgrade on a home’s router and downloading an app

on the phone. Other work focused on access control enforced on the mobile phones [102,

103, 104]. In Chapter 6 I also illustrate the design of hybrid MAC and DAC approach

on smartphone operating systems to guarantee applicaiton-level access control to devices.

This works well for personal devices which are typically owned by the smartphone user. In

contrast, smart-home devices are shared across a local area network where guest users might

connect their own smartphones which we cannot trust to carry our improved OS version. In

Chapter 7 I will show how we can build an access control scheme distributed across a home

area network router and trusted smartphones to tackle this problem e↵ectively.

IDS and Firewalls. Work on intrusion detection systems (IDS), personal and application

firewalls [105, 106, 107, 108], focuses either solely at the host or at a network node, or

only at the network layer. The system I propose (Chapter 7) is distributed, consolidating
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application level semantics from hosts, and network level information from the network node.

Furthermore, we do not require experts to set up policies.

In all previous works, the solutions are either ad-hoc, or impractical. In this thesis I

conduct a systematic analysis of the security of shared resources on smartphones which reveal

new adversarial capabilities of third-party smartphone apps. To mitigate such adversaries, I

design solutions focusing on both detection of information leakage and prevention at an the

operating or a distributed system level. My solutions follow four important design properties:

(a) e↵ectiveness; (b) e�ciency; (c) backward compatibility and, (d) maintainability.
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CHAPTER 4: SHARING PROCESS PRIVILEGES

This chapter is based on joint work with Whitney Merrill, Wei Yang, Aston Zhang and

Carl A. Gunter [10].

Android enforces access control decisions at the process/application boundaries. However,

smartphone apps commonly utilize third-party libraries from other untrusted sources for

advertising. Thus, these libraries share all the privileges their host process is granted. Since

advertising networks depend on building detailed user profiles we expect them to follow

aggressive data harvesting techniques. In this chapter, I analyze how advertising libraries

can take advantage of the shared process privileges with their host apps. Then I utilize this

analysis to design a tool for automatic detection of potential sensitive information leakage

to advertising libraries.

4.1 INTRODUCTION

Advertisers aim to generate conversions for their ad impressions. Advertising networks

assist them in matching ads to users, to e�ciently turn impressions into conversions. I call the

information that achieves this targeted data. Android smartphones contain rich information

about users that enable advertising networks to gather targeted data. Moreover, there is

considerable pressure on advertising networks to improve the number and quality of targeted

data they are able to o↵er to advertisers. This raises many privacy concerns. Mobiles often

contain sensitive information about user attributes which users might not comfortably share

with advertising networks but could make valuable targeted data. This, in turn, led to a

substantial line of research on privacy and advertising on mobiles in two general areas: (1)

strategies for detection and prevention [109, 22, 18, 19, 26, 3, 110, 23, 111, 53, 24, 40], and

(2) architectures and protocols that improve privacy protections [56, 54, 17, 55]. The first

of these approaches primarily provides insights into the current practices of advertisers and

advertising networks. The second examines a future in which a changed advertising platform

provides better privacy. However, some of the studies show that the development and use

of targeted data on mobiles is modest at present [53]. This is at least partially because

most applications do not pass along information about users to the advertising network—

through its ad library embedded in the app—unless the advertising network requires them

to do so [40]. This leave open an important question: what if advertising networks took full

advantage of the information-sharing characteristics of the current architecture?
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In particular, when one wants to assess the privacy risk associated with an asset, she needs

to take into account not only past and current hazardous behaviors but all allowed actions

that can result in potential privacy loss [112]. In the case of opportunistic advertising

libraries, a privacy loss is possible if such libraries have the ability to access private user

information without the user’s consent. Current app privacy risk assessment techniques [113,

114], try to detect when sensitive data leaks from an app. To achieve that, they employ static

or dynamic analysis of apps and/or libraries. However, applying this sort of assessment is

constrained by the apparent practices of the advertising libraries. For example, every time

an ad library is updated, or a new ad library appears, such analysis must be performed

again. To make things worse, some ad libraries load code dynamically, [3] which allow them

to indirectly update their logic without dependency on the frequency of their host app’s

updates. In this way, any analysis dependent on current library behaviors is unreliable as

the analysis can not predict the behavior of updated code or dynamically downloaded/loaded

code. Thus, to assess such risks, we need to have a systematic way to analyze the potential

data exposure to ad libraries independent of current or apparent practices. A privacy risk

assessment should consider what an adversary is allowed by the system to do instead of only

what she is currently doing. My work takes the first step in this direction by analyzing

the shared intra-process resources available to libraries and modelling their data collection

capabilities on an Android platform.

I model opportunistic ad networks based on their abilities to access targeted data on an

Android platform through at least four major attack channels: protected APIs by inheriting

the permissions granted to their host apps; reading files generated at runtime by their host

apps and stored in the host apps’ protected storage; observing user input into their host apps;

and finally unprotected APIs, such as the PackageManager.getInstalledApplications()

that allow the ad library to access platform-wide information. We further categorize these

attack channels into two classes, namely the in-app and out-app exploitation class. The

in-app class contains attack channels that are dependent on the ad library’s host app. The

protected API’s, app local files and user input are examples of such channels. The out-app

class contains attack channels that are independent of the host app. The public API’s

are an example of this. In particular, Grace et. al. [3] identified that the list of installed

applications on a user’s device—which can be derived from a public API on Android—raises

privacy concerns. In this work I systematically explore how this information can be exploited

by an adversary in practice. I demonstrate and evaluate how well such APIs can result in

an adversary learning a user’s targeted data. Based on my data exposure modeling, I have

designed and developed a framework called Pluto. Pluto aims to facilitate assessment of the

privacy risk associated with embedding an untrusted library into an app. I show that Pluto
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is able to reveal the potential data exposure of a given app to its ad libraries through the

considered attack channels. Frameworks like Pluto are extremely useful to app developers

who want to assess their app’s potential data exposure, markets aiming to better inform their

users about the privacy risk associated with downloading a free app, and users themselves.

In addition, I hope that this will spur similar academic attempts to capture the capabilities

of third-party libraries on smartphones and serve as a baseline for comparison.

4.2 ANALYSIS

4.2.1 Threat Model

A risk is the potential compromise of an asset as a result of an exploit of a vulnerability by

a threat. In this case, I define assets to be user targeted data, the threat is an opportunistic

ad library, and a vulnerability is what allows the ad library to access targeted data without

the device user’s consent or the consent of the library’s host app. Here, we examine the

capabilities of the ad libraries to collect such data on an Android platform.

Because libraries are compiled with their host apps, are in extend authorized to run as

the same Linux process as their hosts on an Android OS. Thus the ad library code and the

host app’s code will share the same identifier as far as the system is concerned (both the

static UID and the dynamic PID). In essence, this means that any given ad library runs with

the same privileges as its host app. Consequently, the libraries inherit all the permissions

granted by the user to the host app. There is no way for the user to distinguish whether

that permission is used by her favorite app or the ad libraries embedded in the app. This

permission inheritance empowers the ad libraries to make use of permission-protected APIs

on the device. For example, if an app granted the GET ACCOUNTS permission, its libraries

can opportunistically use it to retrieve the user’s registered accounts (e.g., the email used to

login to Gmail, the email used to login to Facebook, the email used for Instagram, Twitter

and so on).

Furthermore, during their lifetime on the device, apps create local persistent files where

they store information necessary for their operations. These files are stored in app-specific

directories isolated from other applications. This allows the apps to o↵er seamless person-

alized services to their users even when they are not connected to the Internet. In addition

this practice enables the apps to avoid the latency of accessing their clouds, provided they

have one. Android o↵ers a convenient way through its SharedPreferences class to store

and retrieve application and user specific data to an XML file in its UID-protected directory.

In that directory, apps can also create their own files typically using standardized formats

32



such as XML, JSON, or SQLite. In this way, they can utilize widely available libraries and

Android APIs to swiftly and easily store and parse their data. The ad libraries, running

as the same Linux user as their host apps, inherit both the Linux DAC privileges and the

SE Android MAC capabilities of their host apps. This allows them to access the app’s lo-

cally stored files as their hosts would. Consequently, the ad libraries could read the user

data stored in those files. Consider, for example, the app My Ovulation Calculator which

provides women a platform to track ovulation and plan pregnancy. This app, listed under

the MEDICAL category on Google Play, has been installed 1,000,000–5,000,000 times. By

parsing the app’s runtime generated local files, an ad library might learn whether its user

su↵ers from headaches, whether she is currently pregnant, and, if so, the current trimester

of her pregnancy. All these are targeted data which advertisers can monetize [115], making

them a valuable addition to ad libraries.

Moreover, an aggressive ad library could utilize its vantage position to peak on user input.

In particular, such a library could locate all the UI elements that correspond to targeted

data related to user input [58, 57] and monitor them to capture the data as they become

available. For example, by monitoring the user’s input on Text Me! Free Texting &

Call, a communication app with 10,000,000–50,000,000 downloads, an ad library would be

able to capture the user’s gender, age and zip code. Note that these data constitute

the quasi identifiers [116] proven to be enough to uniquely identify a large percentage of

registered voters in the US.

Nonetheless, an ad library can exploit both the inherited privileges of its host app and

the position on a user’s device. Irrespective of the host app, the ad libraries, can make use

of public APIs to learn more about the user. Such APIs are considered harmless by the

Android Open Source Project (AOSP) designers and are left unprotected. This means that

the apps can use those APIs without the need to request permissions from either the system

or the user. In this chapter, I show that by merely acquiring the list of installed applications

through such APIs, one can learn targeted data such as a user’s marital status, age, and

gender among others.

To model these attack channels, I further categorize them them into two classes, namely

the in-app and out-app exploitation class. The in-app class contains attack channels that

are dependent on the ad library’s host app. The protected API’s, app local files and user

input, are examples of such channels. The out-app class contains attack channels that

are independent of the host app. The public API’s are an example of this. Through the

rest of this work, we assume that an ad library can gain access to targeted data through

permission-protected APIs, runtime-generated app local files, user input, and unprotected

APIs.
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4.2.2 Data Exposure through In-App Shared Process Capabilities

Ad libraries can leverage their position within their host apps to access exposed targeted

data. Some targeted data are dependent on what the host apps themselves collect from the

users. An ad library can access such data by parsing the files its host app created at runtime

to store such information locally, that is in its own UID-protected storage. Furthermore,

it can inherit the permissions granted to its host app and leverage that privilege to collect

targeted data through permission-protected APIs. Finally, it can peek on what the host

app user inputs to the app. In this section, I explore what an ad library can learn through

these in-app attack channels. We elaborate on our methodology and provide insights from

real world examples. To gain insight on what an ad library can learn, I perform manual

inspection of some real-world free apps. This way we can validate the assumptions about

data exposure through in-app attack channels and further create ground truth for test data

that we can use to do evaluations of the framework in subsequent sections.

I first cherry-pick a few free apps I selected for purposes of illustration. I downloaded the

target apps from Google Play and used Apktool to decompile them. I located the packages

corresponding to the Google AdMob advertising network library and located an entry point

that is called every time an ad is about to be loaded. I injected our attack logic there to

demonstrate how the ad library can examine local files. In particular, this logic dumps the

database and xml files that the app has created at runtime. I then compiled the app and ran

it on a physical device by manually providing it with some input. Here are some examples

of what such an aggressive ad library could learn in this position (or what AdMob is, in

principle, able to learn now).

I’m Pregnant helps women track their pregnancy progress and experience. It has 1,000,000–

5,000,000 installations and is ranked with 4.4 stars 1 on Google Play. The code was able

to read and extract the local files created by the host app. After manually reviewing the

retrieved files, I found that the host app is storing the weight of the user, the height, cur-

rent pregnancy month and day, symptoms such as headaches, backache and constipation. It

also recorded events such as dates of intercourse (to establish the date of conception) and

outcomes like miscarriage or date of birth.

Diabetes Journal helps users better manage their diabetes. It has 100,000–500,000 in-

stallations and ranked with 4.5 stars on Google Play. The code was able to extract the local

files generated by the app. Manually reviewing these files, I found that it exposes the user’s

1Applications on Google Play are being ranked by users. A 5-star application is an application of the
highest quality.
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birth date, gender, first-name and last name, weight and height, blood glucose levels, and

workout activities.

TalkLife targets users that su↵er from depression, self-harm, or suicidal thoughts. It has

10,000–50,000 installations on Google Play and ranked with 4.3 stars. In contrast with the

other two apps above, TalkLife stores the user information in a user object which it serializes

and then stores in a local file. In this case, some knowledge of the host app allows our code

to deserialize the user object and get her email, date of birth, and first name. Deserializing

the user object also provided the library the user password in plain text.

Thus, if an opportunistic advertising library is included in apps like these, then a careful

manual review of the apps will reveal some pathways to targeted data. At this point it helps

to have a little more terminology. Let us say that a data point is a category of targeted data

point values. For example, gender is a data point, whereas knowing that Bob is a male is

a data point value. What we would like to do, is examine a collection of apps to see what

data points they expose to ad libraries.

To explore these ideas and their refinement I develop three datasets listed in the first three

rows of Table 4.1. For the first, I make a list of the 100 most popular free apps in each of

the 27 categories on Google Play to get 2700 apps. After removing duplicate apps, we are

left with 2535 unique apps. We can call this the Full Dataset, FD. From these I randomly

selected 300 apps for manual review. From these apps I removed the ones that crashed on

our emulator or required the use of Google Play Services. We will refer to this as the Level

One Dataset (L1). On this dataset, I searched for data point exposure by two means. First,

I inspected the manifest to see if the permissions themselves would suggest that certain types

of data points would be present. For example, we can predict that the address attribute

could be derived by the library if the host app is granted the ACCESS COARSE LOCATION or the

ACCESS FINE LOCATION permission, the email attribute from the GET ACCOUNTS permissions,

the phone attribute from the READ PHONE STATE permission and the online search from the

READ HISTORY BOOKMARKS permission. Second, I launched the app, looked to see what local

files it produced, and looked into these files to see if they expose any particular data points.

The data points we consider must include user data that the ad libraries are likely inter-

ested in harvesting. To this end, I extract data points mostly based on a calculator provided

by the Financial Times (FT) [115]. This calculator provides illustrative information sought

by data brokers together with an estimate of its financial value in the U.S. based on analysis

of industry pricing data at the time the calculator was created. For example, according

to the FT calculator, basic demographic information like age and gender are worth about

$.007. If an opportunistic advertising network can learn that a user is (probably) an accoun-

tant, then the cumulative information is worth $.079 (according to the calculator); if they
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Table 4.1: Datasets

Name Number Description
Full
Dataset
(FD)

2535 Unique apps col-
lected from the 27
Google Play cate-
gories.

Level One
Dataset
(L1)

262 Apps randomly se-
lected from FD.

Level Two
Dataset
(L2)

35 Apps purposively
selected from L1.

App
Bundle
Dataset
(ABD)

243 App bundles col-
lected through sur-
vey.

also know that this accountant is engaged to be married, this increases the value to $.179.

Engaged individuals are valuable because they face a major life change, are likely to both

spend more money and change their buying habits. An especially noteworthy data point is

a pregnancy. This is well illustrated by events surrounding Target’s successful program to

use the habits of registered expecting shoppers to derive clues about unregistered ones in

order to target them with advertising about baby care products [117]. The FT calculator

provides us with a realistic way of exploring the relative value of an information gathering

strategy. The precise figures are not important, and have probably changed significantly

since the introduction of the calculator, but they give some ballpark idea of value and the

system provides a benchmark for what a more accurate and detailed database of its kind

might use.

I abstracted the questionnaire-like attributes from the FT calculator into keywords and

used these as a guide to data points to find in the apps reviewed. For example, I transformed

the question “Are you a fitness and exercise bu↵” into “workout”. We refer to the overall

attack technique that examines local files and uses protected APIs, as a level one inspection

(L1-I). I found 29 categories of data points in L1 by this means, including ‘gender’, ‘age’,

‘phone number’, ‘email address’, ‘home address’, ‘vehicle’, ‘online searches’, interests like

‘workout’ and others. Table 4.2 depicts some popular apps and the data points they expose

to ad libraries performing a level one inspection.

However, an ad library could also utilize the fact that it can eavesdrop on user inputs

in its host app. This can be done on Android by exploring the resource files of packages.
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Table 4.2: Data exposure from popular apps to ad libraries performing level-one (L1-I) and
level-two (L2-I) inspection.

Attack
Strategy

Category App Name Num. of
Installation

Exposed Data Points

L1-I MEDICAL Menstrual Cal-
endar

1⇥106�5⇥106 pregnancy, trimester, headache

L1-I EDUCATION myHomework
Student Plan-
ner

1⇥106�5⇥106 gender, age, address

L2-I HEALTH &
FITNESS

Run with Map
My Run

5 ⇥ 106 � 10 ⇥
106

phone, email, first name, last
name, age, gender, address,
workout

L2-I LIFESTYLE BeNaughty -
Online Dating
App & Call

5 ⇥ 106 � 10 ⇥
106

phone, email, age, gender, ad-
dress, marital status, parent

Once an interesting layout file is found, an o↵ensive library can inflate the layout from the

library package and read from its UI elements. With this strategy, the ad library can find

targeted data that are input by the user but not necessarily kept in local files. Let us call

the attack strategy that utilizes not only local files and protected APIs, but also user input

eavesdropping, a level two inspection (L2-I). To better understand what data points are

exposed to an ad library performing a level two inspection, I selected 35 of the apps in the

L1 dataset and reviewed them manually to find data points that level two inspection could

reveal. Lets call this the L2 dataset. The 35 apps in question are ones that exposed one

or more data points other than ones derived from the manifest. We make this restriction

to assure that there was no straight-forward strategy for finding data points in these apps

so we could better test the automated inference techniques we introduce later. Table 4.2

depicts some popular apps and the data points they expose to ad libraries performing a level

two inspection. We observe that apps expose not only demographic information but also

more sensitive data such as user health information. The complete list of apps and the data

points they expose is omitted due to space limitations.

Figure 4.1a displays the number of apks in the level one inspection that were found to

expose the basic data points we listed earlier. Figure 4.1b portrays a similar graph for the

level two inspection. Here, I prune all data points with frequency less than three. We

observe that data points that can be derived by exploiting the host app’s permissions are

more prevalent than other ones. This is because the permissions are coarse-grained and app

developers are likely to use them for a number of reasons, whereas other data points would

be present only if the host app is explicitly collecting that information. Overall, it is clear

that targeted data is exposed by apps through in-app attack channels to ad libraries. Next

I will examine exposure through out-app channels.
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Figure 4.1: Number of apps with data points inferred by (a) level one inspection of L1, (b)
level two inspection of L2.
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4.2.3 Data Exposure through Out-App Shared Process Capabilities

Ad libraries can surreptitiously access targeted data not only through in-app attack chan-

nels but also from host-app-independent channels such as public APIs. Such APIs are con-

sidered to be harmless and thus made available to all applications on the platform without

the need of special permissions. In particular, Android provides a pair of publicly available

functions, which we will abbreviate as getIA and getIP, that return app bundles, the list of

installed apps on a mobile.2 They can be used by the calling app to find utilities, perform

security checks, and other functions. They also have high potential for use in advertising.

An illustration of this is the Twitter app graph program [118], which was announced in late

2014. Twitter asserted its plans to profile users by collecting their app bundles3 to “provide

a more personal Twitter experience for you.” Reacting to Twitter’s app graph announce-

ment, the Guardian newspaper postulated [119] that Twitter “reported $320m of advertising

revenues in the third quarter of 2014 alone, with 85% of that coming from mobile ads. The

more it can refine how they are targeted, the more money it will make.” This progression

marks an important point about the impact of advertising on privacy. Both the Financial

Times [115] and a book about the economics of the online advertising industry called The

Daily You [120] emphasize the strong pressures on the advertising industry to deliver better

quality information about users in a market place that is both increasingly competitive and

increasingly capable. This is a key insight of this chapter: what may seem opportunistic now

may be accepted business practice and industry standard in a few years, and what is viewed

as malicious today may be viewed as opportunistic or adventurous tomorrow. Twitter pro-

vides warnings to the user that Twitter will collect app bundles and o↵ers the user a chance

to opt out of this. Other parties are less forth-coming about their use of this technique of

user profiling.

Use of App Bundles

Getting app bundles is a great illustration of the trajectory of advertising on mobiles. In

2012 the AdRisk tool [3] showed that 3 of 50 representative ad libraries it studied would

collect the list of all apps installed on the device. The authors viewed this as opportunistic

at best at the time. But what about now? We did a study of the pervasiveness of the use

of app bundles by advertising networks in Google Play. The functions getIA and getIP are

2Their formal names are getInstalledApplications and getInstalledPackages. The first returns the
applications, the second returns the packages and, from these, one can learn the application names.

3We use the term app bundle rather than app graph because we do not develop a graph from the app
lists.
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built into the Android API and require no special permissions. We decompiled the 2700

apps we have collected from Google Play, into smali code 4 for analysis and parsed these

files to look for the invocations of getAP and getIP in each app. This allowes us to narrow

the set of apps for analysis to only those that actually collect a list of apps on the mobile,

which we deem an app bundle. I then conducted a manual analysis of the invocation of these

functions by ad libraries.

Of the 2700 apps selected for review, 165 apps were duplicates, narrowing our sample

size down to 2535 distinct apps. Of these, 27.5% (679/2535) contained an invocation of

either of the two functions. This total includes invocation of these functions for functional

(utility and security) as well as advertising purposes. To better understand if an ad library

invokes the function, analysis required a thorough examination of the location of the function

call to see if it is called by an advertising or marketing library. I found that many apps

pass information to advertisers and marketers. This analysis is conducted manually to best

capture a thorough list of invocations within ad libraries. Ultimately 12.54% of the examined

apps (318/2535) clearly incorporate ad libraries that invoke one of the functions that collects

the app bundle of the user. I found 28 di↵erent ad libraries invoking either getIA or getIP.

These results do not necessarily include those apps that collect app information themselves

and pass it to data brokers, advertising or marketing companies, or have their own in-house

advertising operation (like Twitter). These results demonstrate that many types of apps

have ad libraries that collect app bundles, including medical apps and those targeted at

children. Interestingly, I did not detect collection of app bundles by the three ad networks

identified by AdRisk. However, a number of other interesting cases emerged.

Radio Disney, for example, uses Burstly, a mobile app ad network whose library 5 calls

getIP. Disney’s privacy policy makes no direct reference to the collection of app bundles for

advertising purposes. Use of this technique in an app targeted at children is troubling because

it might collect app bundle information from a child’s device without notifying either the

parent who assisted the download or an older child that this type of information is collected

and used for advertising purposes. Disney does mention the collection of “Anonymous

Information” but the broad language defining this does not give any indication that the

Radio Disney app collects app bundles.6

4The smali format is a human-readable representation of the application’s bytecode.
5burstly/lib/apptracking/AppTrackingManager.smali
6Formally, they define anonymous information as “information that does not directly or indirectly identify,

and cannot reasonably be used to identify, an individual guest.” App bundles are similar to movie play lists;
it is debatable whether they indeed satisfy this definition.
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Looney Tunes Dash! is a mobile app provided by Zynga that it explicitly states that

they collect ”Information about ... other third-party apps you have on your device.”7 In

fact, this is the privacy policy for all Zynga apps.

Several medical apps (12) collect app bundles. Most surprisingly, Doctor On Demand:

MD & Therapy, an app which facilitates a video visit with board-certified physicians and

psychologists collects app bundles through the implementation of google/ads/ conversion

tracking. However, their linked privacy policy makes no reference to passing any user in-

formation to advertisers. Other apps in the medical category with advertising libraries that

collect app bundles include ones that track ovulation and fertility, pregnancy, and remind

women to take their birth control pill.

Survey Study

Upon learning of the prevalence of the app bundle collection by advertisers, we need to

better understand what type of information could be learned by advertisers based on the

list of apps on a user’s mobile device. To do this, we can devise a study that would allow us

to collect our own set of app bundles to train a classifier.

The study consisted of a survey and an Android mobile app launched on the Google Play

Store. The protocol for all the parts of the study was approved by the Institutional Research

Board (IRB) for our institution. All participants gave their informed consent. We required

informed consent during both parts of the study, and participants could leave the study at

any time. Participants were informed that the information collected in the survey and the

information collected by the mobile app would be associated with one another.

Participants included individuals over the age of 18 willing to participate in the survey

and who owned an Android device. Crowdsourcing platforms such as Amazon’s Mechanical

Turk are proven to be an e↵ective way to collect high quality data [121]. The survey was

distributed over Microworkers.com a comparable crowdsourcing platform to Amazon’s Me-

chanical Turk (MTurk). We chose Microworkers.com over Amazon Mechanical Turk because

Amazon Mechanical Turk did not allow tasks that involve requiring a worker to download

or install any type of software.

Moreover, I designed the mobile app, AppSurvey, to collect the installed packages on a

participant’s phone. The study directed the participant to the Google Play Store to down-

load the mobile app. Upon launching AppSurvey, a pop-up screen provided participants

information about the study, information to be collected, and reiterated that the partici-

pation in the study was anonymous and voluntary. If the participant declined the consent,

7https://company.zynga.com/privacy/policy
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no information would be collected. If the participant consented, the app uploaded the app

bundles from the participants phone and anonymously and securely transmit it to our server.

AppSurvey also generated a unique User ID for each individual which participants were in-

structed to write down and provide in the survey part of the study. Finally, AppSurvey

prompted participants to uninstall the mobile app.

The survey is designed based upon the FT calculator. Specifically, it consisted of 25

questions about basic demographic information, health conditions, and Internet browsing

and spending habits. The survey also contained two control questions included to identify

survey participants not paying su�cient attention while taking the survey. If either of these

questions were answered incorrectly, we excluded the survey response. In addition, the

workers were not compensated until after the finished tasks were reviewed and approved by

the survey conductors. Before taking the survey, participants were required to give informed

consent to the information collected in the survey. To link the app bundle information

collected by AppSurvey to the responses provided by participants in the survey, participants

were required to input the unique User ID generated by AppSurvey. The collection of this

data allows us to establish a ground truth for users’ app bundles.

The survey resulted in answers and app bundle information from 243 participants., and

1985 total distinct package names.

4.3 DETECTION DESIGN

The analysis in the previous section highlights the need for detecting information exposure

to ad libraries through shared process privileges. To this end I have design Pluto. Pluto

is a modular framework for estimating in-app and out-app targeted data exposure for a

given app. In-app Pluto focuses on local files that the app generates, the app layout and

string resource files, and the app’s manifest file. Out-app Pluto utilizes information about

app bundles to predict which apps will be installed together and employs techniques from

machine learning to make inferences about users based on the apps they have on their mobile.

I describe each of these in a pair of subsections.

4.3.1 In-app Pluto

In-app Pluto progresses in two steps as illustrated in Figure 4.2. First, the Dynamic

Analysis Module (DAM) runs the given app on a device emulator and extracts the files the

app creates. Then it decompiles the app and extracts its layout files, resource files, manifest

file and runtime generated files. At the second step, the files produced by the DAM are
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Figure 4.2: Design of In-app Pluto

fed to a set of file miners. The file miners utilize a set of user attributes and user interests,

possibly associated with some domain knowledge, as a matching goal. A miner will reach a

matching goal when it decides that a data point is present in a file. When all the app’s files

are explored, the Aggregator (AGGR) removes duplicates from the set of matching goals and

the resulting set is presented to the analyst. Pluto’s in-app component’s goal is to estimate

o✏ine, the exposure of targeted data—or data points—to ad libraries at runtime. In-app

Pluto can be configured to estimate data points for a level 1 aggressive library by looking

only at the runtime generated files and available permissions. To perform exposure discovery

for a level 2 of aggression, it mines targeted data also from the resource and layout files. In

essence Pluto is trying to simulate what an ad library is allowed to do to estimate what is

the potential data exposure from a given app. To perform in-app exposure discovery, Pluto

employs dynamic analysis and natural language processing techniques to discover exposure

of in-app data points. Here I report on a prototype implementation focusing on manifest,

SQLite, XML, and JSON files.
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Dynamic Analysis

To discover the files that an app is generating at runtime, Pluto runs the app on an

emulator for 10 seconds and then uses a monkey tool to simulate user input. 8 This can

generate pseudo-random streams of clicks, touches, and system-level events. I chose to use

a monkey because some apps might require user stimulation before generating some of their

local files. To validate this assumption, we performed two experiments. First, I configured

Pluto’s DAM module to run all 2535 apps in the FD dataset for 10 seconds each. I repeat the

experiment, this time configuring DAM to issue 500 pseudo-random events to each app after

its 10 second interval is consumed. As we see on Table 4.3, Pluto explores approximately 5%

more apps in the second case. 9 More importantly, DAM Monkey generates 1196 more files

than DAM which results in 100 apps with ‘interesting’ files more. Android’s Monkey was

previously found to achieve approximately 25.27% LOC coverage [123]. However, Pluto’s

components can be easily replaced, and advances in dynamic analysis can be leveraged in

the future. For example, PUMA [124] is a very promising dynamic analysis tool introduced

recently. If new levels of library aggression are introduced in the future, PUMA could be

used instead of Android’s monkey to better simulate behaviors that can allow libraries to

access user attributes at runtime.

Table 4.3: DAM’s coverage. * denotes interesting files (SQLite, XML, JSON)

DA Strategy
% successful
experiments

#files # *files
#of apps w/
*files

DAM 0.718 14556 9083 1911
DAM Monkey 0.763 15752 10171 2021

Once the execution completes, DAM extracts all the ‘runtime’ generated files. Subse-

quently, it decompiles the input android app package (apk) and extracts the Android layout

files, Android String resources and the app’s manifest file.

File Miners empowered by Natural Language Processing

Once the DAM module generates ‘runtime’ files, Pluto’s enabled file miners commence

their exploration. I have implemented four types of file miners in the prototype: MMiner;

GMiner; DBMiner; XMLMiner. The MMiner is designed to parse manifest files, the DBMiner

for SQlite database files, the XMLMiner for runtime generated XML files and the GMiner

8In our implementation we used the Android SDK-provided UI/Application Exerciser Monkey [122].
9An unsuccessful experiment includes apps that failed to launch or crashed during the experiment.
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is a generic miner well suited for resource and layout files. The miners take as input, a set

of data points, 10 in the form of noun words and a mapping between permissions and data

points that can be derived given that permission.

Input processing: Pluto utilizes Wordnet’s English semantic dictionary [37] to derive a

set of synonyms for each data point. However, a word with multiple meanings will result

in synonyms not relevant to Pluto’s matching goal. Consider for example the word gender.

In Wordnet, gender has two di↵erent meanings: one referring to grammar rules and the one

referring to reproductive roles of organisms. In our case it is clear that we are interested

in the latter instead of the former. In this prototype, the analyst must provide Pluto with

the right meaning. While it is trivial to make this selection, for other data points it might

not be as trivial. For example, age has 5 di↵erent meanings in Wordnet. Other data points

which we have not explored, might have even more complex relationships. Visuwords.com

is a helpful tool which can be used to visualize such relationships and immensely facilitated

such selections. For example, the list of data points in the FT calculator, is indeed feasible

to analyze manually. However, Pluto does not require this from an analyst. If the meaning

is not provided, Pluto will take all synonym groups into account with an apparent e↵ect on

precision.

NLP in Pluto: The NLP community developed di↵erent approaches to parse sentences

and phrases such as Parts of Speech (POS) Tagging and Phrase and Clause Parsing.

The former can identify parts of a sentence or phrase (i.e., which words correspond to nouns,

verbs, adjectives or prepositions), and the latter can identify phrases. However, these cannot

be directly applied in our case because we are not dealing with well written and mostly

grammatically correct sentences. In contrast, Pluto parses structured data written in a

technically correct way (e.g., .sqlite, .xml files). Thus in our case we can take advantage of the

well-defined structure of these files and extract only the meaningful words. For the database

files, potentially meaningful words will constitute the table name and the columns names.

Unfortunately, words we extract might not be real words. A software engineer can choose

anything for the table name (or filename), from userProfile, user profile, uProfil, to

up. We take advantage of the fact that most software engineers do follow best practices and

name their variables using the first two conventions, the camelCase (e.g. userProfile) and the

snake case structure (e.g. user profile). The processed extracted words are checked against

Wordnet’s English semantic dictionary. If the word exists in the dictionary, Pluto derives

its synonyms and performs a matching test against the data points and their synonyms. 11

10We derived most of the data points from the FT calculator [115].
11In our prototype we used the JWI [125] interface to Wordnet, to derive sets of synonyms.
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If a match is determined, then a disambiguation layer decides whether to accept or reject

the match. Next, I elaborate on the functions of the disambiguation layer.

Context Disambiguation Layer: Words that reach a matching goal, could be irrelevant

with the actual user attribute. Consider for example the word exercise. If a Miner unearths

that word, it will be matched with the homonymous synonym of the matching goal workout.

However, if this word is found in the Strings resource file that doesn’t necessarily mean that

the user is interested in fitness activities. It could be the case that the app in question

is an educational app that has exercises for students. On the other hand, if this word is

mined from an app in the Health and Fitness Google Play category, then it is more likely

this is referring to a fitness activity. Pluto employs a disambiguation layer that aims to

determine whether the match is valid. It attaches to every user interest the input app’s

Google Play category name. We call that a disambiguation term. For user attributes, the

disambiguation term is currently assigned by the analyst 12. In addition, Pluto assigns some

domain knowledge to data points. For attributes, it treats the file name or table name as

the domain knowledge, and for interests it uses the matching goal itself. The prototype’s

context disambiguation layer calculates the similarity between the disambiguation term

and the domain knowledge. If the similarity value is found to surpass a specific threshold,

then the match is accepted.

The NLP community already proposed numerous metrics for comparing how similar or

related two concepts are. The prototype can be configured to use the following existing

similarity metrics to disambiguate attribute matches: PATH [126]; LIN [127]; LCH [38];

LESK [128]. Unlike the first three metrics which are focused on measuring an is-a similarity

between two words, LESK is a definition-based metric of relatedness. Intuitively this would

work better with user interests where the disambiguation term is the app’s category name.

The other metrics are used to capture is-a relationships which cannot hold in most of

the user-interests cases. For example, there is no strong is-a relationship connecting the

user interest vehicle with the category transportation. 13 LESK seems well fit to address

this as it depends on the descriptions of the two words. Indeed, LESK scores the (vehicle,

transportation) pair with 132 with (vehicle, travel and local) coming second with 103.

However, in this study I found that LESK might not always work that well when applied

in this domain. Studying the scoring of LESK with respect to one of our most popular user

interests in our L1 dataset we found it to be problematic. When comparing the matching

goal workout with the category Health and Fitness, LESK assigns it one of the lowest

12We used the word Person.
13We found that similarity metrics that find these relationships do not assign the best score to the

pair(vehicle, transportation) when compared with other (vehicle, *) pairs.
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Table 4.4: Comparison between rankings of (interest, category name) pairs from LESK and
droidLESK. TF denotes the data point term frequency in local files created by apps in a
category.

DATA
POINT

RANK LESK TF TF*LESK

VEHICLE 1 TRANSPORTATION FINANCE TRANSPORTATION
VEHICLE 2 BOOKS AND REF-

ERENCES
TRANSPORTATION FINANCE

VEHICLE 3 TRAVEL AND LO-
CAL

LIFESTYLE LIFESTYLE

WORKOUT 1 BOOKS AND REF-
ERENCES

HEALTH AND FIT-
NESS

HEALTH AND FIT-
NESS

WORKOUT 2 TRAVEL AND LO-
CAL

APP WIDGET NEWS AND MAGA-
ZINE

WORKOUT 3 MUSIC AND AUDIO NEWS AND MAGA-
ZINE

APP WIDGET

scores (33), with the maximum score assigned to the (workout, books and references) pair

(113).

Here I present a new improved similarity metric that can address LESK’s shortcomings

when applied to our problem. I call our similarity metric droidLESK. The intuition behind

droidLESK is that the more frequently a word is used in a category, the higher the weight

of the (word, category) pair should be. droidLESK is then a normalization of freq(w, c)⇥
LESK(w, c). In other words, droidLESK is the weighted LESK were the weights are assigned

based on term frequencies. To evaluate droidLESK, I create pairs of the matching goal

workout with every Google Play category name and assign a score to each pair as derived

from droidLESK and other state of the art similarity metrics. To properly weight LESK

and derive droidLESK, I perform a term frequency analysis of the workout word in all

‘runtime’ generated files of the L1 dataset. I repeat the experiment for the word vehicle.

droidLESK’s scoring was compared with the scores assigned to the pairs by the following

similarity metrics: WUP [129]; JCN [130]; LCH [38]; LIN [127]; RES [131]; PATH [126]; LESK [128]

and HSO [132].

The results are very promising—even though preliminary—as shown in table 4.4. 14 We

observe that the proposed technique correctly assigns the highest score to the pair (workout,

health and fitness) than any other pair (workout,*). The same is true for the pair (vehicle,

transportation). droidLesk was evaluated on the two most prevalent user interests in our

dataset. Since this approach might su↵er from over-fitting, in future work I plan to try this

new metric with more words and take into account the number of apps contributing to the

term frequency. I further discuss the e↵ects of using droidLESK in Pluto’s in-app targeted

data discovery in the evaluation Subsection ??.

14Due to space limitations, I omit uninformative comparisons.
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4.3.2 Out-app Pluto

Out-app Pluto aims to estimate what is the potential data exposure to an ad library

that uses the unprotected public gIA and gIP APIs. That is, given the fact that the ad

library can learn the list of installed applications on a device, it aims to explore what data

points, if any, can be learned from that list. Intuitively, if an ad library knows that a user

installed a pregnancy app and local public transportation app, it would be able to infer the

user’s gender and coarse location. However, the list of installed applications derived from

gIA and gIP is dependent on the device the ad library’s host app is installed, which renders

estimation of the exposure challenging. To explore what an ad library can learn through this

out-app attack channel, I derive a set of co-installation patterns that reveals which apps are

usually installed together. This way we can simulate what the runtime call to gIA or gIP

will result in given invocation from an ad library incorporated into a particular host app. I

then feed the list of co-installed applications into a set of classifiers we trained to discover

the potential data exposure through the out-app channel.

The Pluto out-app exposure discovery system runs machine learning techniques on a cor-

pus of app bundles to achieve two goals. First, it provides a Co-Installation Pattern module

(CIP) which can be updated dynamically as new records of installed apps are received. The

CIP module runs state-of-the-art frequent pattern mining (FPM) algorithms on such records

to discover associations between apps. For example, such an analysis can yield an associ-

ation in the form of a conditional probability, stating that if app A is present on a device

then app B can be found on that device with x% confidence. When an analyst sets Pluto

to discover out-app targeted data regarding an app o✏ine, Pluto utilizes the CIP module

to get a good estimation of a vector of co-installed apps with the target app. The resulting

vector is passed to the classifiers which in turn present the analyst with a set of learned

attributes. Second, it provides a suite of supervised machine learning techniques that take

a corpus of app bundles paired with a list of user targeted data and creates classifiers that

predict whether an app bundle is indicative of a user attribute or interest.

Co-Installation Patterns

The CIP module uses frequent pattern mining to find application co-installation patterns.

This can assist Pluto in predicting what will an ad library learn at runtime if it invokes gIA

or gIP. We call a co-installation pattern, the likelihood to find a set of apps installed on a

device in correlation with another app installed on that device. In FPM, every transaction

in a database is identified by an id and an itemset. The itemset is the collection of one or
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more items that appear together in the same transaction. For example, this could be the

items bought together by a customer at a grocery store. Support indicates the frequency

of an itemset in the database. An FPM algorithm will consider an itemset to be frequent

if its support is no less than a minimum support threshold. Itemsets that are not frequent

are pruned. Such an algorithm will mine association rules including frequent itemsets in

the form of conditional probabilities that indicate the likelihood that an itemset can occur

together with another itemset in a transaction. The algorithm will select rules that satisfy a

measure (e.g., a minimum confidence level). An association rule has the form N:N, where N is

the number of unique items in the database. An association rule is presented asX ) Y where

the itemset X is termed the precedent and Y the consequent. Such analysis is common

when stores want to find relationships between products frequently bought together.

Pluto’s CIP uses the same techniques to model the installations of apps on mobile devices,

as itemsets bought together at a grocery store. Our implementation of Pluto’s CIP module

uses the FPGrowth [133] algorithm, a state of the art frequent pattern matching algorithm

for finding association rules. I have chosen FPGrowth because it is significantly faster than

its competitor Apriori [134]. CIP runs on a set of app bundles collected periodically from

a database containing user profiles that include the device’s app bundles and derives a

set of association rules, indicating the likelihood that apps can be found co-installed on a

device. Our CIP association rule will have the form 1:N because Pluto is interested in finding

relationships between a given app and a set of other apps.

CIP uses confidence and lift as the measures to decide whether an association rule is

strong enough to be presented to the analyst. Confidence is defined as conf(X ) Y ) =
supp(X[Y )
supp(X) , where supp(X) is the support of the itemset in the database. A confidence of 100%

for an association rule means that for 100% of the times that X appears in a transaction, Y

appears as well in the same transaction. Thus an association rule facebook ) skype, viber

with 70% confidence will mean that for 70% of the devices having Facebook installed, Viber

and Skype are also installed.

Another measure CIP supports is Lift. Lift is defined as: lift(X ) Y ) = supp(X[Y )
✏supp(X)⇥supp(Y ) .

Lift indicates how independent the two itemsets are in the rule. A Lift of one will indicate

that the probability of occurrence of the precedent and consequent are independent of each

other. The higher the Lift between the two itemsets, the stronger the dependency between

them and the strongest the rule is.
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Learning Targeted Data from App Bundles

Pluto uses supervised learning models to infer user attributes from the CIP-estimated app

bundles. Pluto aims to resolve two challenges in training models based on app bundles: 1)

skewed distribution of values of attributes; 2) high dimensionality and highly sparse nature

of the app bundles.

Balancing distributions of training sets: Based on the empirical data collected,

some attributes have a more skewed distribution in their values. To orient the reader using

a concrete example, consider an example where 1 of 100 users has an allergy. In predicting

whether a user has an allergy in this dataset, one classifier can achieve an accuracy of 0.99

by trivially classifying each user as having an allergy. In view of this, for the attribute “has

an allergy” the value “yes” can be assigned a higher weight, such as 99, while the value “no”

has a weight of 1. After assigning weights, the weighted accuracy for predicting an attribute

now becomes the weighted average of accuracy for each user; the weight for a user is the

ratio of the user’s attribute value weight to the total attribute value weights of all users.

Therefore, in this example, the weighted accuracy becomes 0.5, which is fair, even when

trivially guessing that each user has the same attribute value. In order to train an e↵ective

model for Pluto, the distribution of training sets is balanced following the aforementioned

idea. To balance we adjust the weights of existing data entries to ensure that the total

weights of each attribute value are equal. In this way, the final model would not trivially

classify each user to be associated with any same attribute value. Accordingly, I will adopt

measures weighted precision and weighted recall in the evaluation where the total weights of

each attribute value are equal; this is to penalize trivial classification to the same attribute

value [135].

Dimension reduction of app-bundle data: Another challenge we face in this context

is the high dimensionality and highly sparse nature of the app bundles. There are over 1.4

million apps [136] on Google Play at this moment, and it is both impractical and undesirable

for the users to download and install more than a small fraction of those on their devices. A

recent study from Yahoo [137] states that users install on average 97 apps on a device. To

make this problem more tractable I used a technique borrowed from the Machine Learning

community which allows us to reduce the considered dimensions. The prototype employs

three classifiers, namely K-Nearest Neighbors (KNN), Random Forests, and SVM.

To apply these classifiers to our data, each user ui in the set of users U is mapped to an

app installation vectors aui = {a1, . . . , ak}, where aj = 1 (j = 1, . . . , k) if ui installs aj on

the mobile device, otherwise aj = 0. Note that the app installation vector is k-dimensional

and k can be a large value (1985 in our study). Thus, classifiers may su↵er from the “curse
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of dimension” such that the computation could be dominated by less relevant installed apps

when the dimension of space goes higher. To mitigate this problem, we can use principal

component analysis (PCA) by selecting a small number of the principal components to

perform dimension reduction before applying a classifier.

4.4 DETECTION EVALUATION

In this section I evaluate Pluto’s components in estimating data exposure. We will first

evaluate Pluto’s performance to discover Level-1 and Level-2 in-app data points. Next we

will apply Pluto’s CIP module and classifiers on real world data app bundles and the collected

ground truth, and evaluate their performance.

4.4.1 Evaluation of Pluto’s in-app exposure discovery

In this section I present empirical findings on applying Pluto on real world apps.

Experimental setup: I provided Pluto with a set of data points to look for, enhanced

with the meaning—sense id of the data point in Wordnet’s dictionary—and the class of

the data point (i.e., user attribute or user interest). I also provide Pluto with a mapping

between permissions and data points and we configured it to use the LCH similarity metric

at the disambiguation layer for user attributes and our droidLESK metric for user interests.

I found that setting the LCH threshold to 2.8 and the droidLESK threshold to 0.4 provides

the best performance. To tune the thresholds, I parameterized them and ran Pluto multiple

times on the L1 dataset. A similar approach can be used to tune the thresholds on any

available - ideally larger - dataset 15, and data point set. In all experiments, all Miners

were enabled unless otherwise stated. The MMiner mined in manifest files, the DBMiner

in runtime-generated database files, the XMLMiner in runtime-generated XML files and the

GMiner in String resource files and layout files. I compared Pluto to the level-1 and level-2

ground truth we manually constructed as described in Section 4.2.

In-app exposure estimation: I ran Pluto on the set of 262 apps (Pluto L1) and the

full set of 2535 apps (Pluto FD). Figure 4.3 plots the distribution of apps with respect to

data points found within those apps. I observed that the number of data points found in

apps remains consistent as we increased the number of apps. I repeated the experiment for

the level-1 dataset that consists of 35 apps. Figure 4.4. depicts Pluto’s data point discovery.

15Note that it requires little e↵ort to get Android app packages.
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Figure 4.3: CDF of apps and number of data points (level-1)

I compared Pluto’s data point prediction with the respective level-1 and level-2 manual

analysis 4.2.

Evidently, Pluto is optimistic in estimating in-app data points. In other words, Pluto’s

in-app discovery component can flag apps as potentially exposing data points, even though

these are not actually there. A large number of Pluto’s false positives stem from parsing the

String constants file. Parsing these files increases coverage by complementing our dynamic

analysis challenge in generating files that host apps created after the user logged in. It also

addresses the layer-2 aggressive libraries can read from the user input. However, this results

in considering a lot of extra keywords that might match a data point or its synonyms. Their

location in the Strings.xml makes it harder for Pluto to disambiguate the context for certain

data point classes. In this study, I makes the first attempt towards mitigating this pathology

by proposing droidLESK.

Pluto is designed to find user attributes, user interests, and data points stemming from

the host app’s granted permissions. Next, I present the performance of Pluto’s prototype

implementation with respect to the above categories.

Finding user-attributes: Figure 4.5 depicts the performance of Pluto in finding the

data point gender when compared to the level-1 and level-2 datasets and Figure 4.6 shows

the same for the user attribute age. Gender had absolute support of 13 in the level-1 dataset

and 18 in the level-2 and age had 12 and 9 respectively. We observe that Pluto is doing

better in discovering data points available to the more aggressive libraries. For example,
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Figure 4.4: CDF of apps and number of data points (level-2)

the word age, was found in a lot of layout files and Strings.xml files while the same was not

present in the runtime generated files. Comparing age with the level-1 ground truth, results

in a high number of false positives, since the analyst has constructed the ground truth for

a level-1 aggressive library. When Pluto is compared with the ground truth for a level-2

aggressive library, its performance is significantly improved.

Finding interests: Next, I evaluated Pluto’s performance in discovering user interests.

Figure 4.7 illustrates the user interest workout when Pluto is compared against the level-1

ground truth and the level-2 ground truth. Workout had absolute support of 5 in the level-1

dataset and 6 in the level-2. Again, Pluto does much better in the latter case for the same

reasons stated before.

Preliminary results for droidLESK: In the experiments I used droidLESK as the most

appropriate similarity metric on Pluto’s context disambiguation layer for user interests.

I compared that with an implementation of Pluto with no disambiguation layer and an

implementation that uses the LESK metric. droidLESK achieved an astonishing 103.3%

increase in Pluto’s precision whereas LESK achieved an improvement of 11.37%. This is

a good indication that droidLESK is a promising way of introducing domain knowledge

when comparing the similarity between words in the Android app context. I plan to further

explore droidLESK’s potential in future work.

Finding data point exposure through permission inheritance: Pluto’s MMiner

scrapes through application manifest files to look for permissions that would allow a level-1
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Figure 4.5: gender prediction performance given the L1 and L2 ground truth.

or level-2 aggressive library to get access to user attributes or interests. I compared Pluto’s

performance in two di↵erent configurations. In configuration 1 (L1 or L2), Pluto is set to look

for a data point using all of its Miners whilst in configuration 2 (L1:MMiner and L2:MMiner)

Pluto is set to look for a data point only using the MMiner, if the data point can be derived

from the host app permissions. We performed the experiment on the larger level-1 dataset,

providing as input the mapping between the permissions ACCESS COARSE LOCATION

and ACCESS FINE LOCATION with the data point address. Figure 4.8 depicts Pluto’s

performance in predicting the presence of address given the above two configurations for

both the L1 and L2 datasets and ground truths. As expected, Pluto’s prediction is much

more accurate when only the MMiner is used. It is clear that in the cases where an data

point can be derived through a permission, the best way to predict that data point exposure

would be to merely look through the target app’s manifest file.

The main reason for the false negatives we observe in all previous experiments was because

some data points that the analyst has discovered were in runtime files generated after the user

has logged in the app, or after a specific input was provided. Pluto’s DAM implementation

cannot automatically log in the app. We leave this challenge open for future work.
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Figure 4.6: age prediction performance given the L1 and L2 ground truth.

4.4.2 Evaluation of Pluto’s out-app exposure discovery

Next, weneed to evaluate Pluto’s ability to construct co-installation patterns and predict

user attributes and interests based on information that can be collected through the out-app

channel. I ran Pluto’s CIP module and classifiers on the ABD dataset we collect from real

users (see Section 4.2).

Mining application co-installation patterns: Pluto’s CIP module implementation

uses FPGrowth [133], the state of the art frequent pattern matching (FPM) algorithm for

finding association rules. I chose FPGrowth because it is significantly faster than its competi-

tor Apriori [134]. I applied Pluto’s CIP module on the app bundles we collected through our

survey. I set FPGrowth to find co-installation patterns in the form 1:N and prune events with

support less than 10%. Table 4.5 lists the 5 strongest—in terms of confidence—association

rules that CIP found when run on the survey dataset.

We observe that Facebook is likely to be installed together with the Facebook Messenger

app. This is likely because Facebook asks their users to install the Facebook Messenger app

when using the Facebook app. Our survey dataset reflects this as well. The strong relation-

ship between the Facebook app and Facebook Messenger app revealed by FPM illustrates its

e↵ectiveness for this application. Such rules are critical for Pluto to estimate co-installation
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Figure 4.7: workout prediction performance given the L1 and L2 ground truth.

patterns between the input application and other applications. Pluto leverages such pat-

terns to provide an estimation of what user attributes can be potentially derived from the

app bundles of users that have the input app. Co-installation patterns can also be used to

reduce redundancy when combining the in-app data exposure of multiple applications. For

example, one might want to estimate what are the in-app data points exposed by app A

and app B. However, if these applications are installed on the same device, then the total

amount of information the adversarial library will get will be the union of both removing

duplicates.

Table 4.5: The strongest co-installation patterns found by the CIP module when run on
the survey app bundles.

Precedent Consequence Conf Lift
com.facebook.katana com.facebook.orca 0.79 2.10
com.lenovo.anyshare.gps com.facebook.orca 0.75 2.01
com.viber.voip com.facebook.orca 0.74 1.98
com.skype.raider com.facebook.orca 0.71 1.88
com.skype.raider com.viber.voip 0.70 2.32
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Figure 4.8: address prediction performance in di↵erent configurations, given the L1 and
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Performance of Pluto’s classifiers: Pluto’s classifiers can be used to estimate user

attributes derived from CIP app bundles or real-time app bundles from user profiles. I

evaluated the performance of Pluto’s classifiers on real app bundles we collected from our

survey (see Section 4.2). I used the users’ answers to the questionnaire in the survey as the

ground truth to evaluate the classification results. To justify our use of dimension reduction

technique, we evaluated the classifier on both dataset before dimension reduction and dataset

after dimension reduction. The results on representative attributes are shown in Table 4.6

and Table 4.7 respectively.

Based on the results shown in both tables, Random Forest performs best across all pre-

diction tasks. The superiority of Random Forest in our evaluation agrees with the existing

knowledge [138]. Specifically, because our dataset has a relatively smaller number of in-

stances, the pattern variance is more likely to be high. The ensemble technique (voting by

many di↵erent trees) employed by Random Forest could reduce such variance in its predic-

tion and thus achieve a better performance.

Comparison of Table 4.6 and Table 4.7 show dimension reduction can e↵ectively im-

prove the performance of Random Forest and KNN. However, the performance of SVM

becomes poorer after dimension reduction. One possible reason is that SVM can handle
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Table 4.6: Performance of classifiers before dimension reduction

Classifier
Age Marital Status Sex

P(%) R(%) P(%) R(%) P(%) R(%)
Random Forest 64.1 66.3 89.8 83.6 91.5 89.6
SVM 65.5 63.6 89.0 82.1 87.4 83.1
KNN 62.7 60.0 86.3 77.7 83.4 74.8
P = Weighted Precision, R = Weighted Recall

Table 4.7: Performance of classifiers after dimension reduction

Classifier
Age Marital Status Sex

P(%) R(%) P(%) R(%) P(%) R(%)
Random Forest 88.6 88.6 95.0 93.8 93.8 92.9
SVM 44.8 35.4 66.9 50.5 80.9 70.1
KNN 85.7 83.6 92.5 91.2 91.6 89.9
P = Weighted Precision, R = Weighted Recall

high-dimension data such as our original dataset. The model complexity of SVM is deter-

mined by the number of support vectors instead of dimensions.

4.5 UTILITY AND LIMITATIONS

Utility of Pluto: In this chapter, I propose an approach that can be leveraged to assess

potential data exposure through in-app and out-app channels to a third-party library given

its access to shared intra-process privileges. Note that even though I use ad libraries in

free apps as a motivating example, this approach can be adapted to assess data exposure

by any app to any third-party library. I chose ad libraries because they are quintessential

examples of third-party libraries with strong business incentives for aggressive data harvest-

ing. Motivated by rising privacy concerns related to mobile advertising, users can exert

pressure on markets to integrate data exposure assessment into their system and present

the results in a usable way to users when downloading an app. In light of this information,

users would be able to make more informed decisions when choosing an app. Furthermore,

government agencies, such as the Food and Drug Administration (FDA), could benefit from

this approach to facilitate their e↵orts in regulating mobile medical device apps [139] and

the Federal Trade Commission (FTC) could leverage Pluto to discover apps that potentially

violate user privacy.

Next, I describe a simple way for markets (and in extend other interested parties) to

utilize Pluto’s results and rank apps based on their data exposure. Intuitively, the harder
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Table 4.8: Most risky apps based on their in-app data exposure. M = MEDICAL, HF =
HEALTH & FITNESS

CATEGORY PACKAGE DESCRIPTION AVG #IN-
STALL

SCORE
[0 - 10]

M com.excelatlife.depression Depression manage-
ment

100 ⇥ 103 �
500⇥ 103

8.14

M com.medicaljoyworks.prognosis Clinical case simulator
for physicians

500⇥ 103 � 1⇥
106

6.31

HF com.workoutroutines. great-
bodylite

Workout management 100 ⇥ 103 �
500⇥ 103

7.33

HF com.cigna.mobile.mycigna Personal health infor-
mation management

100 ⇥ 103 �
500⇥ 103

5.62

it is for an adversary to get a data point of a user, the more valuable that data point might

be for the adversary. Also, the more sensitive a data point is, the harder it will be to get it.

Thus sensitive data points should be more valuable for adversaries. Consequently, a market

could use a cost model, such as the one o↵ered by the FT calculator, to assign the proposed

values acting as weights to data points. In fact, Google, which acts as a data broker itself,

would probably have more accurate values and a larger set of data points. They could then

normalize the set of exposed data points and present the data exposure score for each app.

For example, let D be the set of data points in the cost model and X the set of data point

weights in the cost model, where |D| = |X| = n. We include the null data point in D

with a corresponding zero value in X. Also, let ↵ be the app under analysis. Then the new

ranked value of ↵ would be z↵ = x↵�min(X)
nP

i=1
xi�min(X)

where x↵ is the sum of all weights of the data

points found to be exposed by app ↵. Here, min(X) corresponds to an app having only

the least expensive data point in D.
nP

i=1
xi corresponds to an app exposing all data points

in D. z↵ would result in a value from 0 to 1 for each app ↵ under analysis. The higher

the value the more the data exposure. This can be presented in the applications download

site in application markets along with other existing information for that app. For better

presentation, markets could use a number from 0 to 10, stars, or color spectrum with red

corresponding to the maximum data exposure.

To provide the reader with a better perspective on the result of this approach, I applied

Pluto and performed the proposed ranking technique on the collected apps from the MEDICAL

and HEALTH & FITNESS Google Play categories respectively. In the absence of co-installation

patterns for all target apps, I do not take into account the e↵ect of having an app on the

same device with another data exposing app 16. We found that most apps have a low risk

score. In particular 97% of MEDICAL and also 97% of HEALTH & FITNESS apps had scores

16Note that to perform the out-app Pluto analysis one needs co-installation patterns for all ranked apps.
Markets can easily derive those using the FPM approach described earlier. In that case, one should take
into account the UNION of in-app and out-app exposed attributes.
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below 5.0. Those apps either expose a very small amount of highly sensitive targeted data,

targeted data of low sensitivity, or both. For example, we found net.epsilonzero.hearingtest,

a hearing testing app, exposed two attributes, the user’s phone number and age, and scored

0.02. This ranking technique ensures that only a few apps stand out in the rankings. These

are apps with a fairly large number of exposed data points including highly sensitive ones.

For example, the highest scored medical app com.excelatlife.depression with a score of

8.14, exposes 16 data points including “depression,” “headache,” and “pregnancy,” which

have some of the highest values in the FT calculator. Table 4.8 depicts the two most risky

apps per category. Pluto in conjunction with the proposed ranking approach can help a

user/analyst to focus on those high risk cases.

These ranking results also depict the prevalence of targeted data exposure. As we observe

on Table 4.8 the highest ranked apps were installed in the order of hundreds of thousands of

devices. Consequently, highly sensitive data of hundreds of thousands of users are exposed to

opportunistic third-party libraries. I defer to future work the study of practical approaches

to mitigate the data exposure by apps to third-party libraries.

App Bundles: The collection of app bundle information by app developers, advertising

companies, and marketing companies is troubling. Currently, the ability of apps to use gIP

or gIA with no special permissions provides an opportunity for abuse by both app devel-

opers and advertisers. My research demonstrates that this abuse is occurring. I further

demonstrate that such information can be reliably leveraged to infer users’ attributes. Un-

fortunately, companies fail to notify consumers that they are allowing the collection of app

bundles. With this, they have also failed to notify users as to what entity collects the in-

formation, how it is used, or steps to mitigate or prevent the collection of this data. The

failure of the Android API to require permissions for the gIP or gIA removes from the users

the possibility to have choice and consent to this type of information gathering. To prevent

abuse of gIP or gIA, app providers should notify users, both in the privacy policy and in the

application, that app bundles are collected. Additionally, applications should provide the

user the opportunity to deny the collection of this information for advertising or marketing

purposes. Potentially, the Android API could require special permissions for gIP or gIA.

However, the all-or-nothing permissions scheme might not add any additional value besides

notice to the user and the warning may not be necessary for an app that is using these two

functions for utility and functional purposes.

Limitations of the proposed approach: The estimation of data exposure to libraries

is constrained by the specific attack channels we consider. The prototype employs specific

examples for each channel and performs data exposure assessment based on those. Never-

theless, the cases we considered are not the only ones. For example, someone could include
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the CAMERA permission or the RECORD AUDIO in the protected APIs. The camera could be

used opportunistically to get pictures of the user in order to infer her gender or location.

The microphone could be used to capture what the user is saying and, by converting speech

to text and employing POS tagging, infer additional targeted data. More channels can also

be discovered such as new side channels or covert channels. These can be used to extend

Pluto for a more complete assessment. The current prototype and results can serve as a

baseline for comparison.

4.6 SUMMARY

In this Chapter I performed an analysis on the security of shared intra-process privileges.

I showed how an untrusted incentivized third-party library can exploit those shared priv-

ileges to aggressively harvest sensitive user information on a smartphone. In my analysis

I detailed the adversary model in this setting, and introduced previously unknown infer-

ence techniques for such advertisers. I then utilized these observations to built a tool for

automatically detecting potential information leakage to such adversaries. Figure 4.9 visu-

alizes this contribution on the smartphone ecosystem. The tool combines techniques from

code analysis, natural language processing and machine learning to emulate the informa-

tion reach of third-party libraries on smartphones. This study reveals a pressing need for

considering such intra-process adversaries when designing resource isolation mechanisms on

smartphones. Next I will look into the security of another shared resource, in particular

shared filesystem resources across userspace applications/processes on smartphones.
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CHAPTER 5: SHARING FILESYSTEM RESOURCES

This chapter is based on joint work with Xiaoyong Zhou, Dongjing He, Muhammad Naveed,

Xiaorui Pan, Xiaofeng Wang, Carl A. Gunter and Klara Nahrstedt [11].

Mobile applications can access filesystem resources made available by the host operating

system. Android in particular is built on top of a stripped down version of the Linux kernel,

which is optimized for mobile devices. The Linux kernel uses a virtual process filesystem

(procfs) for e�ciently mirroring some of the kernel data structures to userspace programs.

Files in this filesystem are protected using a traditional discretionary access control scheme.

However, files which hold seemingly harmless information on a static platform (e.g. desktop

machines) can be hazardous when accessed on a mobile platform. In Chapter I will present

my analysis on the Android shared filesystem resources. I will show that malicious mobile

applications can exploit unprotected files as side-channels to perform inference attacks and

compromise user confidentiality [11]. .

5.1 INTRODUCTION

Android provides unprivileged applications with access to basic local filesystem resources.

All such public resources are considered to be harmless and their releases are part of the

design which is important to the system’s normal operations. Examples include the coordi-

nation among users through the ps command and among the apps using audio resources they

access through he API call AudioManager.requestAudioFocus. However, those old design

assumptions on the public local resources are becoming increasingly irrelevant in front of

the fast-evolving ways to use smartphones. In [11] I identified two fundamental design/use

gaps that are swiftly widening, a↵ecting the Android ecosystem:

Firstly, I found that there is a gap between Linux’s design and the smartphone use.

Linux comes with the legacy of its original designs for workstations and servers. Some of

its information disclosure, which could be harmless in these stationary environments, could

become a critical issue for mobile phones. For example, Linux makes the MAC address of

the wireless access points (WAP) available under its virtual process filesystem (procfs). This

does not seem to be a big issue for a workstation or even a laptop back a few years ago.

For a smartphone, however, knowledge about such information will lead to disclosure of a

phone user’s location, particularly with the recent development that databases have been
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built for fingerprinting geo-locations with WAPs’ MAC addresses (called Basic Service Set

Identification, or BSSID).

Secondly, I observed the manifestation of a gap between the assumptions on Android public

resources and evolving app design, functionalities and background information throughout

this study. For example, an app is often dedicated to a specific website. Therefore, the

adversary no longer needs to infer the website a user visits, as it can be easily found out by

looking at which app is running (through ps for example). Most importantly, today’s apps

often come with a plethora of background information like tweets, public posts and public

web services such as Google Maps. As a result, even very thin information about the app’s

behavior (e.g., posting a message), as exposed by the public resources, could be linked to

such public knowledge to recover sensitive user data.

Specifically, in this study I carefully analyzed the ways filesystem resources are utilized by

the OS and popular apps on Android, together with the public online information related

to their operations. My study discovered two confirmed new sources of information leaks:

• App network-data usage (Section 5.2.2). I found that the data usage statistics disclosed

by the procfs can be used to precisely fingerprint an app’s behavior and even infer

its input data, by leveraging online resources such as tweets published by Twitter.

To demonstrate the seriousness of the information leakage from those usage data,

I developed a suite of inference techniques that can reveal a phone user’s disease

conditions she is interested in from the network-data consumption of WebMD app, her

identity from that of Twitter app, and the stock she is looking at from Yahoo! Finance

app.

• Public ARP information (Section 5.2.3). I further discovered that the public ARP

data released by Android (under its Linux public directory) contains the BSSID of

the WAP a phone is connected to, and demonstrate how to practically utilize such

information to locate a phone user through BSSID databases.

I built a zero-permission app that stealthily collects information for these attacks. This

chapter elaborates on side-channel attacks designed and executed based on these newly found

information leaks throufh shared filesystem resources and discusses mitigation strategies.

Firstly we will see the capabilities that adversary (5.2.1) possess to be able to deploy such

attacks.
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5.2 ANALYSIS

5.2.1 Adversary Model

The adversary considered in this study runs a zero-permission app on the victim’s smart-

phone. Such an app needs to operate in a stealthy way to visually conceal its presence

from the user and also minimize its impact on a smartphone’s performance. On the other

hand, the adversary has the resources to analyze the data gathered by the app using publicly

available background information, for example, through crawling the public information re-

leased by social networks, searching Google Maps, etc. Such activities can be performed by

ordinary Internet users.

In addition to collecting and analyzing the information gathered from the victim’s device,

a zero-permission malicious app needs a set of capabilities to pose a credible privacy threat.

Particularly, it needs to send data across the Internet without the INTERNET permission.

Also, it should stay aware of the system’s situation, i.e., which apps are currently running.

This enables the malicious app to keep a low profile and start data collection only when its

target app is being executed. Here we show how these capabilities can be obtained by the

app without any permission.

A malicious app should be able to share the surreptitiously stolen data with the adversary’s

remote location. Leviathan’s blog describes a zero-permission technique to smuggle out data

across the Internet [65]. The idea is to let the sender app use the URI ACTION VIEW Intent

to open a browser and sneak the payload it wants to deliver to the parameters of an HTTP

GET from the receiver website. I re-implemented this technique in my research and further

made it stealthy. Leviathan’s approach does not work when the screen is o↵ because the

browser is paused when the screen is o↵. I improved this method to smuggle data right

before the screen is o↵ or the screen is being unlocked. Specifically, the adversarial app

continuously monitors /lcd power (/sys/class/lcd/panel/lcd power on Galaxy Nexus),

an LCD status indicator released under the sysfs. Note that this indicator can be located

under other directory on other devices, for example, sys/class/backlight /s6e8aa0 on

Nexus Prime. When the indicator becomes zero, the phone screen dims out, which allows

the app to send out data through the browser without being noticed by the user. After the

data transmission is done, the app can redirect the browser to Google and also set the phone

to its home screen to cover this operation.

A malicious app should also be aware of the system’s situation or state. The designed zero

permission app defines a list of target applications such as stock, health, location applications

and monitors their activities. It first checks whether those packages are installed on the
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victim’s system (getInstalled Applications()) and then periodically calls ps to get a

list of active apps and their PIDs. Once a target is found to be active, our app will start

a thread that closely monitors the /proc/uid stats/[uid] and the /proc/ [pid]/ of the

target.

5.2.2 Side-Channel 1: per-App Network Tra�c

Usage Monitoring and Analysis

Mobile data usages of Android are made public under /proc/uid stat/ (per app) and

/sys/class/net/[interface] /statistics/ (per interface). The former was introduced

by Android to keep track of individual apps. These directories can be read by any app

directly or through TrafficStats, a public API class. Of particular interest here are two

files /proc/uid stat /[uid]/tcp rcv and /proc/uid stat/[uid]/tcp snd, which record

the total numbers of bytes received and sent by a specific app respectively. I found that

these two statistics are actually aggregated from TCP packet payloads: for every TCP packet

received or sent by an app, Android adds the length of its payload onto the corresponding

statistics. These statistics are extensively used for mobile data consumption monitoring [41].

However, my research shows that their updates can also be leveraged to fingerprint an app’s

network operations, such as sending HTTP POST or GET messages.

To catch the updates of those statistics in real time, I built a data-usage monitor that

continuously reads from tcp rcv and tcp snd of a target app to record increments in their

values. Such an increment is essentially the length of the payload delivered by a single

or multiple TCP packets the app receives and sends, depending on how fast the monitor

samples from those statistics. Our current implementation has a sampling rate of 10 times

per second. This is found to be su�cient for picking up individual packets most of the

time, as illustrated in Figure 5.1, in which I compare the packet payloads observed by Shark

for Root (a network tra�c sni↵er for 3G and WiFi) [140], when the user is using Yahoo!

Finance, with the cumulative outbound data usage detected by our usage monitor.

From the figure 5.1 we can see that most of the time, our monitor can separate di↵erent

packets from each other. However, there are situations in which only the cumulative length

of multiple packets is identified (see the markers in the figure). This requires an analysis

that can tolerate such non-determinism, which I will discuss later.

In terms of performance, the monitor has a very small memory footprint, only 28 MB,

even below that of the default Android keyboard app. When it is running at its peak speed,

it takes about 7% of a core’s cycles on a Google Nexus S phone. Since all the new phones
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Figure 5.1: Monitor tool precision

released today are armed with multi-core CPUs, the monitor’s operations will not have

noticeable impacts on the performance of the app running in the foreground as demonstrated

by a test described in Table 5.1 measured using AnTuTu [141] with a sampling rate of 10Hz

for network usage 5.2.2 and 50Hz for audio logging. To make this data collection stealthier,

I adopted a strategy that samples intensively only when the target app is being executed,

which is identified through ps (Section 5.2.1). The UI of the monitor tool is shown in Figure

5.2.

Table 5.1: Performance overhead of the monitor tool: there the baseline is measured by
AnTuTu [141]

Total CPU GPU RAM I/O
Baseline 3776 777 1816 588 595

Monitor Tool 3554 774 1606 589 585
Overhead 5.8% 0.3% 11.6% -0.1% 1.7%

However, the monitor cannot always produce deterministic outcomes: when sampling the

same packet sequence twice, it may observe two di↵erent sequences of increments from the

usage statistics. To obtain a reliable tra�c fingerprint of a target app’s activity we designed

a methodology to bridge the gap between the real sequence and what the monitor sees.

My approach first uses Shark for Root to analyze a target app’s behavior (e.g., click on

a button) o✏ine - i.e in a controlled context - and generate a payload-sequence signature

for its behavior. Once the monitor collects a sequence of usage increments from the app’s
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Figure 5.2: Monitor tool UI

runtime on the victim’s Android phone, I compare this usage sequence with the signature

as follows. Consider a signature (· · · , si, si+1, · · · , si+n, · · · ), where si,··· ,i+n are the payload

lengths of the TCP packets with the same direction (inbound/outbound), and a sequence

(· · · ,mj, · · · ), where mj is an increment on a usage statistic (tcp rcv or tcp snd) of the

direction of si, as observed by our monitor. Suppose that all the elements before mj match

the elements in the signature (those prior to si). We say that mj also matches the signature

elements if either mj = si or mj = si + · · · + si+k with 1 < k  n. The whole sequence is

considered to match the signature if all of its elements match the signature elements.

For example, consider that the signature for requesting the information about a disease

condition ABSCESS by WebMD is (458, 478, 492!), where “!” indicates outbound tra�c.

Usage sequences matching the signature can be (458, 478, 492!), (936, 492!) or (1428!).

The payload-sequence signature can vary across di↵erent mobile devices, due to the dif-

ference in the User-Agent field on the HTTP packets produced by these devices. This

information can be acquired by a zero-permission app through the android.os.Build API.

The User-Agent is related to the phone’s type, brand and Android OS version. For example,

the User-Agent of the Yahoo! Finance app on a Nexus S phone is:

User-Agent: YahooMobile/1.0 (finance; 1.1.8.1187014079); (Linux; U; Android 4.1.1;

sojus

Build/JELLY BEAN);
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Given that the format of this field is known, all the adversary needs, is a set of parameters

(type, brand, OS version etc.) for building up the field, which is important for estimating

the length of the field and the payload that carries the field. Such information can be easily

obtained by a zero-permission app, without any permission, from android.os.Build and

System.getProperty("http agent").

Health Data

Next I will show that the data-usage statistics a zero-permission app collects through

shared filesystem resources, leak out apps’ sensitive inputs, e.g., disease conditions a user

selects on WebMD mobile [142]. This has been achieved by fingerprinting her actions with

data-usage sequences they produce. The same attack technique also works on Twitter 5.2.2

and Yahoo! Finance 5.2.2.

WebMD mobile is an extremely popular Android health and fitness app, which has been

installed 1 ⇠ 5 million times in the past 30 days [142]. To use the app, one first clicks to

select 1 out of 6 sections, such as “Symptom Checker”, “Conditions” and others as seen

in Figure 5.3. In my research, I analyzed the data under the “Conditions” section, which

includes a list of disease conditions (e.g., Asthma, Diabetes, etc.). Each condition, once

clicked on, leads to a new screen that displays the overview of the disease, its symptoms and

related articles. As we can see from Figure 5.4, all such information is provided through a

simple, fixed user interface running on the phone, while the data there is downloaded from

the web. I found that the changes of network usage statistics during this process can be

reliably linked to the user’s selections on the interface, revealing the disease she is interested

in.

Attack Methodology. I first analyzed the app o✏ine (i.e. in a controlled context) using

Shark for Root, and built a detailed finite state machine (FSM) for it based on the payload

lengths of TCP packets sent and received when the app moves from one screen (a state of

the FSM) to another. The FSM is illustrated in Figure 5.5. Specifically, the user’s selection

of a section is characterized by a sequence of bytes, which is completely di↵erent from those

of other sections. Each disease under the “Conditions” section is also associated with a

distinctive payload sequence.

In particular, every time a user clicks on a condition she is interested in, there are a num-

ber of requests being generated: 3 POST {p1, p2, p3} requests which correspond to Overview,

Symptoms and Related Articles and 4 GET requests for ads and tracking. The 4 GETs can

be readily filtered out due to their fixed packet sized with small variations, e.g., the GET
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Figure 5.3: WebMD: First Screen
Figure 5.4: WebMD: A Condition’s Screen
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Figure 5.6: First Order Tra�c Classification of WebMD’s conditions

ads/dcfc.gif is always 174 bytes and the size of GET event.ng/type=... is always 391-

415 bytes. Interestingly, di↵erent from what has been observed from the browser-based web

applications [64], whose information leaks typically happen through the responses, for the

simple app studied here, even the sizes of its request payloads give away enough informa-

tion for a first order classification of all 204 conditions into 32 categories with 4 conditions

being already uniquely identified (see Figure 5.6). Table 5.2 shows an example of distinct

transmission tra�c patterns between ”Anemia. iron deficiency” and “Vulvodynia”.

Furthermore, lets denote the corresponding response pattern with {r1, r2, r3} excluding the
ads tra�c. The latter gives us some trouble but can be removed from the analysis also due

to its predictable packets pattern, for example it always contains a 450±100 bytes GIF image

and a packet of 2100± 200 bytes payload. From the signature {p1, p2, p3 !; r1, r2, r3  }, we
first utilize {p1, p2, p3} to classify all 204 conditions into 32 categories using the technology

in 5.2.2. Subsequently we can use the information from {r1, r2, r3} to further di↵erentiate

between conditions of the same category.

In a real attack, however, the zero-permission app cannot see the tra�c. The usage

increments it collects could come from the combination of two packets. For the requests,

this problem can be easily addressed using the technique described in Section 5.2.2, as their

payload lengths are fixed and we can compare an observed increment to the cumulative length

of multiple packets. The approach becomes less e↵ective when we work on the responses,

due to the non-determinism of payload lengths. Fortunately, inter-packet duration of the
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Table 5.2: WebMD. Comparison of Bytes Transmitted between two Conditions of di↵erent
Categories

Anemia, iron deficiency
Request Description Bytes TX
... ...
Get Overview (POST) 474
Get Symptoms (POST) 494
Get Related Articles (POST) 508

Vulvodynia
Request Description Bytes TX
... ...
Get Overview (POST) 461
Get Symptoms (POST) 481
Get Related Articles (POST) 495

inbound tra�c is reasonably long, allowing the usage monitor to accurately identify di↵erent

payloads most of the time.

Another fact that the adversary must address in a real context is that when a request is

being made from the application to the server, the device’s user agent is also being sent.

This can a↵ect the matching of the o✏ine created signatures with the data the malicious

app collects when the corresponding devices used di↵er in model, especially when the attack

relies on accuracy of byte granularity. To compensate for that the malevolent app can readily

acquire the device’s user agent and sent it out to the attacker’s remote server before it starts

emitting any of the previous metrics it records. To be consistent we integrate this piece of

functionality to our prototype despite its trivial nature.

To collect the data the adversary needs to complete her attack I used the following method-

ology: As stated before, using Shark for Root we can create a detailed map of the states the

application can be at any possible time. We can refer to states as screens being displayed

to the user as denoted by the simplified state diagram on Figure 5.5 . For each state of

the application we can record the length of the bytes (TCP payload) that were sent and

received for that screen to be displayed. The recordings are at the granularity of HTTP

requests/responses. This technique would allow us to distinguish the user’s navigation on

the device. To achieve that we used the outbound tra�c because of the requests’ consis-

tency among di↵erent iterations of the same experiment. The inbound tra�c contained

advertisement data that change as the advertisement being fetched is di↵erent every time.

Furthermore this issue is aggravated when a user is visiting disease conditions: For each
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Condition screen three pieces of disease specific information are being received. Firstly the

application receives the “Overview” of the disease, then the “Symptoms” that appear to a

su↵ering patient and lastly some links to disease “Related Articles” redirecting the user for

further reading as shown in Figure 5.4. However some other information relative to the app

or advertisements is being retrieved from di↵erent ports of the responding server or even dif-

ferent servers. If these information responses happen faster than our tool’s sampling speed

then the tool will report multiple response readings in one record. This makes the break-

down of that record to the individual responses hard especially when multiple conditions

receive information that vary less than the advertisement variation range.

WebMD has 204 available conditions for user perusal (at the time of writing). Using the

payload of the outbound requests we classified them into 32 Categories (Figure 5.6). The

request on row 1 of Table 5.3 is specific to the condition but can vary sometimes: For every

such request the condition’s name is passed as a parameter which results in collisions when

the titles of two di↵erent conditions have the same number of HTTP characters. A specific

id is also used for every condition but in most cases is of the same number of digits. Lastly

whether the request was made on a day of the month that can be described with 1 digit

or 2 a↵ects the request. For the classification I have used the requests made for the three

aforementioned condition specific information, which I mark at the fifth, sixth and seventh

row of Table 5.3. Those requests are always identical when visiting the same Condition.

The other requests are common for all conditions. Nevertheless, some Categories result in a

high number of collisions (many counts per bin on Figure 5.6). To address that we used the

inbound tra�c for a second order Classification. With much less possible candidates - the

category’s members - to match our tool’s inbound tra�c recording and based on the fact

that our tool’s high sampling rate can help us distinguish at least a fraction of the responses,

we managed to identify all the Condition visits.

To collect the data and construct tables with inbound and outbound tra�c (see Table 5.3)

generated with each condition click and also understand the application protocol in place,

I ran a set of experiments. For those experiments I have used a Google Nexus S 4G device

running Android 4.1.1 with root access to the Operating System, available. On the device I

installed Shark for Root which can capture the tra�c and generate pcap files that we can

analyze using an appropriate tool such as Wireshark. I have also installed WebMD and

the monitor tool on the device. Before every experiment, I launch the tool, set to monitor

WebMD’s tra�c, and Shark which captures all network tra�c on the device. Then I launch

WebMD and navigate to a particular condition. Subsequently I stop the tool and Shark,

and analyze the results matching the tool’s recordings with the measurements from Shark.

Based on this analysis I generate tables for each condition that hold the Number of Bytes
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Table 5.3: WebMD. Tra�c Analysis for the ACUTE SINUSITIS condition navigation

ACUTE SINUSITIS
No HTTP Request Bytes TX HTTP Response Bytes RX
1 GET /b/ss/webmdplglobal... 638 HTTP 1/1 200 OK 512
2 GET html.ng/transactionID=.. 341 < ad > . . . < /.. > ⇠ 2202
3 GET event.ng/type=.. 415 HTTP/1.1 302

FOUND
349

4 GET ads/dcfc.gif 174 HTTP1/1 200 OK
(GIF87a)

401

5 POST GetOverview 464 < Overview > . . . <

/.. >

9308

6 POST GetSymptoms 484 < Symptoms > . . . <

/.. >

3334

7 POST GetRelatedArticles 498 < Related > . . . <

/.. >

4857

TX and Number of Bytes RX for each HTTP response and request of WebMD. For example,

the data collected for ”ABSCESS” is shown on Table 5.3.

Attack evaluation. To evaluate the e↵ectiveness of the attack on WebMD, I repeated the

experiments. This time, I didn’t mark the tool’s output with the Condition being visited on

the device by the user. Conversely I perform experiments visiting all available Conditions

on WebMD and then use a script that shu✏ed the results. Shu✏ing the results eliminates

the possibility that the analyst remembers the order of condition visiting. By the end of this

process I have performed 221 experiments for 204 available Conditions. The shu✏ing tool

rejected 2 outputs which leaves us with 219 results to analyze. I manually scrutinized the

experiments’ outputs and tried to match the recorded measurements with our data collected

o✏ine. According to the bytes received we can locate the Category of Conditions that

particular output corresponds to. Then I further analyze the inbound tra�c to identify the

precise condition in the Category that has similar tra�c with the observed one. The tool’s

sampling rate has been proven instrumental to this e↵ort as in most cases, a single reading

of it could disclose one exact match with one of the 3 total Condition relevant responses.

Conditions on the same Category rarely have identical such responses as the information

received is very specific to the Condition they describe.

Out of the 219 available experiments’ outputs I was able to uniquely identify all 204

Conditions. In 5 cases a Condition was matched twice. This can be attributed to the

fact that network connectivity in some cases rendered the application unable of retrieving

the Condition’s information. In those cases I had repeated the experiment. Even if the

experiment failed in the sense that it didn’t simulate a normal navigation to a condition, we

were able from the fraction of information received by WebMD and recorded by our tool, to

identify the Condition clicked. Finally, 11 outputs failed to be identified as a condition and
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were the result of erroneous clicks by the user, that inadvertently followed a di↵erent path

on the application (i.e. a Condition was not visited).

Identity

Next I will show that the data-usage statistics collected by the zero-permission app through

shared filesystem resources, also leak out an Android user’s identity. A person’s identity, such

as name, email address, etc., is always considered to be highly sensitive [143, 144, 145, 146]

and should not be released to an untrusted party. For a smartphone user, unauthorized

disclosure of her identity can immediately reveal a lot of private information about her (e.g.,

disease, sex orientation, etc.) simply from the apps on her phone. Here I show how one’s

identity can be easily inferred using the shared resources and rich background information

from Twitter.

Twitter is one of the most popular social networks with about 500 million users worldwide.

It is common for Twitter users to use their mobile phones to tweet extensively and from

diverse locations. Many Twitter users disclose there identity information which includes

their real names, cities and sometimes homepage or blog URL and even pictures. Such

information can be used to discover one’s accounts on other social networks, revealing even

more information about the victim according to prior research [147]. In [11] we performed

a small range survey on the identity information directly disclosed from public Twitter

accounts to help us better understand what kind of information users disclose and at which

extend. By manually analyzing randomly selected 3908 accounts (obvious bot accounts

excluded), we discovered that 78.63% of them apparently have users’ first and last names

there, 32.31% set the users’ locations, 20.60% include bio descriptions and 12.71% provide

URLs. This indicates that the attack I describe below poses a realistic threat to Android

users’ identity.

Attack Methodology. In this attack, a zero-permission app monitors the mobile-data

usage count tcp snd of the Twitter 3.6.0 app when it is running. When the user sends

tweets to the Twitter server, the app detects this event and stealthily sends its timestamp to

the malicious server. This results in a vector of timestamps for the user’s tweets, which we

can then be used to search the tweet history through public Twitter APIs for the account

whose activities are consistent with the vector: that is, the account’s owner posts her tweets

at the moments recorded by these timestamps. Given a few of timestamps, we can uniquely

identify that user. An extension of this idea could also be applied to other public social media

and their apps, and leverage other information as vector elements for this identity inference:
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for example, the malicious app could be designed to figure out not only the timing of a

blogging activity, but also the number of characters typed into the blog through monitoring

the CPU usage of the keyboard app, which can then be correlated to a published post.

To make this idea work, we need to address a few technical challenges. Particularly, search-

ing across all 340 million tweets daily is impossible. My solution is using less protected data

such as the coarse location (e.g, city) of the person who tweets, to narrow down the search

range (see Section 5.2.3 for an attack that allows an adversary to gain such information).

To fingerprint the tweeting event from the Twitter app, I use the aforementioned method-

ology to first analyze the app o✏ine to generate a signature for the event. This signature is

then compared with the data usage increments the zero-permission app collects online from

the victim’s phone to identify the moment she tweets.

Specifically, during the o✏ine analysis, I observed the following TCP payload sequence

produced by the Twitter app: (420|150, 314, 580–720). The first element here is the payload

length of a TLS Client Hello. This message normally has 420 bytes but can become 150 when

the parameters of a recent TLS session are reused. What follow are a 314-byte payload for

Client Key Exchange and then that of an encrypted HTTP request, either a GET (download

tweets) or a POST (tweet). The encrypted GET has a relatively stable payload size, between

541 and 544 bytes. When the user tweets, the encrypted POST ranges from 580 to 720 bytes,

due to the tweet’s 140-character limit. So, the length sequence can be used as a signature

to determine when a tweet is sent.

As discussed before, we want to use the signature to find out the timestamp when the user

tweets. The problem is that our usage monitor running on the victim’s phone does not see

those packets and can only observe the increments in the data-usage statistics. The o✏ine

analysis shows that the payload for Client Hello can be reliably detected by the monitor.

However, the time interval between the Key-Exchange message and POST turns out to be

so short that it can easily fall through the cracks. Therefore, we have to resort to the

aforementioned analysis methodology (Section 5.2.2) to compare the data-usage sequence

collected by our app with the payload signature: a tweet is considered to be sent when the

increment sequence is either (420|150, 314, 580–720) or (420|150, 894–1034).
From the tweeting events detected, we obtain a sequence of timestamps T = [t1, t2, · · · , tn]

that describe when the phone user tweets. This sequence is then used to find out the user’s

Twitter ID from the public index of tweets. Such an index can be accessed through the

Twitter Search API [148]: one can call the API to search the tweets from a certain geo-

location within 6 to 8 days. Each query returns 1500 most recent tweets or those published

in the prior days (1500 per day). An unauthorized user can query 150 times every hour.
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Table 5.4: City information and Twitter identity exploitation

Location Population City size Time interval covered (radius) # of timestamps
Urbana 41,518 11.58 mi2 243 min (3 mi) 3

Bloomington 81,381 19.9 mi2 87 min (3 mi) 5
Chicago 2,707,120 234 mi2 141 sec (3 mi) 9

To collect relevant tweets, we need to get the phone’s geo-location, which is specified by

a triplet (latitude, longitude, radius) in the twitter search API. Here all we need is a coarse

location (at city level) to set these parameters. Android has permissions to control the access

to both coarse and fine locations of a phone. However, I found that the user’s fine location

could also be inferred from shared filesystem resources, once the victim user connects her

phone to a Wi-Fi hotspot (see Section 5.2.3). Getting her coarse location in this case is much

easier: the zero-permission app can invoke the mobile browser to visit a malicious website,

which can then search her IP in public IP-to-location databases [149] to find her city. This

allows the adversary to set the query parameters using Google Maps. Note that smartphone

users tend to use Wi-Fi whenever possible to conserve their mobile data (see Section 5.2.3),

which gives the adversarial app chances to get the victims’ coarse locations. Note that the

adversary does not require the user to geo-tag each tweet. The twitter search results include

the tweets in a area as long as the user specified her geo-location in her profile.

As discussed before, the adversarial app can only sneak out the timestamps it collects from

the Twitter app when the phone screen dims out. This could happen minutes away from

the moment a user tweets. For each timestamp ti 2 T , the adversary can use the twitter

API to search for the set of users ui who tweet in that area in ti± 60s (due to the time skew

between mobile phone and the twitter server). The target user is in the set U = \ui. When

U contains only one twitter ID, the user is identified. For a small city, oftentimes 1500 tweets

returned by a query are more than enough to cover the delay including both the ti ± 60s

period and the duration between the tweet event and the moment the screen dims out. For a

big city with a large population of Twitter users, however, we need to continuously query the

Twitter server to dump the tweets to a local database, so when the app reports a timestamp,

the adversary can search it in the database to find those who tweeted at that moment.

Attack Evaluation. In [11] we evaluated the e↵ectiveness of this attack at three cities,

Urbana, Bloomington and Chicago. Table 5.4 describes these cities’ information.

We first studied the lengths of the time intervals the 1500 tweets returned by a Twitter

query can cover in these individual cities. To this end, we examined the di↵erence between

the first and the last timestamps on 1500 tweets downloaded from the Twitter server through

a single API call, and present the results in Table 5.4. As we can see here, for small towns

with populations below 100 thousand, all the tweets within one hour and a half can be
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retrieved through a single query, which is su�cient for our attack: it is conceivable that

the victim’s phone screen will dim out within that period after she tweets, allowing the

malicious app to send out the timestamp through the browser. However, for Chicago, the

query outcome only covers 2 minutes of tweets. Therefore, we need to continuously dump

tweets from the Twitter server to a local database to make the attack work.

In the experiment, we ran a script that repeatedly called the Twitter Search API, at

a rate of 135 queries per hour. All the results without duplicates were stored in a local

SQL database. Then, we posted tweets through the Twitter app on a smartphone, under

the surveillance of the zero-permission app. After obvious robot Twitter accounts were

eliminated from the query results, our Twitter ID were recovered by merely 3 timestamps at

Urbana, 5 timestamps at Bloomington and 9 timestamps in Chicago, which is aligned with

the city size and population.

Investment Data

A person’s investment information is private and highly sensitive. Here I demonstrate how

an adversary can infer her financial interest from the network data usage of Yahoo! Finance,

a popular finance app on Google Play with nearly one million users. I show that Yahoo!

Finance discloses a unique network data signature when the user is adding or clicking on a

stock.

Attack Methodology. Similar to all aforementioned attacks, I assume that a zero-

permission app which irunning in the background collects network data usage related to

Yahoo! Finance and sends it to a remote attacker when the device’s screen dims out.

Searching for a stock in Yahoo! Finance generates a unique network data signature, which

can be attributed to its network-based autocomplete feature (i.e., suggestion list) that re-

turns suggested stocks according to the user’s input. Consider for example the case when

a user looks for Google’s stock (GOOG). In response to each letter she enters, the Yahoo!

Finance app continuously updates a list of possible autocomplete options from the Internet,

which is characterized by a sequence of unique payload lengths. For example, typing “G” in

the search box produces 281 bytes outgoing and 1361 to 2631 bytes incoming tra�c. Each

time the user enters an additional character, the outbound HTTP GET packet increases by

one byte. In its HTTP response, a set of stocks related to the letters the user types will

be returned, whose packet size depends on the user’s input and is unique for each character

combination.
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From the dynamics of mobile data usage produced by the suggestion lists, we can identify

a set of candidate stocks. To narrow it down, we further studied the signature when a stock

code is clicked upon. We found that when this happens, two types of HTTP GET requests

will be generated, one for a chart and the other for related news. The HTTP response for

news has more salient features, which can be used to build a signature. Whenever a user

clicks on a stock, Yahoo! Finance will refresh the news associated with that stock, which

increases the tcp rcv count. This count is then used to compare with the payload sizes

of the HTTP packets for downloading stock news from Yahoo! so as to identify the stock

chosen by the user. Also note that since the size of the HTTP GET for the news is stable,

352 bytes, our app can always determine when a news request is sent.

Attack Evaluation. In this study, we ran the zero-permission app to monitor the Yahoo!

Finance app on a Nexus S 4G smartphone. From the data-usage statistics collected while

the suggestion list was being used to add 10 random stocks onto the stock watch list, we

managed to narrow down the candidate list to 85 possible stocks that matched the data-

usage features of these 10 stocks. Further analyzing the increment sequence when the user

clicked on a particular stock code, which downloaded related news to the phone, we were

able to uniquely identify each of the ten stocks the user selected among the 85 candidates.

5.2.3 Side-Channel 2: ARP Info

This Section elaborates on how Android unprotexted local resources can leak a user’s

location. As with all the side-channel attacks, this is work conducted with Zhou et al. [11].

The precise location of a smartphone user is widely considered to be private and should

not be leaked out without the user’s explicit consent. Android guards such information with

a permission ACCESS FINE LOCATION. The information is further protected from the websites

that attempt to get it through a mobile browser (using navigator.geolocation.getCurrent

Position), which is designed to ask for user’s permission when this happens. In this section,

we show that despite all such protections, our zero-permission app can still access location-

related data, which enables accurate identification of the user’s whereabouts, whenever her

phone connects to a Wi-Fi hotspot.

As discussed before, Wi-Fi has been extensively utilized by smartphone users to save their

mobile data. In particular, many users’ phones are in an auto-connect mode. Therefore, the

threat posed by our attack is very realistic. In the presence of a Wi-Fi connection, we show

in Section 5.2.2 that a phone’s coarse location can be obtained through the gateway’s IP
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address. Here, we elaborate how to retrieve its fine location using the link layer information

Android discloses.

Location Inference

My analysis further revealed that the BSSID of a Wi-Fi hotspot and signal levels perceived

by the phone are disclosed by Android through another shared procfs entry. Such information

is location-sensitive because hotspots’ BSSIDs have been extensively collected by companies

(e.g., Google, Skyhook, Navizon, etc.) for location-based services in the absence of GPS.

However, their databases are proprietary, not open to the public. In this section, we show

how we address this challenge and come up with an end-to-end attack.

Interestingly, in proc files /proc/net/arp and /proc/net/wireless, Android documents

the parameters of Address Resolution Protocol (ARP) it uses to talk to a network gateway

(a hotspot in the case of Wi-Fi connections) and other wireless activities. Of particular

interest to us is the BSSID (in the arp file), which is essentially the gateway’s MAC address,

and wireless signal levels (in the wireless file). Both files are accessible to a zero-permission

app. The app I implemented periodically reads from procfs once every a few seconds to

detect the existence of the files, which indicates the presence of a Wi-Fi connection.

The arp file is inherited from Linux, on which its content is considered to be harmless: an

internal gateway’s MAC address does not seem to give away much sensitive user information.

For smartphone, however, such an assumption no longer holds. More and more companies

like Google, Skyhook and Navizon are aggressively collecting the BSSIDs of public Wi-Fi

hotspots to find out where the user is, so as to provide location-based services (e.g., restaurant

recommendations) when GPS signals are weak or even not available. Such information has

been gathered in di↵erent ways. Some companies like Skyhook wireless and Google have

literally driven through di↵erent cities and mapped all the BSSID’s they detected to their

corresponding GPS locations. Others like Navizon distribute an app with both GPS and

wireless permissions. Such an app continuously gleans the coordinates of a phone’s geo-

locations together with the BSSIDs it sees there, and uploads such information to a server

that maintains a BSSID location database.

All such databases are proprietary, not open to the public. In the contxt of this study we

communicated with Skyhook in an attempt to purchase a license for querying their database

with the BSSID collected by our zero-permission app. They were not willing to do that

due to their concerns that our analysis could impact people’s perceptions about the privacy

implications of BSSID collection.
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Nevertheless, an adversary can exploit commercial location services that are being used

by their respective apps: Many of those commercial apps that o↵er location-based services,

need a permission ACCESS WIFI STATE, so they can collect the BSSIDs of all the surrounding

hotspots for geo-locating their users. In our case, however, our zero-permission app can only

get a single BSSID, the one for the hotspot the phone is currently in connection with. We

need to understand whether this is still enough for finding out the user’s location. Since we

cannot directly use those proprietary databases, we have to leverage these existing apps to

get the location. The idea is to understand the protocol these apps run with their servers

to generate the right query that can give us the expected response.

Specifically, we utilized the Navizon app to develop such an indirect query mechanism.

Like Google and Skyhook, Navizon also has a BSSID database with a wide coverage [150],

particularly in US. In our research, we reverse-engineered the app’s protocol by using a

proxy, and found that there is no authentication in the protocol and its request is a list

of BSSIDs and signal levels encoded in Base64. Based upon such information, we built a

“querier” server that uses the information our app sneaks out to construct a valid Navizon

request for querying its database for the location of the target phone.

Attack Evaluation

To understand the seriousness of this information leak, we ran our zero-permission app

to collect BSSID data from the Wi-Fi connections made at places in Urbana and Chicago,

including home, hospital, church, bookstore, train/bus station and others. The results are

illustrated in Table 5.5.

In particular, our app easily detected the presence of Wi-Fi connections and stealthily

sent out the BSSIDs associated with these connections. Running our query mechanism, we

successfully identified all these locations from Navizon. On the other hand, we found that

not every hotspot can be used for this purpose: after all, the Navizon database is still far

from complete. Table 5.5 describes the numbers of the hotspots good for geo-locations at

di↵erent spots and their accuracy.

5.3 MITIGATION DESIGN

Given the various unprotected filesystem resources on Android, the information leaks the

analysis revealed 5 are very likely to be just a tip of the iceberg. Finding an e↵ective solution

to this problem is especially challenging with rich background information of users or apps

gratuitously available on the web. To mitigate such threats, lets first take a closer look at the
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Table 5.5: Geo-location with a Single BSSID

Location Total BSSIDs
Collected

Working
BSSIDs

Error

Home 5 4 0ft
Hospital1 74 2 59ft
Hospital2 57 4 528ft
Subway 6 4 3ft
Starbucks 43 3 6ft
Train/Bus Station 14 10 0ft
Church 82 3 150ft
Bookstore 34 2 289ft

attacks revealed in the analysis. The ARP data (see 5.2.3) has not been extensively utilized

by apps and can therefore be kept away from unauthorized parties by changing the related

file’s access privilege to system. A simple solution to control the audio channel can be to

restrict the access to its related APIs, such as isMusicActive, only to system processes

whenever sensitive apps (e.g. navigation related) are running in the foreground. The most

challenging facet of such a mitigation venture is to address the availability mechanism of the

data usage statistics (see 5.2.2), which have already been used by hundreds of apps to help

Android users keep track of their mobile data consumption. Merely removing them from the

list of public resources is not an option. In this section, I report our approach on mitigating

the threat deriving from the statistics availability, while maintaining their utility.

5.3.1 Mitigation Strategies

To suppress information leaks from the statistics available through tcp rcv and tcp snd,

we can release less accurate information. Here I analyze a few strategies designed for this

purpose.

One strategy is to reduce the accuracy of the available information by rounding up or down

the actual number of bytes sent or received by an app to a multiple of a given integer before

disclosing that value to the querying process. This approach is reminiscent of a predominant

defense strategy against tra�c analysis, namely packet padding [64, 151]. The di↵erence

between that and our approach is that we can not only round up but also round down to

a target number and also work on accumulated payload lengths rather than the size of an

individual packet. This enables us to control the information leaks at a low cost, in terms

of impact on data utility.
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Specifically, let d be the content of a data usage counter (tcp rcv or tcp snd) and ↵

an integer given to our enforcement framework implemented on Android (Section 5.3.2).

When the counter is queried by an app, our approach first finds a number k such that

k↵  d  (k + 1)↵ and reports k↵ to the app when d� k↵ < 0.5↵ and (k + 1)↵ otherwise.

We call this strategy Round up and round down.

A limitation of the simple rounding strategy (Round up and round down) results from

the fact that it still gives away the payload size of each packet, even though the information

is perturbed. As a result, it cannot hide packets with exceedingly large payloads. To address

this issue, we can accumulate the data usage information of multiple queries, for example,

conditions on WebMD the user looks at, and only release the cumulative result when a

time interval expires. This can be done, for example, by updating an app’s data usage to

the querying app once every week, which prevents the adversary from observing individual

packets. We will refer to this technique as Aggregation.

5.3.2 Enforcement Framework

A naive idea to address the leakage of information from Android public local resources,

would be adding yet another permission to Android’s already complex permission system and

have any data monitoring app requesting this permission in AndroidManifest.xml. However,

prior research shows that the users do not pay too much attention to the permission list when

installing apps, and the developers tend to declare more permissions than needed [27]. On the

other hand, the tra�c usage data generated by some applications (e.g banking applications)

is exceptionally sensitive, at a degree that the app developer might not want to divulge them

even to the legitimate data monitoring apps. To address this problem, our solution is to let an

app specify special “permissions” to Android, which defines how its network usage statistics

should be released. Such permissions, which are essentially a security policy, was built into

the Android permission system in our research. Using the usage counters as an example,

our framework supports four policies: NO ACCESS, ROUNDING, AGGREGATION and

NO PROTECTION. These policies determine whether to release an app’s usage data to a

querying app, how to release this information and when to do that. They are enforced at

a UsageService, a policy enforcement mechanism we added to Android, by holding back

the answer, adding noise to it (as described in Section 5.3.1) or periodically updating the

information.

To enable the enforcement of the aforementioned policies in our framework, public re-

sources on the Linux layer, such as the data usage counters, are set to be accessible only

by system or root users. Specifically, for the /proc/uid stat/ resources, we modified the
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Figure 5.7: E↵ectiveness of round up/down mitigation technique

create stat file in drivers/mis/uid stat.c of the Android Linux kernel and changed

the mode of entry to disable direct access to the proc entries by any app. With direct

access turned o↵, the app will have to call the APIs exposed in TrafficStats.java and

NetworkStats.java such as getUidTxBytes() to gain access to that information. In our

research, we modified these APIs so that whenever they are invoked by a query app that

requests a target app’s statistics, they pass the parameters such as the target’s uid through

IPC to the UsageService, which checks how the target app (uid) wants to release its data

before responding to the query app with the data (which can be perturbed according to the

target’s policy). In our implementation, we deliberately kept the API interface unchanged

so existing data monitor apps can still run.

5.4 MITIGATION EVALUATION

To understand the e↵ectiveness of this technique, we first evaluated the round up and

round down scheme using the WebMD app. Figure 5.7 illustrates the results: with ↵ in-

creasing from 16 to 1024, the corresponding number of conditions that can be uniquely

identified drops from 201 to 1. In other words, except a peculiar condition DEMENTIA

IN HEAD INJURY whose total reply payload has 13513 bytes with its condition overview

of 11106 bytes (a huge deviation from the average case), all other conditions can no longer
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be determined from the usage statistics when the counter value is rounded to a multiple

of 1024 bytes. Note that the error incurred by this rounding strategy is no more than 512

bytes, which is low, considering the fact that the total data usage of the app can be several

megabytes. Therefore its impact on the utility of data consumption monitoring apps is very

small (below 0.05%).

We further measured the delay caused by the modified APIs and the new UsageService on

a Galaxy Nexus, which comes from permission checking and IPC, to evaluate the overhead

incurred by the enforcement mechanism we implemented. On average, this mechanism

brought in a 22.4ms delay, which is negligible.

Our defense mechanism is demonstrably e�cient and e↵ective when applies on the tra�c

usage information. Nevertheless, it is challenging to come up with a bullet proof defense

against all those information leaks from unprotected local resources for the following rea-

sons. a) Shared resources are present all over the Linux’s file system from /proc/[pid]/,

/proc/uid stat/[uid], network protocols like /proc/net/arp or /proc /net/wireless

and even some Android OS APIs. b) Public (rest-of-the-world accessible) resources are dif-

ferent across di↵erent devices. Some of this information is leaked by third party drivers

like the LCD backlit status which is mounted in di↵erent places in the /sys file system on

di↵erent phones. c) Tra�c usage is also application related. For the round up and round

down defense strategy to be applied successfully, the OS must be provided with the tra�c

patterns of the apps it has to protect before calculating an appropriate round size capable

of both securing them from malicious apps and introducing su�ciently small noise to the

data legitimate tra�c monitoring apps collect. A more systematic study is needed here to

better understand the problem.

5.5 SUMMARY

In this Chapter we saw how Android shared filesystem resources can leak private infor-

mation that an adversary can utilize to infer a user’s health and financial information, her

identity, and her location. The side-channel attacks I described, leverage the system’s erro-

neous security design at both the Linux (shared files) and the framework layer (shared APIs).

I performed an analysis to model the adversary which can exploit those shared resources and

introduced new strategies such adversaries can employ. To mitigate these problems I pro-

posed an alternative design of sharing filesystem resources, where information is released

in coarse-grained manner to tackle such nuance adversaries. These results are published at

a security conference [11]. Figure 5.8 visualizes this proposed addition to the smarpthone

operating system.
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Figure 5.8: Alternative sharing of filesystem resources.

After this work, a lot of other researchers have also focused on exploiting other shared

filesystem resources. Zhang et al. [85] introduced another technique for mitigating such

adversaries from a trusted userspace app which kills processes responsible for aggressive file

monitoring. Finally, in version 6, Google has introduced further restrictions to third-party

processes in accessing other processes information through shared files.

So far we analyzed adversaries exploiting shared intra-process privileges and shared filesys-

tem resources and introduced designs of strategies for detection and prevention. On

Android, third-party apps also share resources. In particular, they share communication

channels to connect with devices in proximity and other external resources such as incom-

ing SMSs. Next I will present my analysis on the security of such shared communication

channels.
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CHAPTER 6: SHARING DIRECT COMMUNICATION CHANNELS

This chapter is based on joint works with Muhammad Naveed, Xiaoyong Zhou, Yeonjoon

Lee, Kan Yuan, Xiaofeng Wang and Carl A. Gunter [13, 14].

In this Chapter I will present my analysis on the communication channels Android o↵ers

to third-party applications for accessing external resources. I will demonstrate that yet

another shared resource is subject to attacks from a mobile adversary; I will also illustrate

the design of a robust and flexible defense mechanism within the smartphone OS which can

achieve fine-grained access control to such shared resources [13, 14].

6.1 INTRODUCTION

As a mobile platform Android is equipped with communication channels to enable con-

nections with an assortment of external resources. As we seen on Chapter 2, the Android

Security Model only controls the access right on the channel used for communicating with

such external resources, such as Bluetooth, NFC and Audio devices, SMSs. As long as an

app acquires a system permission for such a channel, it automatically gains access to any

information communicated through it. Specifically, all apps with the same permission are

either a�liated with the same Linux group (GID) in which case the kernel enforces the access

control or being checked whether they owned the appropriate permission by the framework

right before the appropriate system Service decides to return or not the requested data.

Nevertheless, Android does not have the capability to overhaul any semantics of the data

being requested. For example it will either allow reading all SMSs or deny reading any of

them. For this I argue that the security model is too coarse-grain to satisfy the utility of the

apps while preserving the confidentiality of the data originating from external resources.

In this chapter I will elaborate on my studies on the risks associated with this coarse

granularity of the Android security model when it comes to share communication channels.

On Section 6.2.1 I will take a closer look at the Bluetooth channel and elaborate on attacks

stemming from the fact that a Bluetooth device is paired with the phone instead of pairing

with the app that actually wants to use it. I will refer to this as the Device Mis-Bonding

Threat or simply DMB. After that I will discuss (see Section 6.2.4) other risks rising from

the coarse granularity of the OS’s security model and its inherent inability to safeguard the

88



SMS, Audio, and NFC channel. Lastly, I will present the design of a system which o↵ers

strong security guarantees for shared communication channels 6.3

6.2 ANALYSIS

6.2.1 Bluetooth Mis-Bonding Problem

The fundamental cause of the DMB problem is the inadequacy of the Android security

model in protecting communication channels with external devices. As an example, con-

sider a medical device that communicates with its Android app using Bluetooth. To make

this happen, the smartphone hosting the app first needs to pair with the device, which

forms a bond between the phone and the device. This pairing process yields a set of bonding

information, which allows these two devices to connect to each other automatically in the fu-

ture. The bonding information includes the external device’s MAC address and its Universal

Unique Identifier (UUID), together with a secret link key for authentication and encrypted

communication (when the devices decide to do so). Note that such a bond relation is only

established on the device level; there is nothing to prevent an unauthorized app (with Blue-

tooth permissions) on an authorized phone from connecting to the device. This permission

also makes the app a member in the net bt admin group. As a result, the unauthorized app

is given the privilege to break the bonding with an authorized medical device and pair the

phone with a malicious one configured with the former’s bonding information so as to feed

fake medical data into a patient’s medical record [13].

Given the limitations of the Android security model, device manufacturers are on their

own to address this security risk. One thing they can do is to design a way to secure the

communication between the device and its o�cial app. An instance we are aware about is

the Square credit card reader [5], which connects to a smartphone through its audio port. Its

early version is vulnerable because every app with audio permission can read from it. The

later one comes with an encryption capability: the reader encrypts the data (using AES)

collected from a credit card using a hard-coded key and transmits the ciphertext through

the phone to the web. Most other devices, however, do not provide any app-device level

protection, as confirmed in our measurement study (Section 6.2.3), possibly due to the fact

that most of them are simple sensors, without su�cient computing resources to support

cryptographic operations. These devices can upload the data to the online service through

the smartphone, which also provides an interface for the user to see and analyze their data.

Encrypting this data in the device and just using the phone as a communication relay would

severely a↵ect the usability of the device, as the user would not be able to use her phone
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to see her data. All the devices we analyzed have apps that display the user data on the

smartphone. Hence, the treatment adopted by Square does not seem to be suitable for these

devices.

Adversary Model and Targeted Bluetooth Devices

In my research, I have conducted a study on this under-researched yet critical security

problem. As the first step, the study focuses on Bluetooth healthcare devices, which are

becoming increasingly popular in recent years, especially with the advent of wearables. The

security risks discovered and the new adversarial technique introduced, are extended to other

types of external resources, as we will see on Section 6.2.4.

I assume that a malicious app is present on the victim’s Android phone with both the

Bluetooth and Bluetooth Adminstration permissions. These two permissions are claimed

by almost all the Bluetooth-capable apps. For a data-injection attack, in which a malicious

party clones the target device, we also assume that the fake device can be placed close to

the victim’s phone (within 100 meters).

As mentioned before, I will first focus on Bluetooth devices. Specifically, I analyzed four

popular healthcare devices. All of them except one (iThermometer) are FDA approved Class

II medical devices [152], in the category of X-ray machines, infusion pumps, etc., which are

used to deal with real patient care and life critical information. The first three devices

either have their online services available or are capable of synchronizing the information

they collect with other cloud based health-services. Here is more detailed information about

these devices:

• Bodymedia Wireless LINK Armband [153] is one of the most popular activity moni-

toring systems, which has been used in over 120 clinical studies [154]. It utilizes four

di↵erent sensors to collect data about the user’s motion, temperature, perspiration,

etc., for accurate calculation of calories burned and monitoring of sleep patterns. The

output of the device can be displayed by a mobile app running on Android or iOS, and

further synchronized to an activity manager website. Disclosure of the data can leak

out the user’s health status and daily activities.

• Nonin Onyx II 9560 Pulse Oximeter [155] is one of the best wireless finger pulse

oximeters. Along with a smartphone app, it enables clinicians to remotely monitor

blood-oxygen saturation levels and pulse rates of the patients with chronic diseases

such as Chronic Obstructive Pulmonary Disease (COPD) or asthma [152]. The device

uses Bluetooth to connect to the smartphone, which can deliver the data to the health
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provider, online health services or stored locally for later analysis. The data collected

here is also critical for understanding the patient’s status and choosing an e↵ective

treatment. This device is Microsoft HealthVault1 certified [152].

• Entra Health System MyGlucoHealth Blood-Glucose Meter [156] is one of the most

popular glucose monitoring devices. It comes with a complete diabetes management

system (including testing at home) uploading data to the online account through its

Android app, which helps a patient manage her disease and share this data with her

health provider. Glucose levels determine the amount of insulin to be injected into the

patient’s body, which is private and also life-critical: a wrong amount of injection can

have severe implications, including death [157]. Along with FDA, this device is also

approved by CE2 and is fully HL73 compliant [156].

• iThemometer [158] is an electronic thermometer that works with Android through

Bluetooth for personal health or long-distance monitoring of elderly persons or babies.

The body temperature is an indicator for life-threatening conditions like infection.

All these devices involve user’s critical data, whose confidentiality and integrity is impor-

tant to her health and well-being. In the presence of the malicious insider app, however, I

will show that such data becomes extremely vulnerable to the DMB threat.

6.2.2 Data-stealing Attack

In my research, I investigated the feasibility of data-stealing attacks on Bluetooth devices,

in which a malicious app running on the victim’s phone attempts to steal sensitive data

collected by the target device. The attack turns out to be more complicated than it appears

to be: particularly, depending on the nature of a device, the malicious app needs to capture

a small time window during which the device is on and in proximity, under the competition

of the o�cial app that also wants to make a connection to the device. Here I describe how

an adversary can overcome such technical challenges to design end-to-end attacks on real

devices.
1Microsoft HealthVault is a free online service for personal health information management.
2CE Mark is medical device approval mechanism in Europe.
3HL7 – Health Level Seven International – is a globally interoperable standard for health information

exchange.
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Figure 6.1: Data-stealing Attack

Attack Strategies

Given the BLUETOOTH and BLUETOOTH ADMIN permissions, a malicious app appears to have

all it needs to steal data from these healthcare devices, and merely because Android does

not mediate which app is supposed to connect to the devices. Any app with access to the

channel immediately gets access to all data communicated through it. In practice, however,

the situation is much more subtle than it appears to be at a first look: a malicious app

must not be oblivious to the fact that the target device could or could not be in proximity

and even when they are, for some of them one needs to push a button or take some actions

to activate their Bluetooth services. Specifically, the Bodymedia armband is activated a

few seconds after it is put on one’s arm; the iThemometer has such a button on it; the

Nonin pulse oximeter turns on when one inserts her finger into the device and turns o↵

once she takes out her finger; and the MyGlucoHealth meter has a button for activating

the Bluetooth and the meter turns o↵ automatically after sending data to the phone. Also

complicating the attack is the presence of the o�cial app. Once the o�cial app establishes

a socket connection with the target device, the malicious app cannot directly talk to the

device before this connection is torn down and vice versa.

A straightforward solution is an opportunistic strategy in which the malicious app either

periodically invokes the service discovery protocol to find out whether the target device is in

its vicinity or blindly makes repeated connection probes, hoping to get to the device as soon

as it shows up. However, neither of these approaches works well in practice due to alarmingly

increasing power usage of the Bluetooth radio, a power-consuming practice that is usually
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suggested against [159]. For instance, a user may keep the Bluetooth communication o↵

to save power. Then, when she wants to use it, she runs a Bluetooth-capable app that

automatically turns on Bluetooth. A malicious app using this strategy must repeatedly

enable Bluetooth to discover the target device; this consumes more battery power than

expected and could also be noticed by the user, given the presence of the Bluetooth icon on

the top notification bar of the Android phone.

In my research, I found that an adversary can use a lightweight and stealthy strategy to

perform the surveillance. Simply put, the execution of the device’s o�cial app is a strong

indication that the device is in action and also within the connection range of the target

device. Based on this observation, the malicious app can keep checking when any of the

target apps launches, an event that can be used to trigger an attempt to catch the window of

opportunity. Specifically, our app, which works as a service in the background, periodically

runs the Android API getRunningTasks() to get the app running in the foreground in

constant time O(1). This needs an additional permission GET TASKS. Alternatively, we can

use getRunningAppProcesses(), which does not need any permission, but returns a list of

running processes in an unspecified order that the malicious app needs to traverse in search

for the target app, which takes O(n) running time, where n is the number of concurrently-

running processes on the phone. The same result can be achieved by executing the Linux

command ps. After the malicious app determines that one of the target apps is in the

foreground, it attempts to establish a Bluetooth connection with its respective device.

A catch here is that, when the o�cial app is in communication with the target device, the

malicious app cannot connect to it. To get the data, the malicious app needs to connect to

the device right before this legitimate connection is established, right after it completes, or

during some disruption of the connection. Below I summarize these options:

• Pre-connection. The o�cial apps of these devices, once executed, often need the user’s

intervention to start the communication with their devices. For example, all the apps

for the MyGlucoHealth, iThermometer and the Bodymedia armband have a soft button

that needs to be pushed to initiate the connection. These apps can also be configured to

attempt automatic connections to their respective devices as soon as they are launched.

Therefore, in order to capture data from the target device, the malicious app should be

in position to exploit the time gap between the moment it discovers that the target app

is running and the moment when the legitimate connection is established (after the soft

button is pushed or the automatic connection goes through). The likelihood of this

succeeding is contingent on how frequently the malicious app checks currently-running

processes, i.e., its sampling rate for monitoring the o�cial app.
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• Post-connection. After discovering the running o�cial app, the malicious app can

simply wait until its connection ends and then immediately connect to the device.

This strategy avoids aggressive monitoring of the o�cial app: the malicious app can

keep a slow sampling rate, as long as it can still detect the target during its execution.

There is a risk, however, that the user turns o↵ the target device before exiting its app.

When this happens, the adversary loses the chance to get data at that specific point.

• Disruption. The malicious app can disrupt the legitimate app’s communication by de-

activating Bluetooth on the phone. It can then reactivate the channel and immediately

make a connection to the target device. During this attack, the user might observe

the disruption and have to manually click the button on the app again to resume data

collection. The approach makes the attack less stealthy but more reliable in getting

the data from the target device.

Here I elaborate how an adversary can utilize these techniques to launch data-stealing

attacks on the healthcare devices.

Attack Implementation

I demonstrated the data-stealing attacks on all four healthcare devices. To prepare for the

attacks, the adversary analyzes the code of these devices’ o�cial apps and their Bluetooth

tra�c captured using hcidump [160] to facilitate her understanding of their protocols (for

talking to the devices), and further built these protocols into the malicious app. During its

operation, the malicious app calls the getBondedDevices() API to get a list of external

devices already paired with the phone and their bonding information, including the name,

the MAC address and the UUID of the device of interest. Using such information, the

malicious app makes RFCOMM connections to the device to download sensitive user data.

The attack strategy I implement includes a surveillance component that periodically calls

the API getRunningTasks() to monitor the execution of the device’s o�cial app twice per

second. With this implementation, the adversarial app can keep a low profile incurring, on

average, around only 3mW of extra power consumption. In the meantime, given that human

interventions (clicking on a button after the app is activated) can take seconds, the app stands

a good chance of capturing the time window before the o�cial app establishes a connection

to its device. In case, automatic connection is configured on the target apps, there is a race

condition on the socket establishment. To make sure that we do not miss the opportunity

to capture data when a target app is launched, the adversarial design incorporates both

the pre-connection and the post-connection strategies: as soon as the malicious app finds
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that the target app is running, it first makes a connection attempt; if not successful, the

app listens for the asynchronous ACTION ACL DISCONNECTED event broadcasted by the OS,

which notifies the app once a low level –(Asynchronous Connection-Less (ACL)– connection

with a remote device ends, and then tries to connect to the target device again if the device

is the one disconnected and the disconnection is not caused by the malicious app itself. If

either the pre-connection or post-connection attempt succeeds, the malicious app requests

and captures the data from the appropriate external Bluetooth device, sends them to the

adversary and closes the connection, to make it available to the legitimate app.

It is particularly tricky when the o�cial app is configured to automatic connections: once

the pre-connection attack succeeds, the malicious app rapidly finishes its operations and

releases the socket that is almost instantly captured by the legitimate app. This causes

the OS to miss reporting the DISCONNECT event and the consecutive CONNECT. Hence,

when the legitimate app releases the socket, the malicious app believes that the disconnection

is initiated by itself. As a result, it skips the post-connection opportunity and thus misses

the new data the device collects during the period of the legitimate app’s connection. To

address this issue, the malicious app checks whether enough time elapses from the moment

it sends out a disconnection request to when it receives a disconnection event from the OS;

if so, the app believes that the event it gets is about another app and then goes ahead to

make another connection attempt.

E↵ectiveness Evaluation

I run the malicious app on a Nexus 4 development phone running JellyBean (4.2), together

with all target devices’ apps. I evaluated the e↵ectiveness of the data-stealing attack by ob-

serving the success rate when the apps were configured to initiate automatic connections to

their respective devices once launched. This is the worst case scenario as this operation is

much faster than its alternative where the user must click a button to initiate such connec-

tions, hence the window of opportunity is smaller for the pre-connection attempt. I found

that the malicious app is often successful in capturing this window. The experimental results

are presented in Table 6.1.

For the Bodymedia armband device, I found that in 100 pre-connection trials, the ma-

licious app managed to connect 99 times to the device, get the sensitive data and send

them to a remote server. The case that the connection failed was attributed to a device

de-synchronization issue that rendered even the o�cial app unable to connect to it. The

adversary achieves this high success rate because the Bodymedia Link Armband mobile app

does some pre-processing operations before attempting to connect to its device, which gives
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enough time for the malicious app to perform its operations and release the socket. The

success rates were also high for other apps, except for iThermometer (e.g., 42 out of 100

trials) due to its app’s prompt response in establishing Bluetooth socket connections. When

the malicious app won the race, the authorized app failed to connect but it automatically

retried after 10 seconds, and succeeded as this interval was often enough for the malicious

app to finish its task and release the socket. The post-connection attacks succeeded most of

the time except for the glucose meter, MyGlucoHealth, as long as the devices were switched

o↵ after the o�cial apps stopped. MyGluooHealth automatically turns itself o↵ after send-

ing data to its app to save its battery power, so none of the post-connection attacks on it

succeeded. I also tested the disruption strategy, which also worked, allowing the adversarial

app to discontinue the o�cial app’s connection and get the health data. A problem with

this attack strategy, is that the legitimate connection needs to be interrupted, which could

be noticed by the user.

Table 6.1: Success rate of data-stealing attack. This table depicts the successful
connections made by the malicious app on 100 trials.

Target Device Pre-connection Post-connection
Bodymedia LINK Armband 99/100 100/100

iThermometer 42/100 100/100
Nonin Pulseoximeter 99/100 92/100

myGlucoHealth 100/100 0/100*
*the device turns o↵ few seconds after sending data to the phone.

Power Consumption Evaluation

A rough estimation of the power consumption of di↵erent surveillance strategies is impor-

tant for understanding the stealthiness of the malicious app, because this activity dominates

all of its operations in terms of the time interval that it has to run. We tested the dif-

ferent options we had. I evaluated getRunningTasks (the strategy implemented in the

malicious app) and its alternatives including calling getRunningAppProcesses() and mak-

ing repeated attempts to connect to or check the existence of the target Bluetooth device.

I ran the app using each strategy independently for 10 minutes. The average power con-

sumption of the strategy under scrutiny is illustrated in Table 6.2. As depicted, the adopted

strategy (getRunningTasks) turned out to be both much more e�cient and stealthier (as

the Bluetooth sign appears on the screen only when it is supposed to be, i.e., when the the

o�cial app is running). I further compared the power consumption of this strategy with that
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Table 6.2: Average power consumption over 10 minutes per surveillance technique using
PowerTutor[159].

Technique Avg Power Con-
sumption

Sampling Rate

getRunningAppProcesses() 8mW 2 samples/s
getRunningTasks() 3mW 2 samples/s
connect() 17mW 0.18 samples/s
startDiscovery() 15mW 0.054 samples/s

Table 6.3: Average power consumption over an hour. Comparison between our surveillance
technique and 2 popular applications using PowerTutor[159].

Technique Avg Power Consumption
Facebook 18mW
getRunningTasks() 3mW
Gmail 1mW

of two popular apps, as described in Table 6.3. As we can see here, the surveillance strategy

has a comparable power-consumption level (3mW) as those apps (1 to 18mW). Accurate

power consumption measurement is not required to do this evaluation, we only need rough

relative power measurement. The software used for the power consumption evaluation pro-

vides accurate measurement for a very limited number of phones and rough measurements

for all Android phones. This rough measurement su�ces for this evaluation.

6.2.3 Measuring the DMB threat

As discussed before, the DMB problem in the shared bluetooth communication channel

stems from the lack of a bonding between an Android external device and its o�cial app

which allows another app with access to the same channel to steal data from the external

resource, or a spurious external resource to inject data into a victim app. In the absence

of OS-level protection, this threat can only be addressed by the app-device authentication

developed by individual device manufacturers. The design and implementation of such an

authentication mechanism, however, can be non-trivial, which could raise the cost of the

devices. To find out whether such a security measure has already been taken in practice,

we performed a measurement study that analyzed a relevant set of apps from Google Play.

The study reveals that all of the selected apps are actually vulnerable, indicating that the

DMB problem is indeed realistic and serious. Given the pervasiveness of vulnerable devices

and challenges in fixing them (which could require modifying their hardware), an OS-level

solution becomes inevitable (see 6.3).
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Table 6.4: Sampled apps

Total apps 90
Apps not using Bluetooth (eliminated) 2
Device apps with sensitive information 68
Device apps with insensitive information 20

Figure 6.2: Classifications of the sampled apps. Some of them collect information in
multiple categories.

To perform our study we collected relevant o�cial apps for di↵erent Bluetooth devices.

Our methodology for collecting those apps is as follows: we first searched Google Play

for those apps compatible with Google NEXUS 4, using the following terms: “Bluetooth

Door Lock”, “Bluetooth Health”, “Bluetooth Medical Devices” and “Bluetooth Meter”. All

together, these queries gave us 90 apps. For each of these apps, we manually inspected its

descriptions to determine whether it received sensitive user data from its device. Among

these 90 apps, 68 involved some private user information, such as the heart rate, blood

pressure, body temperature, glucose level, daily activities, and so on as summarized in

Figure 6.2.
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Application Analysis

To avoid purchasing all 68 devices that can be used with our sampled apps, we analyzed the

apps’ code to find out whether they included any app-device authentication. This analysis

was done both automatically and manually, as follows.

We first decompiled all the 68 apps and searched for authentication-related programming

structures. Authentication should be based upon a secret, which was not hard-coded into

any of those apps, given the fact that from two independent downloads of the same app,

we always got the same code and data. Therefore, such a secret should either come from

some external inputs of the app, particularly its user interfaces, web communication or

internal memory files, or is generated by cryptographic operations. In our study, we in-

spected all such potential sources of authentication secrets (Table 6.5) to determine whether

their outputs a↵ected the inputs of the app’s Bluetooth communication, particularly that of

BluetoothSocket.write, which transmits data to the device through a Bluetooth socket

connection.

We ran a script that used grep to locate the APIs related to those sources and identified

the apps where such APIs only appeared within public libraries. For example, we found

that, for most apps, their cryptographic APIs (provided by Java JCE, Bouncy castle and

spongycastle [161, 162, 163]) were all included in shared libraries such as Google ads, Twitter

authentication, OAuth, etc. Those libraries are used for specific purposes, getting ads or

performing web-based authentication, for example. It is unlikely that they be used for

authenticating the app to its Bluetooth device. Therefore, we removed all the apps that did

not have any of those APIs outside the public libraries. There were 48 such apps among all

we collected.

For the remaining 20 apps, we manually inspected all the occurrences of these “suspicious”

APIs (Table 6.5) in their code. We looked at the functions where the calls to the APIs were

made. It turned out that they were all used for the purposes having nothing to do with

app-device authentication. For example, most reads from memory files appeared in the

crash-handling mechanisms and most cryptographic operations were performed on the SQL

queries on web databases. We also found that HttpClient was used in the functions for

sharing tweets or getting the user’s workout data from the web. None of these API outputs

were propagated to the inputs of the app’s Bluetooth communication.

We further installed all the 68 apps and manually inspected their user interfaces. None of

them asked for passwords, PINs, etc. for authenticating themselves to their corresponding

devices.
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Table 6.5: Manual analysis on 20 apps. The other 48 apps were automatically filtered out
by the locations of their suspicious APIs.

Authentication
Methods

Libraries/ Func-
tions used

Total Apps
with app-
device
authenti-
cation

Crypto e.g., javax.crypto,
bouncycastle

9 0

Internal storage e.g.,
openFileInput()

15 0

Web communi-
cation

e.g., HttpClient 5 0

UI for app-
device authenti-
cation

Manual 0 0

Study Results

As discussed above, we found no evidence that any of these 68 apps, which were relevant

apps in Google Play, performed any app-device authentication. Table 6.5 summarizes our

findings. The 48 apps we removed automatically either did not have any suspicious APIs or

had such APIs in their shared libraries, including those for advertising, web authentication,

crash analysis, etc. For the 20 apps we manually analyzed, 9 called cryptographic APIs in

their own code, 5 invoked web APIs and 15 read from memory files. Also, for all the 68 apps

we studied, none had user inputs for app-device authentication. Again, none of these apps

generated any data flow that a↵ected the inputs of Bluetooth communication functions.

This study also shows that most of these apps supported secure Bluetooth communica-

tion: 42 apps utilized secure socket only; 12 worked under both secure and insecure com-

munications and the rest utilized insecure communication only. This indicates that most of

the devices processing sensitive user data do take privacy protection seriously. However, the

presence of malicious apps with the Bluetooth permissions on Android (which since version 6

are granted automatically) renders such device-device authentication insu�cient for protect-

ing access to shared communication channels resulting in leakage of private user information.

This study on Bluetooth suggests that indeed the Android Security Model is too coarse-

grained to both support the utility of the apps and protect the confidentiality of the infor-

mation communicated through that shared channel. These findings inspired the study of
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more such channels of communication with external resources which I report on the next

Section (6.2.4).

6.2.4 Other External-Resources Attacks

To understand the significance and the applicability of the problem incurred to Android

due to to unprotected external resources, a study was carried on other external resources

namely NFC, SMS, Audio. For this study we analyzed a set of prominent accessories and

online services that utilize popular channels, including SMS, Audio and NFC. Our findings

echo our previous findings on on Bluetooth 6.2.1 and related studies on the Internet (local

socket connections) [164] channels. The latter study found that all no-root third-party

screenshot services can be exploited by a malicious app connecting to them through the

Internet channel. This Section demonstrates that the SMS, Audio and NFC channels are

equally under-protected, exposing private user information like bank account balances, pass-

word reset links etc. These findings point to the security challenges posed by the widening

gap between the coarse-grained Android protection and the current way of sharing external

resources on smartphones.

Methodology

To further study channels of communication with external resources, we collected apps

from Google Play, choosing those that may access private user data or perform sensitive

operations through Audio or NFC. Specifically, we searched the Play store for popular apps

using these channels and then went down the list to pick out 13 Audio and 17 NFC apps that

could perform some security-related operations. For SMS, we looked into 14 popular online

services, including those provided by leading financial institutes (Bank of America, Chase,

Wells Fargo, PayPal) and social networks (Facebook, Twitter, WhatsApp, WeChat, Naver

Line, etc.), and a web mail (Gmail). Those services communicate with com.android.sms

and sometimes, their own apps using short text messages.

Table 6.6 provides examples for the apps and services used in our study. All the services

we analyzed clearly involve private user data, so do 6 fitness, credit-card related Audio apps.

Some payment related apps using the Audio jack, are heavily obfuscated and we were not able

to decompile them using popular de-compilation tools (dex2jar, apktool). Most of the other

apps in the Audio category are remote controllers or sensors that work with a dongle attached

to the phone’s Audio jack. Although those devices do not appear to be particularly sensitive

(e.g., the camera that can be commanded remotely to take pictures), such functionalities
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Table 6.6: Critical Examples

Channel App Usage # of down-
loads

Details

AUDIO EMS+ Credit card
reader

5,000 - 10,000 Decrypt : Creates a private key of
RSA with hardcoded modulus and
private exponent. Uses it to load
session key which is used in AES to
process messages from credit card
dongle.

AUDIO UP Tracks sleep,
physical ac-
tivity and
nutritional info

100,000 -
500,000

Doesn’t include any authentication
features. A repackaged app with
di↵erent credential is able to read
existing data from the band.

SMS All bank
services

Alert messages
and Text bank-
ing

NA Both SMS can be read by any app
with SMS permission.Alert mes-
sages: sensitive financial activity
and amount info. Text banking:
receive, send money and check bal-
ance.

SMS Chat and
SNS

Authentication 100,000,000 -
1,000,000,000

2 step authentication; verification
code sent via SMS.

NFC SquareLess Credit card
reader

10,000 - 50,000 Reads credit card information.
Malicious apps may also read
credit card data as this app does.

NFC Electronic
Pickpocket
RFID

Credit card
reader

10,000 - 50,000 Reads credit card information.
Malicious apps may also read
credit card data as this app does.

(e.g., remote control) could have security implications when they are applied to control more

sensitive devices. Our study also reveals that Most NFC apps are for reading and writing

NFC tags (tags with microchips for short-range radio communication), which can be used

to keep sensitive user data (e.g., a password for connecting to one’s Wi-Fi access point) or

trigger operations (e.g., Wi-Fi connection). A more sensitive application of NFC is payment

through a digital wallet. However, related NFC equipment is hard to come by.

Over those apps and services, we conducted both dynamic and static analyses to determine

whether there is any protection in place when they use those channels. For SMS, we simply

built an app with the SMS permission to find out what it can get. All NFC apps were studied

using NFC tags, in the presence of an unauthorized app with the NFC permission. For those

in the Audio category, we analyzed a Jawbone UP wristband, a popular fitness device whose

app (com.jawbone.up) has 100,000 to 500,000 downloads on Google Play, to understand its

security weakness. In the absence of other Audio dongles, relevant apps were decompiled

for a static code inspection to find out whether there is any authentication and encryption

protection during those apps’ communication with their external devices. Specifically, we

looked for standard or homegrown cryptographic libraries (e.g., javax.crypto, BouncyCastle,

SpongyCastle) within the code, which are needed for establishing a secret with the dongles.

Also, the apps are expected to process the data collected from their dongles locally, instead

of just relaying it to online servers, as a few payment apps do. This forces them to decrypt
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the data if it has been encrypted. Finally, we ran those apps to check whether a password

or other secrets need to enter for connecting to their dongles. Our analysis was performed

on a Nexus 4 with Android 4.4.

Study Results

This analysis shows that most external resources studied have not been protected by apps

and service providers. The consequences here can be very serious, as elaborated below.

Firstly we examine the SMS-based services. As expected, all short messages leading online

services delivered to our Nexus 4 phone were fully exposed to the unauthorized app with the

SMS permission. Note that such messages should only be received by com.android.sms to

display their content to the owner of the phone, as well as those services’ o�cial apps: for

example, Facebook, Naver Line, WeChat and WhatsApp, directly extract a verification code

from their servers’ messages to complete a two-step authentication on the owner’s behalf.

Information leaks through this under-regulated channel are serious and in some cases,

catastrophic. A malicious app can easily get such sensitive information as account balances,

incoming/outgoing wire transfers, debit card transactions, ATM withdrawals, a transac-

tion’s history, etc. from Chase, Bank of America and Wells Fargo, authorized amount for

a transaction, available credit, etc. from Chase Credit Card and Wells Fargo Visa, and

notifications for receiving money and others from PayPal. It can also receive authentication

secrets from Facebook, Gmail, WhatsApp, WeChat, Naver Line and KakaoTalk, and even

locations of family members from Life360, the most prominent family safety online service.

An adversary who controls the app can also readily get into the device owner’s Facebook

and Twitter accounts: all she needs to do is to generate an account reset request, which will

cause those services to send the owner a message with a reset link and confirmation code.

With such information, even the app itself can automatically reset the owner’s passwords,

by simply sending requests through the link using the mobile browser. A video demo of

those attacks is posted online [165]. Note that almost all banks provide mobile banking,

which allows enrolled customers to check their account and transaction status through SMS

messages.

Secondly we inspect the risks associated with the Audio channel. To do that, we analyzed

the Jawbone UP wristband [28], one of the most popular fitness devices that utilize the

low-cost Audio channel. The device tracks its user’s daily activities, when she moves, sleeps

and eats, and provides summary information to help the user manage her lifestyle. Such

information can be private. However, we found that it is completely unprotected. We ran
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an unauthorized app that dumped such data from the device when it was connected to the

phone’s Audio jack.

For all other apps in the Audio category, we did not have their hardware pieces and there-

fore could only analyze their code statically. Specifically, among all 5 credit-card reading

apps, PayPal, Square and Intuit are all heavily obfuscated, which prevented us from de-

compiling them. Those devices are known to have cryptographic protection and designed to

send encrypted credit-card information from their card readers directly to the corresponding

web services [166, 167]. The other two apps, EMS+ and Payment Jack, were decompiled

in our research. Our analysis shows that both of them also receive ciphertext from their

card-reader dongles. However, they decrypt the data on the phone using a hard-coded se-

cret key. Since all the instances of these apps share the same key, an adversary can easily

extract it and use it to decrypt a user’s credit-card information downloaded from the app’s

payment dongle. Furthermore, all other apps, which either support sensors (e.g, wind meter)

or remote controllers (e.g., remote picture taking), are unprotected, without authentication

and encryption at all.

Lastly lets take a look at NFC. 5 out of 17 popular NFC apps (e.g., NFC Tools) we

found are used to read and write NFC tags. They allow users to store any data on tags,

including sensitive information (e.g., a password for one-touch connection to a Wi-Fi access

point). However, there is no authentication and encryption protection at all4. We ran an

unauthorized app with the NFC permission to collect the data on the tag whenever our Nexus

phone touched the tag. Note that in the presence of the authorized app, Android will ask

the user to choose the right one each time the tag is detected5. Although this mechanism

does o↵er some protection, it completely relies on the user’s judgment during every tap on

an NFC device and cannot be used by system administrators to enforce their mandatory

policies.

Among the rest of apps, NFC ReTag FREE utilizes the serial number of an NFC tag to

trigger operations. Again, since the communication through the NFC channel is unprotected,

a malicious app can also acquire the serial number, which leaks out the operation that the

legitimate app is about to perform. The only NFC app with protection is the NFC Passport

Reader. What it does is to use one’s birth date, passport number and expiration date to

generate a secret key for encrypting other passport information. The problem is, once those

4There are more expensive tags such as MIFARE that support encryption and authentication.
The app using those tags needs the user to manually enter a secret. Clearly, they are not used
for protecting the information like Wi-Fi passwords, which should be passed to one’s device con-
veniently.

5More specifically, this happens when both the authorized app and the malicious app register
with the same priority to receive the notification for device discovery.
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parameters are exposed, the adversary can recover the key to decrypt the data collected

from the NFC channel.

6.3 MITIGATION DESIGN

In the previous section, I have discussed how the Android Security Model is incapable

of protecting access to shared communication channels for interfacing with external devices

and sources of information. In par with my previous studies, the natural next step after

understanding an adversary’s capabilities is to try finding ways to protect against possible

attacks. In this Section I will address this challenge, and discuss the design, implementation

and evaluation of a solution to this problem.

The analysis on Bluetooth, SMS, Audio and NFC 6.2, and prior findings on Internet [164]

emphasize the urgent need to enhance Android access control, to better protect shared com-

munication channels for direct interaction with external resources. In this section, I present

the first uniform, backward compatible, and easily maintainable design of a system for this

purpose. The system, called SEACAT (Security-Enhanced Android Channel Control), ex-

tends SEAndroid’s MAC 2.2.3 to cover SMS, NFC, Bluetooth and Internet, and also adds in

a DAC module to allow the user and app developers to specify rules for all these channels, in

addition with Audio. I implemented SEACAT on Android 4.4 with an SEAndroid enhanced

kernel 3.4.0.

6.3.1 Design Overview

The objective is to develop a simple security mechanism that supports flexible, fine-grained

mandatory and discretionary protection of various external resources through controlling

their channels of communication with smartphones. However, achieving this goal is by no

means a smooth sail. Here are a few technical challenges that need to be overcome in the

design and implementation of such a system.

• Limitations of SEAndroid. Today’s SEAndroid does not model external resources.

Even after it is extended to describe them, new enforcement hooks need to be added

to system functions scattered across the framework/library layer and the Linux kernel.

For example, the Bluetooth channel on Android 4.4 (Bluedroid stack) is better pro-

tected on the framework layer, which has more semantic information, while the control

on the Internet should still happen within the kernel. Supporting these hooks requires
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a well though-out design that organizes them cross-layer under a unified policy engine

and management mechanism for both MAC and DAC.

• Complexity in integration. Current Android already has the permission-based DAC

and SEAndroid-based MAC 2.2. An additional layer of DAC protection for external

resources could complicate the system and a↵ect its performance6. How to integrate

SEACAT into the current Android in the most e�cient way is challenging.

To address these challenges, I will introduce a design that integrates policy compliance

checks from both the framework and the kernel layer, and enforces MAC and DAC policies

within the same security hooks (Figure 6.3). More specifically, the architecture of SEACAT

includes a policy module, a policy enforcement mechanism and a DAC policy management

service. At the center of the design is the policy module, which stores security policies and

provides an e�cient compliance-check service to both the framework and the kernel layers.

It maintains two policy bases, one for MAC and the other for DAC. The MAC base is static,

which has been compiled into the Linux kernel in the current SEAndroid implementation

on AOSP. The DAC base can be dynamically updated during the system’s runtime. Both

of them are operated by a policy engine that performs compliance checks. The engine is

further supported by two Access Vector Caches (AVCs), one for the kernel and the other for

the framework layer. Each AVC caches the policies recently enforced using a hash map. Due

to the locality of policy queries, this approach can improve the performance of compliance

checks. Since DAC policies are in the same format as MAC rules, they are all served by the

same AVC and policy engine.

The enforcement mechanism comprises a set of security hooks and two pairs of mapping

tables. These hooks are placed within the system functions responsible for the operations on

di↵erent channels over the framework layer and the kernel layer. Whenever a call is made to

such a function, its hook first looks for the security contexts of the caller (i.e., app) and the

object (e.g., a Bluetooth address, the Sender ID for a text message) by searching a MAC

mapping table first and then a DAC table. The contexts retrieved thereby, together with

the operation being performed, are used to query the AVC and the policy engine. Based

upon the outcome, the hook decides whether to let the call go through. Just like the AVC,

each mapping table has two copies, one for the framework layer and the other for the kernel.

Also, the MAC table is made read-only while the DAC table can be updated during runtime.

6Note that this new DAC cannot be easily integrated into the permission mechanism, since the
objects there (di↵erent Bluetooth devices, web services, etc.) can be added into the system during
runtime.
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Both the DAC policy base and DAC mapping table are maintained by the policy manage-

ment service, which provides the user an interface to identify important external resources

(from their addresses, IDs, etc.) and the apps allowed to access them. Also it can check

manifest files of newly installed apps to extract rules embedded there by the developer (e.g.,

only the o�cial Chase app can get the text message from Chase) to ask for the user’s ap-

proval. Those policies and the security contexts of the labeled resources are uploaded to the

DAC base and the mapping tables respectively.

Figure 6.3: SEACAT architecture

6.3.2 Trusted Compute Base and Adversary Model

Like SEAndroid, the security guarantee of SEACAT depends on the integrity of the kernel.

We have to assume that the adversary has not compromised the kernel to make the approach

work. In the meantime, SEACAT can tolerate corrupted system apps, as long as they are

confined by SEAndroid. Furthermore, the DAC mechanism is configured by the user and

therefore could become vulnerable. However, the proposed design makes sure that even when

it is misconfigured, the adversary still cannot bypass the MAC protection in place. Finally,

I assume the presence of malicious apps on the user’s device, with proper permissions to

access all aforementioned channels.
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6.3.3 Policy Specification and Management

To control access to external resources through shared communication channels, we first

need to specify the right policies and identify the subjects (i.e., apps) and objects (e.g., a

Bluetooth glucose meter, the Chase bank which sends a sensitive SMS, etc.) to apply them.

This is done within the policy module and the policy management service.

SEACAT has to provide a convenient way of specifying policies. Remember from the Back-

ground Chapter (Section 2.2.3), an SEAndroid rule determines which domain is allowed to

access which resources, and how this access should happen. To specify such a rule for exter-

nal resources, both relevant domains (for apps) and types (for external resources) need to

be defined. The domain part has already been taken care of by SEAndroid: we can directly

declare ones for any new apps whose access rights, with regard to external resources, need to

be clarified. When it comes to types, those within the AOSP Android have been marked as

file type, node type (for sockets and further used to specify IP range), dev type, etc. In

my research, I further specified new categories of types (or attributes), including BT type

for MAC addresses of Bluetooth devices, NFC type for NFC serial numbers and SMS type

for SMS Sender ID (originating addresses). Here is an example policy based upon these

domains and types:

allow trusted app bt dev:btacc rw perms

where bt dev is a type for Bluetooth devices (identified by their MAC addresses) and btacc

includes all the operations that can be performed on the type. This policy allows the apps in

the domain trusted app to read from and write to the MAC addresses in the type bt dev.

Later I describe how to associate such a domain with authorized apps, and the type with

external resources.

The DAC policies used in SEACAT are specified in the same way, using the same format,

which enables them to be processed by the policy engine and AVC also serving MAC policies.

The DAC policy base, includes a set of types defined for the Audio channel. Audio has

not been included in the MAC policies since the device attached to it cannot be uniquely

identified: all we know is just whether the device is an input (headset) or output (speaker)

device or the one with both capabilities. For user-defined DAC policies, SEACAT provides

a mechanism to lock the whole audio channel when necessary, a process elaborated later.

Moreover, although the DAC base is supposed to be updated at runtime, to avoid the

overheads that come with such updates, SEACAT uses a predefined a set of “template”

policies that connect a set of domains to a set of types in di↵erent categories (Bluetooth,
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NFC, SMS, Internet and Audio) with read and write permissions. The domains and types of

those policies are dynamically attached to the apps and resources specified by the user during

runtime. In this way, SEACAT only needs to maintain a mapping table from resources to

their security contexts (user seres contexts) before the template rules run out.

Next, SEACAT must provide a mechanism for assigning domains to apps. For the domains

defined for MAC, how they are assigned to apps can also be specified in the policies. SEA-

CAT allows the administrator to grant trusted apps, permissions to use restrictive external

resources. Such apps are identified from the parties who sign them. Specifically, when an

app is being installed, SEAndroid assigns it an seinfo tag according to its signature. The

mapping between this tag and the app’s domain is maintained in the file seapp contexts,

which Zygote (see Section 2.1), the Android core process that spawns other processes, reads

when determining the app’s security context during its runtime.

Labeling apps for DAC is handled by SEACAT’s policy management service, which in-

cludes a set of hooks within the PackageManager and installd. Before an app is installed,

these hooks present to the user a “dialogue box”, alongside the app’s permission informa-

tion. This allows the user to indicate whether the app should be given a domain associated

with certain channels (Bluetooth, NFC, SMS, Internet and Audio), so that it can later be

given the privilege to access protected external resources. For an app assigned a domain, the

PackageManager labels it with an seinfo tag di↵erent from the default one (for untrusted,

unprivileged apps) and stores the tag alongside its related domain within a dynamic map-

ping file user seapp contexts. Note that this action will only be taken, in the absence of

a MAC rule already dictating the domain assignment for this app.

SEACAT furthers requires modification of libselinux, which is used by Zygote, to assign

the appropriate security context to the process forked for an app. An instrumentation

within libselinux enables loading user seapp contexts for retrieving the security context

associated with a user-defined policy. Note that again, when an seinfo tag is found within

both seapp contexts and

user seapp contexts, its context is always determined by the former, as the MAC policies

always take precedence. In fact the system will never create a DAC policy for an external

resource that conflicts with a MAC policy. Nevertheless, if a compromised system app

manages to inject erroneous DAC policies, they will never a↵ect or overwrite MAC policies.

The design of SEACAT also allows the app developer to declare within an app’s manifest

the external resource the app needs exclusive access to. With the user’s consent, the app will

get a domain and the resource will be assigned a type to protect their interactions through

a DAC rule. This approach makes declaration of DAC policies convenient: for example,

the o�cial app of Chase can state that only itself and Android system apps are allowed to
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receive the text messages from Chase; a screenshot app using an ADB service can make the

IP address of the local socket together with the port number of the service o↵ limit to other

third-party apps.

Labelling apps is of course not enough. We need a way to label external resources as well,

or in SEAndroid terms, we need to assign types to those objects in par with the labelling

of local resources by SEAndroid. For standard local resources, such as files, SEAndroid

includes policies that guide the OS to find them and label them properly. For example, the

administrator can associate a directory path name with a type, so that every file stored under

the directory is assigned that type. The security context of each file (which includes its type)

is always kept within its extension, making it convenient to retrieve the context during policy

enforcement. When it comes to external resources, however, we need to find a new way to

label their identifiers and store their tags. This is done in our research using a new MAC

policy file seres contexts, which links each resource (the MAC address for Bluetooth, the

serial number for NFC, the Sender ID for SMS and the IP/port pair of a service) to its

security context. The content of the file is pre-specified by the system administrator and is

maintained as read-only throughout the system’s runtime. It is loaded into memory bu↵ers

within the framework layer and the Linux kernel respectively, and utilized by the security

hooks there for policy compliance checks (Section 5.3.2).

Labeling external resources for the DAC policies is much more complicated, as new re-

sources come and go, and the user should be able to dynamically enable protection on them

during the system’s runtime. SEACAT provides three mechanisms for this purpose: 1)

connection-time labeling, 2) app declaration and 3) manual setting. Specifically, connection-

time labeling happens the first time an external resource is discovered by the OS, for example,

when a new Bluetooth device is paired with the phone. Also, as discussed before, an app

can define the external resource that should not be exposed to the public (e.g., only system

apps and the o�cial Facebook app can get messages from the Sender ID “FACEBOOK”).

Finally, the user is always able to manually enter new DAC policies or edit existing ones

through an interface provided by the system.

For di↵erent channels, some labeling mechanisms work better than others. Bluetooth and

NFC resources are marked mainly when they are connected to the phone: whenever there are

apps assigned domains but not associated with any Bluetooth or NFC resources, SEACAT

notifies the user once a new Bluetooth device is paired with the phone or an NFC device is

detected; if such a new device has not been protected by the MAC policies, the user is asked

to select, through an interface, all apps (those assigned domains) that should be allowed

to access it (while other third-party apps’ access requests should be denied). After this is

done, a DAC rule is in place to mediate the use of the device. Note that once all such apps
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have been linked to external resources, SEACAT will no longer interrupt the user for device

labeling, though she can still use the policy manager to manually add or modify security

rules.

In SEACAT’s implementation, a few system apps and services are modified to accommo-

date this mechanism. For Bluetooth, we need to change Settings, the Bluetooth system

app and the Bluetooth service. When the Settings app helps the user connect to a newly

discovered Bluetooth device, it checks the device’s MAC address against a list of mandatory

rules. If the address is not on the list, the Bluetooth service pops an interface to let the user

choose from the existing apps assigned domains but not paired with any resources. This

is done through extending the RemoteDevices class. The MAC address labeled is kept in

the file user seres contexts, together with its security context. This file is uploaded into

memory bu↵ers (for both the kernel and the framework layer) for compliance checks. For

NFC, whenever a new device is found, Android sends an Intent to the app that registers with

the channel. SEACAT’s implementation instruments the NFC Intent dispatcher to let the

user label the device and specify the apps allowed to use it when the dispatcher is working

on such an Intent. This is important when the NFC device is security critical, as now the

control is taken away from the potentially untrusted apps and delegated to the user (if no

MAC mechanism is in place) during runtime. Furthermore, by providing this mechanism,

the system can protect itself, and it is deprived of any dependency on end-to-end authenti-

cation between apps and external devices. Lastly, by utilizing the association of apps with

resources specified in MAC and DAC policies, the user can read already labeled tags directly,

avoiding going through the app selection mechanism every time, which immensely improves

the usability of the reading-an-NFC-device task. Again, the result of the DAC labeling is

kept in user seres contexts. The syntax of the MAC policy file seres contexts and the

DAC policy file user seres contexts is demonstrated below:

resource id=xx:xx:xx:xx:xx:xx channel=BLUETOOTH type=bt dev2

resource id=XXXXXXXX channel=NFC type=nfc dev1

resource id=24273 channel=SMS type=sms dev3

resource id=AUDIO channel=AUDIO type=audio dev

External resources associated with SMS and Internet are more convenient to label through

app declaration and manual setting. As discussed before, an app can request exclusive access

to the text messages from a certain SMS ID. The user can also identify within the interface

of our policy manager a set of SMS IDs (“GOOGLE”, 32665 for “FACEBOOK”, 24273
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for Chase, etc.) to make sure that only com.android.sms can get their messages7. Use

of Internet resources should be specified by the app. For example, those using ADB-level

services [164] can state the local IP address and their services’ port numbers to let our system

label them.

Pertaining Audio, we need to label the whole channel at the right moment. Specifically,

the DAC rule for the channel is expected to come with the app requiring it or set manually

by the user through the policy manager. Whenever the system observes the Audio jack is

connected to a device that fits the profile (input, output or mixed), SEACAT just pops up

a “dialogue box” asking the user whether the device needs protection, if a DAC rule has

already been required by either an app or the user. We can avoid this window popup when

the app (the one expected to have exclusive access to the Audio channel) is found to run in

the foreground. In either case, the whole Audio channel is labeled with a type, which can

only be utilized by that app, system apps and services. This information is again stored in

user seres contexts for policy enforcement. Notably, as soon as the device is detached

from the Audio jack, the type is dropped from the file, which releases the entire channel for

other third-party apps. To completely remove the pop-ups, the user can set the system to

an “auto” mode in which the Audio is only labeled (automatically) when the authorized app

is running. In this case, the user needs to follow a procedure to first start the app and then

plug in the device to avoid any information leak.

6.3.4 Policy Compliance Check and Enforcement

To perform a compliance check, a hook needs to obtain the security contexts of the subject

(the app), the object (MAC address, NFC serial number, etc.) and the operation to be

performed (e.g., read, write, etc.) to construct a query for the policy engine (see Figure 6.4).

Here the subject’s context can be easily found out: on the framework layer, this is done

through the SEAndroid function getPidContext, which utilizes the PID of a process to

return its context information. Although the same approach also works within the Linux

kernel, a shortcut is used in controlling Internet connections through sockets. Specifically,

within the socket’s structure, SEAndroid already adds a field sk security to keep the

security context of the process creating the socket. The field is used by the existing hooks

to mediate the access to IP/port types. SEACAT’s enforcement of DAC policies is palced

there, which involves finding the security contexts of an IP-port pair from a DAC table

within the kernel.
7The SMS IDs for services are public. It is easy to provide a list of well-known financial, social-

networking services to let the user choose from.
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The object’s context is kept within the MAC policy file seres contexts and the DAC

policy file user seres contexts. To avoid frequently reading from those files during the

system’s runtime, SEACAT uploads their content to a pair of bu↵ers in the memory both

in the framework layer and the kernel. These bu↵ers are organized as hash maps, serving as

the mapping tables to help a security hook retrieve objects’ security contexts. Specifically,

SEACTA uses a new function for searching the mapping tables within libselinux, and

exposed this interface to the framework so that the security hooks can access it through

Java or native code. Within the kernel, SEACAT employs another mapping table for the

DAC policy8. This table is synchronized automatically with the one for the framework

layer to make sure that the same set of DAC policies are enforced on both layers. The set

of operations SEACAT introduces for manipulation and retrieval of information from the

memory bu↵ers and exposed through libselinux to the rest of the system, are listed within

Table 6.7.

Table 6.7: SEACAT API

FUNCTION DESCRIPTION
loadPDPolicy Loads the MAC (seres res contexts) and

DAC (user seres contexts) policy bases con-
taining the resource with security context
associations, into the SEACAT memory
bu↵ers.

getResourceSecContext Performs a lookup in the SEACAT memory
bu↵ers for a security type assigned to a re-
source.

getResourceChannel Performs a lookup in the SEACAT memory
bu↵ers for the channel that a resource be-
longs to.

isResourceMAC Returns 1 if the resource is present in SEA-
CAT memory bu↵ers and was loaded from
the MAC policy base, 0 if it was loaded from
the DAC policy base, or NULL otherwise.

insertDACRes Stores the security context of a resource in
the appropriate memory bu↵er and the cor-
responding policy base.

getDomain Returns the security context assigned to a
third-party app.

8Note that we do not need to build the table for MAC here, since SELinux already has a table
for enforcing MAC policies on IPs. Also, all other channels are enforced on the framework layer.
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Given the security contexts for a subject (the app) and an object (e.g., an SMS ID), a

security hook is ready to query the AVC and policy engine to find out whether an operation

(i.e., system call) is allowed to proceed. On the framework layer, this policy compliance check

can be done through selinux check access. SEACAT wrapps this SEAndroid function,

adding program logic for retrieving an object’s security context from the mapping table.

The new function seacat check access takes as its input a resource’s identifier (Bluetooth

MAC, SMS ID, etc.), the caller’s security context and the action to be performed, and

further identifies the resource’s security context before running the AVC and the policy

engine on those parameters. Note that for the resource appearing within both MAC and

DAC tables, its security context is only determined by the MAC policy. Also, the resource

not within either table is considered to be public and can be accessed by any app. Again,

this new function is made available to both Java and native code. The same mechanism

was also implemented within the kernel, through wrapping the compliance check function

avc has perm. The AVC and the policy engine are largely intact here, as our system was

carefully designed to make sure that the DAC rules are in the same format as their MAC

counterparts and therefore can be directly processed by SEAndroid.

To be able to enforce these policies SEACAT needs to interject the security hooks in

the appropriate functions of the framework or the kernel. This instrumentation allows the

system to perform policy compliance checks before a requesting app accesses the information

we want to safeguard. Since the external channels we are considering consist of Bluetooth,

NFC, Internet, SMS and Audio, SEACAT has to introduce the hooks at the appropriate

place for each channel such as to minimize both the risk that an adversary can bypass the

protection from a lower level in the software stack and its implementation complexity.

Figure 6.4: SEACAT Policy Compliance Check
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To fully control the Bluetooth channel, all its functions need to be instrumented. A promi-

nent example here is Bluetooth Socket.connect within the Bluetooth service, which needs

to be invoked for establishing a connection with an external device. SEACAT requires a

security hook at the beginning of the function to mediate when it can be properly executed.

A problem is how to get the process ID (PID) of the caller process for retrieving its security

context through getPidContext. Certainly we cannot use the PID of the party that directly

invokes the function, which is actually the Bluetooth service. For this we can turn to Binder,

which proxies the inter-process call (IPC) from the real caller app. Specifically, SEACAT’s

hook calls getCallingPid (provided by Binder) to find out the app’s PID and then its secu-

rity context, and passes the information to the Bluetooth stack. Inside the stack the actual

connection attempt is instrumented to use the app’s security context, the Bluetooth MAC

address to be connected and the “open” operation as inputs to query seacat check access.

What is returned by the function causes the connection attempt to either proceed or imme-

diately stop. The Bluetooth service is notified accordingly regarding the success or failure

of the connection attempt. In the same manner, we can instrument other functions in the

Bluetooth stack.

We also need to e↵ectively control access to the NFC channel. For the broadcomm chip

on Google Nexus 4 devices, the NFC stack has been implemented on the framework/library

layer through libnfc-nci. Thus, all SEACAT security hooks are placed on this layer, within

major NFC functions readNdef,

writeNdef and connect, for mediating a caller process’s operations on an NFC device with

a particular serial number (which is treated as the device’s identifier). A tricky part is that

when a new NFC device is found to be in proximity, NFC runs a dispatcher to identify which

apps have registered for that device through Intent-filters. The dispatcher will deliver an

Intent exposing the content of the device to such an app. In cases where multiple apps

request access to that NFC device, an “Activity Chooser” box will be presented to the user

so she can choose which activity should be launched. Unequivocally, this operation will

cause information leaks if the target app is malicious and therefore needs to be controlled.

SEACAT’s implementation instruments the dispatcher to execute the MAC and DAC policy

compliance check against all such registered apps with regards to a specific device serial

number. For those that fail the check, the dispatcher simply ignores them and therefore the

Intent with the NFC device’s contents will never reach them.

The Internet channel di↵ers from both Bluetooth and NFC. Internet has been controlled

inside the kernel, with security hooks placed within the functions for di↵erent socket op-

erations. As discussed before, SEAndroid has already hooked those functions for enforcing

mandatory policies on IP addresses, port numbers and others. In our research, we ex-
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tended those existing hooks to add enforcement mechanisms for DAC policies. Specifically,

we changed selinux inet sys rcv skb and selinux sock rcv skb compat to enable those

wrapper functions to search the DAC mapping table within the kernel for the security con-

texts of IP-port pairs specified by the user and use such information to call avc has perm.

Note that this enforcement happens to the objects (IP and port numbers) that have already

passed the MAC compliance check: that is, those IP and port numbers are considered to be

public by the administrator, while the user can still add her additional constraints on which

party should be allowed to access them.

The SMS channel turns out to be more intricate. Whenever the Telephony service on

the phone receives a text message from the radio layer, InboundSmsHandler put it in an

Intent, and then calls SMSDispatcher to broadcasts it to all the apps that register with the

event (SMS RECEIVED ACTION or SMS DELIVER ACTION). Also the InboundSmsHandler stores

the message to the content provider of SMS. Such a message is limited to the text content

with up to 160 characters. To overcome this constraint, the message delivered today mainly

goes through Multimedia Messaging Service (MMS), which supports larger message length

and non-text content such as pictures. What really happens when sending such a message

(which can include multimedia content) is that a simple text message is first constructed and

transmitted through SMS to the MMS on the phone, which provides a URI for downloading

the actual message. Then, MMS broadcasts the message through the Intent to recipients

and also saves the message locally through its content provider.

To mediate this complicated channel, we instrumented both SMS and MMS to track the

entire work flow and enforce MAC and DAC policies right before a message being handed over

to apps (Figure 6.5 in Appendix). Specifically, we hooked the function processMessagePart

within SMSDispatcher to get the ID of the message sender (i.e., the originating address)

through SmsMessageBase.getOriginatingAddress(). This sender ID serves as an input

for searching the mapping tables. The security context identified this way is then attached

to the Intent delivered to MMS as an extra attribute SEC CON. On the MMS front, a se-

curity hook inspects the attribute and further propagates the security context to another

attribute within a new Intent used to transmit the real message once it is downloaded. We

also modified the function deliverToRegisteredReceiverLocked within BroadcastQueue

to obtain the security context of each app recipient involved in the broadcast and runs

seacat check access to check whether the app should be allowed to get the message be-

fore adding the message to its process message queue.
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Figure 6.5: SEACAT ’s enforcement on SMS: SEACAT labels each sms message intent and
checks if an app can access the message before delivering the intent to the app. Also
SEACAT filters the sms content provider query results according to the security context of
the app

Besides getting SMS message from Intent receiver for SMS RECEIVED ACTION or SMS DELIVER

ACTION9, an app can also directly read from the SMS or MMS content provider given

the SMS READ permission. To mediate such accesses, we further instrumented the content

provider of SMSProvider and MMSProvider to perform the policy compliance check when-

ever an app attempts to read from its database: based on the app’s security context and

each message’s address, our hooks sanitize the cursor returned to the app, removing the

message it is not allowed to read.

Like SMS, the Audio channel is also mediated on the framework layer. Whenever a

device is connected to the Audio jack, WiredAccessory Manager detects the device and

calls setDeviceStateLocked. Within the function, we placed a hook that identifies the

type of the device (input/output

/mixed) and checks the presence of a policy that controls the access to such a device. If so, it

directly calls the SEACAT function SensChannel.assignType to assign the object type in

the policy to the Audio channel (which prevents the channel from being used by unauthorized

third-party apps) when an authorized app is running in the foreground. Otherwise, it pops

up a “dialogue box” to let the user decide whether the device is the object within the policy

9On Android 4.4, only the default sms app gets this Intent
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and therefore needs to be protected. In either case, as soon as the device is unplugged from

the Audio jack, the hook immediately removes from the DAC mapping table the entry for

the Audio channel, thereby releasing it to other third-party apps.

Policy enforcement happens within the functions for collecting data from the Audio chan-

nel. Particularly, SEACAT has a hook inside the start Recordingmethod of android.media

.AudioRecord. Once the method is invoked, it looks for the security contexts for the calling

process (through getContext) and the Audio channel (using getResourceSecContext) to

check polices and determine whether the call can go through.

6.4 MITIGATION EVALUATION

As with any security system design we need to evaluate its e↵ectiveness and e�ciency.

The e↵ectiveness of SEACAT was evaluated against all existing threats to Android shared

communication channels and the performance overhead it introduces was recorded. The

evaluation was performed on a pair of Nexus 4 phones with Android 4.4 (android-4.4 r12),

kernel KRT16S, with the 3.4 kernel (androidmsmmako3.4kitkatmr0): one installed with an

unmodified OS to serve as a baseline, and the other with the SEACAT-enhanced kernel.

Following I report the evaluation findings. Video demos for this study can be found on-

line [165].

Firstly we want to make sure that SEACAT actually solves the problem and can success-

fully safeguard all known external resources. Table 6.8 presents 5 known threats to external

resources used in our research, which include collection of data from iThermometer through

Bluetooth misbonding (see Section 6.2.1), unauthorized use of an ADB proxy based screen-

shot service through local socket connections [164], as well as attacks on SMS (stealing text

messages from Chase and Facebook), Audio (gathering activity data from the UP wrist-

band) and NFC (reading sensitive information from NFC tags) 6.2.4. In our study, we ran

those attacks on the unprotected Nexus 4, which turned out to be all successful: the mali-

cious app acquired sensitive information from the external resources through the channels

(Bluetooth, SMS, Internet, Audio and NFC), exactly as reported in prior research [164] and

Sections 6.2.1 and 6.2.4.

All such attacks, however, stopped working on the SEACAT-enhanced Nexus 4. Specifi-

cally, after assigning a type to the MAC address of the iThermometer device through SEA-

CAT’s policy management service, only the o�cial app of iThermometer, which was assigned

to an authorized domain, was able to get data from the device [165]. The malicious app run-

ning in the untrusted app domain could no longer obtain body temperature readings from

the thermometer. For SMS, once we labeled the Sender IDs of Chase and Facebook with a
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Table 6.8: Threats to Android external resources

No KNOWN THREATS
1 Bluetooth misbonding attack
2 unauthorized adb-based screenshots
3 unauthorized read of an SMS message
4 unauthorized access to audio device
5 unauthorized read of an NFC device’s contents

type that can only be accessed by the apps within the system domain, the third-party app

could not find out when messages from those services came, nor was it able to read them

from the SMS content provider content://sms. On the other hand, the user could still

see the messages from com.android.sms [165]. Similarly, the screenshot attack reported in

prior research [164] was completely thwarted when the local IP address and port number

was labeled. Also the security type given to the serial number of an NFC tag successfully

prevented the malicious app from reading its content. In the presence of both authorized

and unauthorized apps, the protected Nexus directly ran the authorized app, without even

asking the user to make a choice, as the unprotected one did. For Audio, after the user

identified the presence of the Jawbone wristband or the o�cial app of the device was trig-

gered, the channel could not be accessed by the malicious app. It was released only after

the wristband was unplugged from the Audio jack.

The e↵ectiveness of our protection was evaluated under both MAC and DAC policies for

all those attack cases, except the one on the Audio channel, which we only implemented the

DAC protection (Section 6.3.3). Also, I tried to assign a resource specified by a MAC policy

to a DAC type using our policy manager and found that the attempt could not go through.

Even after I manually injected such a policy into SEACAT’s DAC database and mapping

table (which cannot happen in practice without compromising the policy manager), all the

security hooks ignored the conflicting policy and protected the resources in accordance with

the MAC rules.

After making sure SEACAT is e↵fective, we must study its overhead to determine whether

it can be practically deployed. To evaluate the performance impact of SEACAT, I measured

the execution time for the operations that involve our instrumentations, and compared it

with the delay observed from the baseline (i.e., the unprotected Nexus 4). Table 6.9 shows

examples of the operations used in this research. In the experiments, I conducted 10 trials

for each operation to compute its average duration.

Specifically, I recorded the installation time for a new app, which involves assignment of

domains. The time interval measured in our experiment is that between the moment the

119



Table 6.9: A list of operations a↵ected by SEACAT enhancements

No OPERATION
1 install app
2 Bluetooth pairing
3 BluetoothSocket.connect
4 dispatchTag
5 dispatchTag (foreground)
6 Ndef.writeNdefMessage
7 Audio device connection
8 AudioRecord.startRecording

PackageManager identifies the user’s “install” click and when the BackupManagerService

gets the Intent for the completion of installing an app with 3.06 MB. For Bluetooth, both the

pairing and connection operations were timed. Among them, the pairing operation recorded

starts from the moment it was triggered manually and ends when the OnBondStateChanged

callback was invoked by the OS. For connection, I just looked at the execution time of

BluetoothSocket.connect. Regarding SMS, we can measure the time from when a SMS

message is received (processMessagePart) to when the message is delivered to all the inter-

ested receivers and the process of querying the SMS content provider. The Internet-related

overhead was simply found out from the network connection time.

The amount of time it takes to dispatch an NFC message is related to the status of the tar-

get app: when it was in the foreground, we measured the interval between dispatchTag and

the completion of the NfcRootActivity; otherwise, our timer was stopped when setForeground

Dispatch was called. For the Audio channel, we can record the time for the call AudioRecord.

startRecording to go through.

The results of this evaluation are presented in Table 6.10. As we can see from the table,

the delays introduced by SEACAT are mostly negligible. Specifically, the overhead in the

installation process caused by assigning domains to an app was found to be as low as 49.52

ms. Policy enforcement within di↵erent security hooks (with policy checks) happened almost

instantly, with a delay sometimes even indistinguishable from the baseline. In particular,

in the case of NFC, even when the unauthorized app with the NFC permission was running

in the foreground, our implementation almost instantly found out its security context and

denied its access request. The only operation that brings in a relatively high overhead is

labeling an external device. It involves assigning a type to the resource, saving the label

to user seres contexts, updating the DAC mapping table accordingly and even changing

the DAC policy base to enable authorized apps’ access to the resource when necessary. On

average, those operations took 189.44 ms. Note that this is just a one-time cost, as long as
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Table 6.10: Detailed Performance Measurements in milliseconds (ms)

AOSP (A) SEACAT (S) A-S
Operation mean stdev Operation mean stdev overhead

(ms)
install app 1415.6 40.61 install app (label) 1465.2 76.07 49.52
Bluetooth pairing 1136.5 351.65 Bluetooth pairing (la-

bel)
1434.4 237.60 279.9

BluetoothSocket.connect 1699.1 770.22 BluetoothSocket.connect 1616 306.83 -83.1
BluetoothSocket.connect
(block)

6 3 -1693.1

dispatchTag 87.3 4.32 dispatchTag
(MAC:allow)

96.9 4.63 9.6

dispatchTag
(MAC:block)

113.1 3.57 25.8

dispatchTag (la-
bel+allow)

358.28 40.47 270.98

dispatchTag (fore-
ground)

272 26.33 dispatchTag (allow
foreground)

269 41.53 -3

dispatchTag (deny fore-
ground)

132.5 21.76 -139.5

Ndef.writeNdefMessage
(app A)

197.1 6.17 Ndef. writeNdefMes-
sage
(DAC/MAC allow)

190.89 14.61 -6.21

Ndef.writeNdefMessage
(app B)

112.4 12.45 Ndef. writeNdefMes-
sage (unlabeled)

117.5 16.36 5.1

SMS process message 94 7.3 SMS process mes-
sage(allow)

106.5 8.11 12.5

SMS process message
(redirect)

154 12.11 60

SMS query() 2.7 1.1 SMS query() filter 6.39 2.4 3.69
Audio device connec-
tion

14.9 5.11 Audio device connec-
tion
(label+ connect)

177.6 21.92 162.7

AudioRecord.
startRecording (allow)

85.9 6.84 AudioRecord.
startRecording (allow)

95.6 16.75 9.7

AudioRecord.
startRecording (block)

7.2 3.58 -78.7

the user does not change the type given to a resource. An exception is Audio, whose type is

assigned whenever the dongle under protection is attached to the Audio jack. Note that the

user only experiences this sub-second delay once per use of the accessory, which we believe

is completely tolerable.
All the results presented here do not include the delay caused by human interventions:

for example, the time the user takes to determine the domain of an app and the type of a

resource. Such a delay depends on human reaction and therefore is hard to measure. Also

they only bring in a one-time cost, as subjects and objects only need to be labeled once.

Actually, for NFC, our implementation could even remove the need for human intervention

during policy enforcement: in the presence of two apps with the NFC permissions, the user

could be asked to choose one of them to handle an NFC event whenever it happens, while

under SEACAT, this interaction is avoided if one of the apps is within the domain authorized

to access the related NFC device and the other is not.
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Figure 6.6: Hybrid MAC and DAC for enterprise admins and users to dictate access to
personal IoT devices.

6.5 SUMMARY

In this chapter I presented my study on Android’s shared communication channels with

external resources. This is increasingly important in the context of IoT where smartphones

connect to smart devices in proximity using Bluetooth and NFS among other protocols.

My analysis revealed that Android’s shared communication channels are coarsely protected,

allowing malicious third-party apps to compromise the confidentiality fo the data transmitted

through these shared channels. In response I proposed a uniform system design taking

advantage of the SELinux infrastructure incorporated to AOSP since version 4.3, to protect

all known channels of communication with external Android resources at the operating

system level. Figure 6.6 visualizes this addition to the smartphone ecosystem. (Figure 7.6

now without permission split)

So far we analyzed adversaries exploiting shared intra-process privileges, shared filesy-

sem resources, and shared communication channels with external resources. In response

I introduced e↵ective and e�cient designs of strategies for detecting and preventing these

problems. However, sometimes external resources can be hidden behind a mediating point

such a router. This is increasingly realistic with the Internet of Things and the advent

of smart-home technologies. Such smart-devices are increasingly controlled through smart-

phones and thus shared between smartphone apps. In the next Chapter I will describe my

security analysis on such shared IoT devices.

122



CHAPTER 7: SHARING DEVICES IN IoT ENVIRONMENTS

This chapter is based on joint work with Nan Zhang, Yeonjoon Lee, Xiaofeng Wang, Carl

A. Gunter, Xiaoyong Zhou and Michael Grace [15].

In this Chapter I will describe my analysis on the security of smartphone communications

with shared IoT devices. I will focus on the security of WiFi smart-home IoT devices against

malicious applications running on authorized smarpthones within a home area network. In

particular I will show that WiFi smart-home devices tend to rely on WiFi authentication

for protection which leaves them vulnerable to attacks from compromised local systems.

To prevent such attacks I will illustrate how we can design a practical, fine-grained access

control mechanism within a home area network router endpoint which depends neither on

IoT device manufacturers nor smartphone vendors [15].

7.1 INTRODUCTION

The pervasiveness of Internet of Things (IoT) devices has brought in a new wave of

technological advances in home automation. According to Gartner [168], 6.4 billion IoT

devices will be online in 2016, among which a significant portion are smart-home systems like

smart thermostats [48, 49], fitness trackers, refrigerators, etc., and the number is expected

to go above 20 billion by 2020. Examples of such devices include: the Belkin NetCam [50], a

camera for streaming surveillance video to a mobile phone; the iBaby monitor [51], a device

for remote babysitting; the Family Hub refrigerator [52], which enables online checking of the

fridge’s contents. Increasingly, these devices are designed to communicate not only with their

servers in the cloud but also with other IoT devices and the user’s phone over the Home Area

Network (HAN), which is typically built around a Wi-Fi router. For example, Nest Protect

Fire sensors [169] are capable of propagating an alarm across multiple sensors installed

in di↵erent rooms of a house. For the convenience of management, such interconnected

IoT equipment often relies on the secure connections of HAN (Wi-Fi authentication) for

protection and trusts all the computing systems on the same network. This treatment,

however, completely exposes the device to the attacks from compromised local systems, a

threat becoming increasingly realistic.

Menace of local threats. Indeed, it has been reported that high-profile WiFi-enabled

smart home devices, including the WeMo Switch and motion sensor [170, 171, 172, 173, 174],
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Belkin NetCam [175], baby monitoring devices [176, 177, 86] and smart light bulbs [178], are

all vulnerable to a local attack: an adversary within the same HAN is shown to be able to

control those devices or steal sensitive user information, e.g., live video streams [175], from

them. Several other studies further reveal that this is possible since such devices have poor—

or no–authentication mechanisms [87, 179, 180, 181, 182, 183, 184, 185, 186] and therefore

easily fall prey to a local attacker. This is also validated from the analysis on Chapter 6

where I show that most Bluetooth devices perform no authentication.

Defending against such attacks becomes particularly challenging when the IoT devices are

controlled by smartphones: once the same phone also carries malware (even when the app

has nothing but the network privilege), protecting the device it controls becomes impossible

at the network level, as the phone is completely legitimate to access the device though the

malicious app running on it is not. Given the high smartphone penetration rates [187], the

millions of available mobile applications on both o�cial and third-party markets [188], and

the ease of distribution of such applications 1, devices that can be reached through mobile

apps can also become an easy target to adversaries. Unfortunately, such adversaries are

not only realistic; they are on the rise [189, 190, 191]. Because of that they become the

main subject of study of many other academic works [192, 7, 193, 194] while concerns are

also raised on public communication channels [195, 196, 197]. In this study I verify that

IoT vendors tend to trust the local network (Section 6.2). This makes them vulnerable to a

mobile adversary as we illustrate with attacks on real-world IoT devices, including theWeMo

Switch, WeMo Motion, WeMo in.sight.AC1 and My N3rd. The demos of these attacks can

be found on this study’s website [198].

Addressing the issue here cannot solely rely on device manufacturers: business factors such

as time to market and keeping the cost of the device low but also operational factors such as

low power consumption, lead to the production of devices without encryption capabilities [5].

In such cases, response to threats can only be reactive and it would entail manufacturing a

new version of the device which would still leave users with the old version susceptible to

attacks. To make things worse, device manufacturers can be slow in responding [199, 200] to

security and privacy threats. Router vendors have already identified this threat. New hubs

and routers pushed onto the market are increasingly armed with various IoT protections

(e.g. Microsoft Azure IoT hub [201], Google’s OnHub router [202]. Integrating protection

and management capabilities in the router has significant benefits as the infrastructure is

already in place in most households and it enables unified policy management. However,

as mentioned above, security control at the router level cannot succeed without knowledge

1Android applications can be self-signed.
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of the OS-level situation within an authorized mobile phone, particularly whether a request

to a target device comes from its o�cial app or an unauthorized party. Fundamentally, a

practical solution to the problem needs to bridge the gap between the OS-level observation

(apps making network connections on a phone) and the network-layer view (requests from the

phone for accessing an IoT device), with minimum modifications on the HAN infrastructure

and all the systems involved.

Situation-aware device access protection. A simple solution to the problem is just

inferring the identity of the app communicating with an IoT device according to its tra�c

fingerprint. This approach, however, is unreliable and can be easily defeated by, for exam-

ple, a repackaged app that closely mimics the authorized program’s communication patterns.

Also, individual apps’ fingerprints need to be reliably generated, deployed and continuously

updated, and further to be checked on the router against each communication flow it ob-

serves, which adds cost to both the router developer and the user. In this chapter, I present a

di↵erent approach, a new technique that achieves fine-grained, situation-aware access control

of IoT devices over a home area network. The proposed system, called Hanguard, distributes

its protection logic across smartphones and the Wi-Fi router for jointly constructing the full

picture of an IoT access attempt during runtime, which is then utilized to control the access

on the network layer. More specifically, on the phone side, the information about the app

making network connections is collected and passed to the router; on the router side, security

policies are enforced to ensure that only an authorized app can touch a set of functionalities

the device provides. In this way, malware on network-authenticated phones can no longer

endanger the operations of the IoT devices, even when the IoT devices are not equipped

with proper authentication and encryption protection.

Hanguard is designed to directly work on the existing HAN infrastructure, without mod-

ifying mobile operating systems or IoT devices. To deploy the system, one only needs to

install a Monitor app with non-system privileges on mobile phones and update the firmware

of the Wi-Fi router with a security patch. A key technical challenge here is how to gather sit-

uation information (processes making network connections) on mobile phones, which is not

given to a third-party userspace app on both Android and iOS. Although all these systems

provide VPN support, the app using the service still cannot observe the process generating

tra�c and will significantly slow down the network communication of the whole system (Sec-

tion 7.3.2). To address the issue, Hanguard leverages side channel information for lightweight

discovery of runtime situation on Android smartphones and utilizes the VPN to only mark

out authorized apps’ tra�c on iOS smartphones (Section 7.3.2). Such information is then

delivered to the router through a separate control channel, which is synchronized with the
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tra�c generated by the app (over a data channel) and used by the router to determine

whether the communication should be allowed to proceed.

I implemented this design over both Android and iOS which cover more than 95% of

the mobile OS marketshare [203], and a TP-Link WDR4300v1 Wi-Fi router. The system

evaluation shows that Hanguard identifies and blocks all unauthorized attempts to access

shared IoT devices with negligible overhead in the common case (see Section ??).

7.2 ANALYSIS

I performed an analysis on shared WiFi IoT devices and demonstrate the security im-

plications stemming from a mobile adversary. These findings informed Hanguard’s design

decisions.

Methodology. One approach for the analysis in thic case would be to investigate the IoT

devices’ firmware. That would entail—after identifying such devices–finding images of their

firmware or, for each device, buying the device and extracting its firmware. Subsequently,

each firmware needs to be analyzed, which is a non trivial task [204]. However, most of these

devices are now controlled by mobile apps. Thus their control mechanisms can be examined

by analyzing the apps instead of the firmware. Note that, the latter approach has multiple

benefits over analyzing firmware: (1) we can easily acquire Android apps, (2) there is no

monetary cost, (3) it is generally easier and faster to analyze mobile apps than an embedded

device’s firmware.

To discover Android apps for IoT devices, I searched for them at Google Play using

keywords such as “home automation” and “internet of things”. This, turned out to be not

very e↵ective: through manual inspections of search outcomes, we found that many apps

identified this way were not related to any IoT systems and in the meantime, popular IoT

apps fell through cracks. The solution is to crawl iotlist.co, a popular site for discovering

IoT products. From the list, the crawler collected the meta-data of 353 products (all listed

products at the time of the study). The meta-data include “Title”, “Description”, “Product

Url”, “Purchase Url” and others. Such data was further manually checked to identify a

list of package names for the o�cial apps of these devices. The crawler then used this list

to download the apps and their meta-data from the Play store. Out of the 353 products,

I found that 63% (223) of them have apps on Google Play, 2% (7) are iOS only and the

rest are mostly unfinished products (listed on kickstarter.com and indiegogo.com) or are

no longer available. This indicates that indeed most IoT devices today are controlled by
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Figure 7.1: IoT product functionality categorization.

smartphones. In this study I have also further used popular reverse engineering tools (e.g.

apktool [205], dex2jar [206]) to facilitate manual inspection of their source code.

Focus on home automation IoT. To better understand the operations of smart home

devices, I manually went through (1) the meta-data of the collected products, (2) their on-

line documentations and websites, and (3) through their apps’ source code when available.

Figure 7.1 illustrates the manual categorization of the IoT products based on their func-

tionality. Note that the Wearables category (31%) embodies mostly fitness and location

trackers, smartwatches and personal medical devices. We call such devices personal devices;

these commonly use Bluetooth to connect to a smartphone app. In the previous chapter

6 I have already presented my studies on the security of such personal devices, where I

revealed problems with encryption and authentication and proposed a systematic solution.

From the figure, we can also see that most of the listed IoT devices (55%) are smart home

automation/entertainment/security/hub systems, which are the focus of this study. I call

these shared devices. Such devices could directly benefit from an access control scheme built

within the HAN. Previous work on shared devices, was focused on a single IoT integration

platform (hub) [89, 99].

Focus on local connections. Prior research already demonstrated that the interaction

between smartphone apps and the cloud is alarmingly unguarded [207, 208]. On the other

hand, the local communication between the apps and the devices is not as well understood.

In fact it is unclear whether app developers and IoT device manufacturers treat the local

network and everybody connected to it as trusted entities and whether such treatments leave

the devices susceptible to attacks from both local adversaries and remote adversaries that
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gain access to the HAN. Moreover, even though it has been reported that IoT devices come

with serious problems [179, 180, 181, 182, 183, 184, 185, 186], little has been done to

understand the security risks stemming from malicious mobile apps. This is particularly

important since, IoT devices are controlled by apps which send commands either through

the cloud or the local network. Here, we aim to bridge these gaps in knowledge. Our findings

build on to the existing evidence which collectively support the need for a unified security

and management system built within the HAN to safeguard today’s smart-home devices.

In particular, our IoT application study aims to achieve the following goals: (a) Find

out whether vendors and developers of WiFi smart home devices/apps erroneously treat the

home area network as a trusted environment; (b) Find out whether a mobile adversary can

take advantage of such a problematic trust model to attack local smart home devices in

practice.

(a) HAN Trust Model. I performed a statistical significance test focused on the following

null hypothesis (N0): HAN apps with only remote connections are equally likely to perform

authentication compared to HAN apps with only local connections. To answer this question

I separated our collected IoT apps into two groups. Apps with only remote connections

and apps with only local WiFi connections. I used 55 unique Android applications with

WiFi/Internet only connections to HAN IoT devices.

To separate the apps into the two groups, I manually went through (1) their online doc-

umentations and websites, (2) public forums, and (3) their Java Android code. I found

that 22 (40%) do perform some internet socket connection with local discovered devices or

fixed local IPs. 25 (45%) were found without local WiFi connections, 5 (9%) could not be

determined, for 2(4%) decompilation failed, and 1 (2%) was by that time removed from

Google Play. For each of the 2 sets (local; no local) I analyzed them further for any au-

thentication practices. For the ones that perform only remote connections, I used a parsing

tool that searches for password requests in the layout files of the apps. I then manually

verified the existence/absence of a password request. I found that all these apps do perform

authentication.

For the 22 apps with local WiFi connections I could not simply use the above tool since

it would reveal little to no information on whether a password is used for a connection with

the IoT device or the cloud. Thus I manually went through their code looking for network

API calls responsible for local connections (e.g. creation of sockets connecting to local IPs,

or UPnP discovery). I examined the calls to such APIs and found that 9 of the apps do not

authenticate to the IoT device. The results are summarized in Table 7.1.

To determine whether apps with local connections are less likely to perform authentication

one could perform a �
2-test of independence. In our case this is not suitable due to the
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Table 7.1: Contingency table of HAN IoT apps.

w/ authentication w/o authentication
w/ local WiFi connections 13 9
w/o local WiFi connections 25 0

small absolute number of relevant available apps derived from iotlist.co. Instead I used

the Fisher’s exact test [209]—a common approach to derive statistically significant results

when the sample size is small. I performed the test [210] on our null hypothesis (N0). A

2-sided P value less than 0.05 was considered significant. The test yielded a 2-sided P-value

of 0.00036 < 0.05 and thus we can reject N0. Therefore, we can confidently say that HAN

apps with local connections are less likely to get authenticated by IoT devices. This validates

an important intuition that IoT vendors consider the HAN to be a trusted environment.

However, given the fact that smartphones are an integral part of such a network and that

smartphones can carry self-signed apps from third-party markets, this treatment becomes

detrimental to the security of shared HAN IoT devices.

(b) The mobile adversary threat. The previous finding is particularly alarming. Next

I validated that a weak mobile adversary can take advantage of this problematic trust model

and trivially compromise smart home devices. Towards this end, I cherry-picked four devices

with local connections and authentication issues and performed real-world, practical attacks.

The selected devices are listed on Table 7.2. The targets include the WeMo Switch and

WeMo Motion [170], the WeMo in.sight.AC1 [211], and My N3rd [212]. The WeMo devices

are examples of popular plug-and-play devices. Just on Android, the o�cial app of the

WeMo devices was downloaded 100,000–500,000 times 2. Note that all the WeMo devices

are manufactured by a single vendor. By focusing on three WeMo devices I want to showcase

how an erroneous trust model by a vendor can spread across various of its devices. This

suggests that trusting the local network was a design decision and not an implementation

issue manifesting in an isolated device. My N3rd, while not yet popular, it is chosen to

showcase a new category of do-it-yourself (DIY) devices. It allows one to connect it to any

other device enabling turning on/o↵ that device from the My N3rd mobile app. Increasingly

more such projects appear on the market with Arduino-based projects taking the lead.

While exciting for users, such devices tend to inherit the problematic trust model and allow

an adversary to take full control of ones devices. In our experiments we consider a mobile

adversary that tries to get unauthorized access to the IoT devices. The mobile adversary

can perform an attack from an unauthorized phone, or from an unauthorized app on an

2This is a conservative number as people can download the app from alternative Android app markets
or from iTunes for iOS devices.
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Table 7.2: Devices used in real-world attack demonstrations.

Target Device Description # App Installations
WeMo Switch Actuator 100K - 500K
WeMo Motion Sensor 100K - 500K
WeMo Insight Switch Actuator 100K - 500K
My N3rd Actuator 100 - 500

authorized phone 3. To test the above cases, I used 2 Nexus phones. The first one is

assumed to be untrusted and the second one is assumed to belong to one of the HAN users.

I then tried to access the target IoT devices using both phones. Unfortunately I found that

the adversary can trivially connect and control all WiFi shared devices. The video demos of

the attacks can be found online [198].

7.3 MITIGATION DESIGN

My previous findings (Section 6.2) highlight the need for an access control system that can

be integrated in home area networks with minimal changes to the existing infrastructure,

that is backward compatible, independent of vendor and developer practices and which

allows the users the flexibility to manage and control who should communicate to which

device. In this section, I elaborate on the design of such a system called Hanguard and its

implementation over the HAN and mobile platforms.

7.3.1 Design Overview

Adversary model. As shown in Section 6.2, IoT devices are controlled through smart-

phone apps. These devices are designed to act blindly on the commands from authorized

phones (based upon their authentication with the HAN router). This treatment becomes

increasingly problematic: while the smartphone may indeed belong to a rightful user, the ap-

plications that it runs can come from less known places (e.g., third-party app stores) and less

trustworthy developers (e.g., malware authors). Given smartphone penetration [187], preva-

lence and ease of distribution of mobile applications [188], adversaries can now find their way

to the HAN through a legitimate phone with minimal e↵ort. Moreover—as demonstrated in

Section 7.2—given the erroneous threat model of today’s IoT devices, which trusts all the

requests issued from a trusted source (a router or phone), such malicious applications can

3Note that the case of an unauthorized app on an unauthorized phone trivially reduces to the first case
we consider.
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easily gain unauthorized control of IoT devices (e.g. turning on/o↵ an actuator, or reading

the collected data of a sensor).

Thwarting such attacks is inherently hard. For example, we could employ the solution

(SEACAT) presented in Chapter 6. Smartphones with SEACAT will indeed protect attacks

from malicious applications running on them. Nonetheless, WiFi smart-home devices are

not only shared between apps on trusted users smartphones but also with any device on

the network. Thus, a more robust solution for smart-home environments, is to implement a

unified security logic in the router, since tra�c from applications to IoT devices goes through

it. However, the router alone does not have enough information to make any application

level access control decision. One could resort to tra�c fingerprinting techniques to infer

the application generating the tra�c. The approach can (1) be easily evaded by a malware

repackaged from an authorized app, (2) bring in false alarms and (3) impacts the performance

of the router.

Hanguard is designed to address this issue through bridging network and application level

semantics, associating an app’s identity to its tra�c to enable a fine-grained access control

on IoT devices. In the meantime, it does not modify both software and hardware of these

devices, the operating systems of smartphones, and does not make assumptions about the

router hardware. For this purpose, our adversary model is focused on the situation where a

malicious app is installed on a smartphone device authenticated to the HAN. The adversary

is considered to already know the communication protocol used by the victim IoT device.

We further assume that the smartphone hosting the app has not been compromised at the

OS or hardware level, which limits the adversary to the user land, at the app level. Note that

though outside our adversary model, Hanguard can also provide coarser-grained protection

against guest phones and compromised phones, remote adversaries and more traditional

WiFi attacks. To avoid confusion, I refer an interested reader to our paper [15].

Idea and architecture. Figure 7.2 illustrates the architecture of Hanguard. Hanguard’s

design is partially inspired by software defined networking (SDN) (see [30] for a survey),

which separates the network tra�c (data) from its management (control). In the mean-

time, Hanguard is meant to be easily deployed to today’s HAN. Serving this purpose is a

distributed security control architecture that includes a Controller on a HAN router for pol-

icy enforcement and a Monitor on the user’s phone for collecting its runtime situation and

making access decisions (which are enforced by the router). To avoid changing the mobile

OS, the Monitor is in the form of a user-space app. It detects the app making network com-

munication and its compliance with security policies, and then pushes the access permit to

the router’s Controller through a secure control channel (Section 7.3.2). The router utilizes
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Figure 7.2: Hanguard high level architecture.

that information to enforce the policy (Section 7.3.3): only the tra�c with a permit from

the Monitor is allowed to reach IoT devices.

In essence, this design preserves the data channel within which unmodified information

from smartphone apps is propagated to the router, and creates an independent control chan-

nel for security decisions. Such a separation, comes with obvious performance benefits: no

extra headers to be processed by the router on a per packet basis in the data channel. It can

also guarantee that control information is always transmitted through a secure channel, and

allows the router to further enforce policies and ensure, even in periods of heavy congestion,

that security decisions are delivered in a reliable manner. In addition, our design allows for

a clear separation of tasks: the security policies can be easily managed by the user through

a mobile app interface; the router reduces to simply enforcing the flow decisions. This keeps

the router as simple as possible and allows for readily updating the security logic with a

mere application upgrade.

Policy Model. Hanguard implements an RBAC (role-based access control) policy model

which leverages type-enforcement and multi-category security primitives. It uses them in a

unique way to create SELinux-like policy rules, to protect smart-home devices. However,

Hanguard does not need security experts to create the policies; policies are generated at

runtime and transparently to the user. In particular, the user is only expected to perform

simple mappings between a finite set of IoT apps, IoT devices and HAN users. Default
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policies are automatically created during setup to further reduce users’ burden. Hanguard’s

access control model parses such mappings and assigns a category tag to each app and its

respective IoT device. Further, each IoT device is labeled with a type. Types can be organized

in overlapping groups called domains. Each mobile phone is assigned a role and each role

can be configured to access a number of domains. For example, the iBaby camera can be

labeled with the type “babyMonitor t”. A domain “cameras d” can be created to encompass

the “babyMonitor t” type device among others. Lastly, the role of a HAN user’s phone (e.g.

“Adult”) that is supposed to be able to access the cameras, can be configured as eligible to

access the “camera d” domain and in extend the “babyMonitor t” type device. The relation

between the role and the domain ensures that an untrusted phone (e.g., a visitor’s phone)

cannot touch protected devices and even an authorized phone, once compromised, cannot

communicate with the IoT devices it is not supposed to talk to. At the same time, and

orthogonally to the type-enforcement scheme, the iBaby camera and its o�cial app, can be

assigned the category “iBaby”. The category here binds a specific app on a phone to the

device the phone is authorized to access. For example, the role “Adult” can be configured

to access the domain “cameras d”; while that stipulates that the adult’s phone can control

the baby cameras, access is not granted unless the app on her phone and the actual baby

camera that it tries to reach are tagged with the same category. Note that more than one

category tags can be associated with a domain. This enables the generation of a policy rule

which allows an app to access multiple devices of the same type.

By default, a phone registered with the HAN is assigned the role “HAN user”, which is

allowed to access the “Home” domain. The latter encompasses every newly installed IoT

device (which is assigned a unique type). However, the access can only succeed when the

app on the phone is given the same category tag as the device it attempts to reach. Such

an app-device binding is established when the app is used to configure the device, which

is established through a special device, a phone or a PC, that takes the role of an Admin.

This role can configure the router, register other user phones, access all domains and update

security policies. During a policy update, new domains, roles and access relations between

them can be generated. The policy model also handles unregistered phones (e.g., those

belonging to visitors), which connect to the Han as a “Guest”, a role not allowed to interact

with the devices in the “Home” domain. A security policy is shared by the phone side and

the router side. Although its enforcement happens on the router, its compliance check is

performed jointly by the router and the phone. The former ensures that only the authorized

phone, as indicated by its role, can access the domain involving the device. The latter runs

the Monitor to inspect the app and the target device’s category tags and asks the router to
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Figure 7.3: Hanguard Control Message delivered over TLS.

let their communication flows go through only when the category tags are the same. Next,

I describe how individual components of the system work.

7.3.2 Phone-side Situation Monitoring

In this distributed access-control system, the Monitors are deployed as user-space apps.

They are aiming at identifying the subject (app) trying to access an IoT device across the

HAN, and determine whether it is authorized. Such information is delivered through a

control message to the Controller module running on the router, informing it the context of

the access attempt (since the router cannot see the app initiating the communication), which

helps the router enforce appropriate security policies. Note that Hanguard is designed in a

way that the workload on the router is minimized, which is important in maintaining the

performance level needed for serving the whole local network. More specifically, the Monitor

launches at boot time to establish an ongoing secure connection with the Controller module

on the router. Through the channel, the situation on the phone is either pushed to, or pulled

by the router (Section 7.3.3), enabling it to perform a per-flow (instead of per-packet) access

control. Further, the security policies (Section 7.3.1) are broken into two parts: the Monitor

checks whether an app is authorized to access a device and asks the router to enforce its

decision, while the router implements a phone-level policy check as a second line of defense,

which protects the smart-home devices even when a phone is fully compromised.

The communication between the Monitor and the router goes through a TLS control

channel. The control message delivered through the channel is in the format illustrated in

Figure 7.3. For example, it includes a hash of the user credentials (username, password),

the sender phone’s MAC address, an identifier for the detected flow (IP/port), an identifier

for the app making the request, the policy’s version number and a flag indicating whether

this flow should be allowed or not. The negative flag is used to mark suspicious behavior

(detection). Flow termination is handled by the router (Section 7.3.3).

Every registered phone on the HAN, can be assigned roles instantiating an RBAC (Role-

Based Access Control) scheme. Furthermore, the phone used to configure the router is by

default designated as theMaster Controller Node (MCN) and every other phone is designated
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as the Slave Controller Node (SCN). A HAN user can update the policy through the Policy

Update Manager running in her phone’s Monitor. A Monitor accepts policy updates only

when it is running on a master node and after verifying its user’s credentials. A distributed

Policy Update Service intermediates policy synchronization and replication in the system.

Every connected (reachable) node gets the latest policy replica as soon as it connects to the

network or when there is an update. Unregistered devices are automatically assigned the

“Guest” role as soon as they join the network. Each Monitor has a local in-memory replica

of the policy base, that allows it to make decisions for its own tra�c e�ciently, alleviating

the router from further processing. Having the policy also at the phone side is critical in

SDN-like systems since it allows for e�cient decision making by the Monitors, reduces the

bandwidth on the control channel and keeps the routers simple and fast [30]. This way,

Monitors send only their per-flow decision to the router instead of continuously sending all

the mobile OS-situation measurements. In the last case, the number of control messages

in the HAN would exponentially increase while the router would need to process all the

measurements before making a decision, with severe performance degradation.

Situation awareness on iOS. As mentioned earlier, the Monitor is designed to find out

which app is talking to an IoT device under protection. Such information, however, is not

directly given to a non-system app on both iOS and Android. To tackle this Hanguard’s

iOS Monitor utilizes a new iOS capability that allows developers to proxy network tra�c.

Once this functionality is enabled by an app and approved by the user, all network packets

from all apps will traverse the network stack and instead of being sent through the physical

interface to the remote destination, they end up in a virtual interface (tunnel). The tunnel

will redirect those packets to the proxy app running the VPN functionality.

iOS o↵ers developers the capability to proxy network tra�c with the NEVPNManager APIs).

However, blindly tunneling apps’ tra�c through the VPN is very expensive, often slowing

down the mobile system’s network performance by an order of magnitude. This workflow

is illustrated in Figure 7.4: when an app makes a network call this would entail, for every

packet, a userspace-kernel context switch, traversing the network stack, trapping the tra�c

through the tunnel interface and context-switching to userspace again to deliver the network

packets to the proxying app. Then the proxying app needs to process the network headers

(essentially performing layer 3-4 translations) and then resending the packet.

The solution is to utilize the VPN in a unique way: instead of running the iOS Monitor to

proxy the tra�c of all apps (through the NEVPNManager APIs), which is expensive, requires

a remote VPN server and gives little information about the identity of the app generating

tra�c, our iOS Monitor uses the NEPacketTunnel Provider APIs with a per-app VPN
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Figure 7.4: Tra�c monitoring by a Hanguard iOS Monitor.

configuration, to tunnel the tra�c only from authorized apps (the o�cial apps of the IoT

devices), while leaving all other tra�c outside the tunnel to avoid unnecessary delays. Fur-

thermore, over the tunnel, our iOS Monitor does not change the data: it merely acquires

packet header information and forwards the packet to its original destination. After authen-

ticating itself to the Controller module on the router through TLS and its credentials, the

Monitor informs the router that the flow in the tunnel is authorized. Other flows towards

the IoT devices from the phone are by default considered illegitimate and will all be dropped

at the router. In this way, we can strike a balance between the protection of legitimate IoT

management tra�c and the performance impact of the security control.

Situation awareness on Android. A straightforward way to capture tra�c from other

apps on Android is to follow a similar process with iOS and utilize the closely equivalent

VPNService [213] API, introduced in Android 4.0. However, the implementation of VPN

on Android is similar to the one in iOS and would entail similar overheads. To collect the

situation information in a more lightweight manner, Hanguard leverages side channels on

Android an approach which results in astounding performance benefits.

The Android Monitor continuously looks at the procfs file system (see Figure 7.5).

procfs is a virtual file system which exposes the current status of an Android phone’s kernel
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internal data structures. Particularly the files proc/net/tcp, proc/net/tcp6, proc/net/udp

and proc/net/udp6 disclose the ongoing TCP and UDP connections between the phone and

a remote destination, including the source/destination IP addresses of the ongoing connec-

tion and its port numbers, the status of the connection etc 4. The addresses here can be

either IPv4 and IPv6 (with the su�x “6”). These connections are also associated with a spe-

cific UID that the Monitor can map to an installed app. To minimize operation overheads,

the Monitor does not open and parse a file for each access. Instead it just checks the file’s

metadata (i.e. the last modified time or mtime in UNIX terms) to determine whether the file

has been changed since the last visit. A complication here is that Android often fits an IPv4

address into the IPv6 format before reporting it to the user. Such an address is automatically

captured by the Monitor and converted back to the IPv4 form. As an example, consider

an app on a phone with an IPv4 address 192.168.1.189 that connects to an IoT device

with the address 192.168.1.32. During the app’s runtime, the connection may not show up

in proc/net/tcp but appears inside proc/net/tcp6 instead with 0000000000000000FFFF

0000BD01A8C0 for the source IP and 0000000000000000 FFFF0000200 1A8C0 for the desti-

nation. It is clear that the IPv4 address is enclosed in the 32 least significant bits 5 and the

96 remaining bits are fixed. The Monitor detects the address from its fixed part and converts

the rest to an IPv4 format before communicating the app’s identity to the router through

a control message. Note that Android su↵ers from the repackaged apps problem [194]. To

address this the Android Monitor uses a package’s signature to verify apps claiming the

identity of policy-controlled apps.

7.3.3 Router-side Policy Enforcement

The design of the controller module mainly focuses on synchronizing security policies across

all the systems within the HAN and enforcing these policies on the router, as illustrated in

Figure 7.6. More specifically, the module maintains a Master Policy Replica, and runs a

Policy Update Service responsible for updating the policies and distributing them across

registered Monitors. Further, the Controller module introduces a Per-Flow Decision Cache

(PFDC) for keeping the access decisions (on the app level) pushed by (or pulled from) the

Monitors, and a Garbage Collection Service (GCS) for maintaining the cache. It also hooks

on the router’s packet flow for the policy enforcement. Due to space limitations, I omit

discussion of the policy synchronization and focus on the policy enforcement.

4Note that iOS does not reveal to an app the information about other processes through its procfs file
system. Before iOS 9, one could use the system call sysctl to access such information. This channel has
been closed since then.

5in little-endian order, presented using four-byte hexadecimals
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Figure 7.5: Tra�c monitoring by a Hanguard Android Monitor.

Receiving decisions. By default the router blocks all flows to IoT devices. As mentioned

earlier, app-level access control on the router relies on decisions made by the Monitor and

delivered to the router through the control channel. To e↵ectively enforce such decisions on

a tra�c flow, the Controller module is designed to e�ciently authenticate and process the

control messages to avoid holding up the legitimate interactions with the target IoT device.

Specifically, the Controller module maintains TLS connections with the Monitors through

a userspace program. When a decision from a Monitor arrives, after the successful TLS

Monitor certificate validation, the router checks the policy version and the sender user’s

credentials, and once these are also validated, it passes the decision’s flow ID (source IP and

port, destination IP and port) to the kernel that updates the PFDC using the flow ID as

the key to record the validation/invalidation decision on the flow, which is then enforced by

the router. We highlight that data flows are first checked against a phone-level policy which

ensures that the flow comes from a valid HAN phone.

Supporting this decision-making process requires an e�cient userspace to kernel commu-

nication mechanism (for the router). Although this can be achieved through system calls,

ioctl calls or procfs files, these approaches are either complicated to implement or un-

able to handle asynchronous interactions. Our solution employs the netlink socket IPC

mechanism for the user-kernel communication, which can be easily built (without changing

the kernel) and are asynchronous in nature: it queues incoming messages and notifies the
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receiver through a handler callback. In our implementation, the callback spawns a worker

thread that processes the message and updates the PFDC, either by inserting a valid flow

or removing an invalid flow.

The PFDC is loaded at the router’s boot time from its persistent storage. It holds

the following information per-flow: the flow ID, the flow validation/invalidation flag, the

requesting app and the data last seen time. This cache is used for enforcing app-level policies

(whether a specific app is allowed to access a device), for the purpose of enhancing the

existing flow-control capability of the router, which cannot di↵erentiate two flows from the

same IP and port but produced by di↵erent apps. By searching the cache, the router can

apply the app-level access decision upon the whole flow, instead for every individual packet,

an advantage over deep packet inspection and tra�c fingerprinting techniques. To limit the

amount of the resources the cache uses, a Garbage Collector Service (GCS) is run to remove

the obsolete records with the oldest data last seen time. To prevent DoS attacks where a

Monitor attempts to flood the cache, a per-phone limit is applied.

Enforcement. The router enforces phone-level and app-level policies. For the former,

it checks every packet to determine whether it originates from a phone which is allowed
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to access a particular IoT device. Phones and IoT devices are identified based on their

MAC addresses. MAC-IP associations are statically defined during a new device enrollment.

For app-level policies, the router checks the PFDC cache to determine whether the flow is

generated from a valid app. A technical challenge in implementing the protection is where

to place the security control within the existing router infrastructure. On a Linux-enabled

system used by the router, once a packet is received, it is put by the link layer into a backlog

queue from which the IP layer pulls packets for checksum checking and routing decisions.

If the packet is destined for the current machine, it is passed to the transport layer. If not

the packet is forwarded. Apparently, the security control should happen on the IP layer

(e.g. in the ip forward() function). However, a packet might follow a di↵erent path within

the kernel depending on whether the current system is configured to run as a bridge or a

router. For example, in a bridge mode, no layer 3 operation is involved and as a result

the aforementioned function will never operate on the packet. To overcome this, Hanguard

places the Controller hook in dev queue xmit(), a generic driver function, ensuring that no

packet bypasses the check.

To minimize the impact on flows unrelated to the smart-home devices, the Hanguard-

enhanced router quickly inspects each packet it receives to determine whether further at-

tention is needed. Specifically, a TCP flow is considered interesting if its destination MAC

address is associated with an enrolled IoT device. Packets not fitting this description are

forwarded without a delay, and others are first handled according to the phone-level policy

(whether the phone can access the IoT device) stored at the router, and then the app-level

policy (whether the app can do that) which is based upon the validation flag set by the Mon-

itor. For the packet allowed to go through, its flow’s last seen time is updated to the packet’s

arrival time. Hanguard helps its users detect and react to spurious access attempts with its

notification mechanism: Hanguard (1) keeps a log, and (2) sends out-of-band notifications

to the admin user when a violation or tampering of the policy is attempted.

Flow Termination. A determined adversary could attempt to exploit the fact that a flow

from a co-located app is allowed. For example, it could wait for the benign app to release its

port and attempt to send a packet before the Monitor informs the router to invalidate the

flow. For TCP flows, the router prevents such attacks: it proactively invalidates a validated

TCP flow, when it sees its corresponding TCP FIN packet and then handles the session

termination. For UDP, the situation is more complex. UDP is an unreliable protocol with

no clear indications of a session establishment/termination. Hanguard can be configured to

handle UDP flows in two ways: (a) in a STOP-AND-WAIT mode, for every packet, it pulls

a decision from its Monitor. If between the time the packet is received by the router and
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the decision request is received by the Monitor, no other app on the same device attempted

to send a UDP packet to the same target IoT device, then and only then the packet is

allowed. This is a security stringent policy that prevents the attack. However, it comes

with performance penalties since every packet is delayed approximately by one RTT. (b) In

the DETECTION mode, the Monitor pushes a flow invalidation decision when the benign

app releases the port. In this case, a malicious UDP packet from an Android app could

make it through before the decision is enforced. However, the Monitor will (a) detect the

malicious attempt; (b) can determine the o↵ending app and; (c) can determine the a↵ected

device (destination). Once a violation is detected the user is notified to verify the status of

the a↵ected device and uninstall the o↵ending app which is also blacklisted in the policy.

On iOS such race attacks are always prevented: o↵ending tunelled tra�c is blocked on the

phone whereas non-tunneled tra�c to IoT devices is blocked at the router.

7.4 MITIGATION EVALUATION

I implemented a prototype of Hanguard—in DETECT mode for UDP (Section 7.3.3)—on

top of a TP-Link WDR4300v1 router with a Gb NIC and a wireless network at the 2.4 GHz

band (300Mbps) running OpenWRT Chaos Chalmer with a Linux 4.1.16 kernel, and also

Nexus phones running Android 5 (Lollipop) and an iPhone 4S running iOS 9. The evaluation

answers the following research questions:

• RQ1: Is Hanguard e↵ective in thwarting attacks from malicious applications?

• RQ2: What is the performance impact and resource consumption of the Monitors on the

phone side?

• RQ3: What is the overall overhead of Hanguard?

7.4.1 E↵ectiveness

To answer RQ1 and verify Hanguard’s backward compatibility and practicality, I repeated

the attacks I demonstrated on real world smart-home devices (listed in Table 7.2). I per-

formed the following two experiments: (A) first I set up the target IoT devices over the

“Vanilla” system (without Hanguard’s components), and further installed a repackaged ver-

sion of their legitimate app on the phone to mimic the adversary; (B) next, I updated the

router with Hanguard-enhanced firmware, and also put our Monitor app on the same phone

with a policy that allows the phone and the benign app to access the target IoT device.

Under this protected setting, I repeated experiment (A), using the phone with the Monitor
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Figure 7.7: Android Monitor polling scheduled frequency vs Actual polling frequency.

app to set up the IoT devices. As expected, both the original app and the repackaged one

could access the devices in the Vanilla system. With Hanguard enabled, only the o�cial

apps on the phone running the Monitor app could communicate with their respective IoT

devices , which confirms the e↵ectiveness of the access control enforced by Hanguard and its

backward compatibility (see [198] for demos).

7.4.2 Phone-side Performance

Monitoring cost on Android. On Android, the Monitor continuously polls the procfs

file system to detect ongoing network connections. Here I report a study on two monitoring

strategies and their performance impacts. Specifically, I configured the Android Monitor

on a Nexus phone to inspect the procfs file system in di↵erent granularity (every 5ms,

10ms, 20ms, 30ms, 100ms). After running for 30 seconds, the Monitor went through every

single file line to check the presence of interesting network connections, a strategy called

the Naive mode. The approach was compared with another strategy I also introduce, called

the Smarter mode, which first looks at the last modified time of a file before accessing its

content. The outcomes of the study are illustrated in Figure 7.7. Clearly, the Smarter

strategy clearly can poll at a finer granularity (5 ms), given that it reads much fewer file
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lines compared with the Naive approach (Figure 7.8), which is translated to less work per

iteration in the common case.

I further looked into the resource consumption of the Monitor. For this purpose, I con-

figured the Monitor to poll at 10 ms and recorded its CPU and battery consumption for

both the Naive and Smarter mode. On the same Nexus 5 phone, I also ran Trepn [214] by

Qualcomm to collect the baseline power profile of the phone for 30 seconds before running

our Monitor app for 2 minutes. Figure 7.9 illustrates the average battery consumption that

can be attributed to the Monitor, and Figure 7.10 shows the average CPU usage (first 4

bars). To put things into perspective, I compared the Monitor with a popular Antivirus

app in scanning mode and the de facto mailing app on Android (Gmail). As it is evident

from the figures, the power consumption of the naive approach is comparable to an antivirus

app performing an expensive operation while the smarter mode’s is comparable with Gmail

which is optimized to always run in the background.

Monitoring cost on iOS. To evaluate the iOS Monitor ’s resource consumption, I used

Instruments [215], a performance analysis and testing tool which is part of the o�cial Apple

IDE (Xcode [216]). Figure 7.10 depicts the % CPU utilization that can be attributed to a

runtime process, where measurements on iOS are indicated with * (last 3 bars): the Monitor

when proxying a TCP app that sends 500 messages with payload size equal to one character;
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Figure 7.9: Battery Power on Android.

the Monitor when proxying an equivalent UDP app; and YouTube while streaming a video

configured to auto-select its quality. The figure reflects the fact that the iOS Monitor does

a lot of work when proxying TCP tra�c: this is expected as TCP is a connection oriented

protocol and the Monitor needs to guarantee reliable delivery of the packets. For UDP the

Monitor does very little work. In idle mode (not proxying), the Monitor incurred no CPU

overhead. Instruments can also report the Energy Use Level of an app at runtime as a value

from 0 to 20. In all experiments the reported value was consistently 0/20.

Detection accuracy. The Monitor ’s goal is to detect an interesting flow generated on

the phone. For iOS the detection accuracy is 100% since all packets from interesting apps

are routed through the Monitor ’s VPN. For the Android Monitor though, the situation is

more complicated. For example, an interesting app might quickly set up a socket, send a

packet and then close the connection. The Android Monitor ’s detection accuracy depends

on whether it can catch such events given its polling interval. To answer this question I

created a micro-benchmark that includes a TCP and a UDP app connecting to a TCP

and UDP echo server respectively. They both stop the communication once the server
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Figure 7.10: CPU Load on Android and iOS(*).

response is received. Again, we ran the Monitor in the Smarter mode 10 times for each of

the following polling configurations: 150ms, 100ms, 30ms and 10ms. My empirical results

indicate (see Figure 7.11) that the 10ms configuration could always detect outgoing TCP

and UDP connections.

7.4.3 Communication Overhead

To answer RQ3, I assessed the overall performance overhead of Hanguard, as this can

be observed from a mobile app. I created a baseline by performing the experiments below

on the unmodified system (Vanilla). To evaluate Hanguard communication overheads we

repeated the experiments on Hanguard with the respective benchmark app being either

policy-protected (Managed) or not protected (Unmanaged).

Application latency. I ran the TCP and UDP apps individually, configured to send 100

messages each. Figure 7.12 depicts the mean latency in milliseconds (ms) for a TCP message

and a UDP message for Android. The latency is measured as round trip time (RTT) on
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the mobile app. In particular I measured the time interval between the API call to send

the message and the time that the message is returned by the server and delivered to the

application layer. As we can observe, Hanguard introduces negligible latency for Managed

apps on Android.

In Figure 7.13 we can see that there is a big increase on TCP packet latency for the

Managed apps on iOS. Nevertheless, in practice this is often tolerable, since most devices

are actuators and sensors that create mice flows 6 delivering a small amount of information:

for example, it is completely imperceptible when the delay for switching a light grows from

a few milliseconds to tens of milliseconds. This Figure also reveals an important benefit of

our design: the security controls have negligible impact on Unmanaged apps, on both Android

and iOS devices, for both UDP and TCP.

Application throughput. To measure Hanguard’s throughput overhead, I used the bench-

mark apps to transmit a file of 20MB to their server counterparts. I repeated the experiment

10 times. Figure 7.14 and Figure 7.15 plot the throughput CDF for Android and iOS re-

spectively. Evidently, Hanguard has negligible impact on throughput for all Android apps

and iOS unmanaged apps. Our evaluation also reveals an interesting case: throughput drops

significantly—but only—for the iOS Managed apps 7. This happens because the iOS Mon-

6A mouse flow is a flow with a short number of total bytes sent on the network link.
7In practice this will only a↵ect real-time streaming services o↵ered by such app-device connections.

Actuators and sensors will not exhibit a noticeable e↵ect.
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itor implementation uses the built in VPN utility of the OS. Thus, it has to inspect every

packet for managed apps (see Figure 7.4). This is a security, performance trade-o↵ we had

to address. We opted-in for security.

7.5 DISCUSSION

HAN users smartphones OS integrity. The application-level enforcement assumes that

HAN user phones are not compromised. Preventing phone compromises is out of the scope

of this study since other solutions already exist and even deployed on commodity smart-

phones [217, 218, 219, 220, 221, 222]. For example, SELinux for Android [223] uses manda-
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tory access control to ensure that even compromised system processes are restricted, and is

deployed on all Android phones with version 4.4. and higher (more than 60% in 2015 [224]).

Most Android phones are equipped with ARM processors [225] with TrustZone [220] which

can be utilized for solutions stemming from the trusted computing domain. TZ-RKP [221]

is a real-time kernel protection technique deployed on Samsung Galaxy phones that ensures

the kernel integrity using the ARM TrustZone secure world. iOS devices have the Secure

Enclave, a secure co-processor that is used to guarantee secure boot [222]. However, even

if a user device is compromised (and in the case of all guest phones), Hanguard can guar-

antee phone-level protection.Furthermore, Hanguard helps its users detect spurious access

attempts by (1) keeping a log, (2) sending out-of-band notifications to the admin user when

a violation of the policy is attempted.
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Switching Between Information Gathering Approaches. iOS follows a far more strin-

gent approach than Android in isolating processes. In fact our Android solution for tra�c

monitoring does not work on iOS. Instead we utilize Apple’s NEPacketTunnel Provider

API with a per-app VPN configuration. The latter requires an MDM (Mobile Device Man-

agement) server: the router vendor will need to enrol their users’ iOS devices and push an

over-the-air (OTA) configuration profile on the phone, just like the cell phone carriers (e.g.

AT&T, T-mobile e.t.c.) do. This process is already mature and streamlined for users who

just need to accept the configuration. Apple does o↵er the non-enterprise NEVPNManager

API but that would entail Hanguard iOS Monitors proxying tra�c not only from a selected

set of apps but from all apps, imposing the overheads we demonstrate in Section ?? for both

unmanaged and managed apps. In the proposed design we opted for security and runtime

performance in the expense of an initial bootstrapping usability burden, that allows us to

selectively proxy tra�c only from a handful of apps when used in the HAN environment.

This work illustrates how such capabilities can facilitate novel solutions on the iOS plat-

form. Also note that any of the two aforementioned techniques can be used in practice

with Hanguard iOS Monitors. Hanguard’s design, allows router vendors to readily switch

between monitoring techniques with a mere application update. Similarly, if access to the

Android procfs as a whole is forbidden in the future (not a straightforward decision since

this would break a lot of legitimate apps), Hanguard can switch to a VPNService-based

Android Monitor by merely pushing an app update.

7.6 SUMMARY

In this chapter I presented my study on the security of smartphone communications with

shared smart-home WiFi IoT devices. My analysis revealed that introducing smartphones

in such environments introduces attack surfaces stemming from the smartphone’s multi-

tenancy. Indeed I showed how a malicious application on an otherwise authorized phone

to the smart-home network, can gain unauthorized access to connected IoT devices on the

same network. To tackle such adversaries I presented an e↵ective, e�cient and backward

compatible system solution distributed between trusted phones and the home area network

router. The solution leverages the vantage position of the router to mitigate atacks even

from compromised devices but also collaborates with a userspace applications on trusted

phones to tackle other malicious apps on those phones from compromising the shared IoT

devices. Figure 7.16 visualizes the userspace tra�c monitoring addition to the smartphone

operating system. (Figure 7.16 now without permission split)
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CHAPTER 8: DESIGN PRINCIPLES

Over the years, stakeholders came up with fundamental design principles for secure sys-

tems. However, none of this would have completely prevented the problems I found in my

work. In this chapter, I will present a set of new security design principles stemming from

my analysis on modern, smartphone operating systems.

Saltzer et al. [226] discusses 8 principles to guide the design of a system which facilitate

reduction in security flaws. These principles are listed below:

• Economy of mechanism: this refers to keeping a design as simple and small as

possible.

• Fail-safe defaults: fail-safe defaults support a design where by default access is

denied, unless there is a condition under which access should be permitted.

• Complete mediation: authorization should be checked on every attempt to access

every object. This is a fundamental principle fo every access control design.

• Open design: the security of a system should not depend on its design secrecy. For

example the Android Open Source Project follows this principle. In contrast iOS is a

closed system. However, we should not assume it is more secure just based on that.

• Separation of privilege: when possible, require two keys to unlock a protection

mechanism.

• Least privilege: every principal should only have the least amount of privileges

possible in order to complete their tasks. Mandatory Access Control mechanisms can

achieve that with an ideal policy.

• Least common mechanism: shared mechanisms should be minimized as they can

be the source of potential information path between isolated principals.

• Psychological acceptability: user interfaces should be simple and protection models

should match the users’ mental models. This is to help user make correct security

decisions.

Similarly, the GenCyber program, targets building a cyber security curriculum based on

10 cyber security first principles. First principles should be the fundamental building blocks

of any security design. GenCyber aims to be more specific since it targets K-12 students

and instructors. According to Payne et al. [227], these principles are:
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• Minimization: aims to reduce the attack surface by disabling unneeded functionality.

This is a corollary from Saltzer et al. Economy of mechanism.

• Simplicity: facilitates clear understanding of a system’s functionality. This is a corol-

lary from Saltzer et al. economy of mechanism.

• Abstraction: remove any distracting details when not needed.

• Information hiding: prevent certain features from being available publicly (users,

other apps etc.).

• Least privilege: same as Saltzer et al.. Any tunning program should have the mini-

mum set of privileges possible to perform its tasks.

• Modularity: break up complex functionality into small components (modules). This

improves manageability, interoperability, security and protection. This is a corollary

from Saltzer et al. economy of mechanism.

• Layering: implement multiple layers of defense. If one layer is defeated, another one

might stop the attack. This is also discussed by Lampson [228] which defines it as

defense in depth.

• Resource encapsulation: all resources should be separated and use as intended.

This is a corollary from Saltzer et al. complete mediation.

• Process isolation: isolate processes sharing a platform so they do not interfere with

each other. Most operating systems implement this. Every program runs in its own

process with its own address space.

• Domain separation: separate areas where resources are located. For example,

SELinux uses assigns principals (subjects) to domains to dictate which resource each

domain can access.

All of these are valuable guidelines for building secure systems. However, during my

studies, I have identified some new valuable principles that could have helped in the design

of modern smartphone operating systems. These are: contextual threat model ; granularity

of mechanism and; layered responsibility.
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8.1 CONTEXTUAL THREAT MODEL

The security of a system is designed with a threat model in mind. However the threat

model itself should be designed taking into account the peculiarities of the context or envi-

ronment in which the system will be deployed.

Consider for example the analysis we performed on shared filesystem resources on smart-

phone operating systems (see Chapter 5). Android is built on top a stripped down version

of a Linux kernel. The Linux kernel does perform process isolation to prevent users from in-

terfereing with each other. It also uses a Discretionary Access Control mechanism to control

access to filesystem resources. By adopting the Linux kernel on Android, Android engineers

also made the decision to adopt its security models. This decision let to a number of prob-

lems where seemingly innocuous information made available on a desktop machine becomes

dangerous when applied on a smartphone operating system. There are two main di↵erences

between traditional Linux-based machines and smartphone operating systems which change

the threat model: (a) the notion of a user; (b) mobility.

In a traditional Linux system, a user ID (UID) is assigned to every user of the system.

A user is typically a human that uses the machine. The DAC mechanism which protects

resources on the device, relies on checks based on that UID and group ID (GID, users can be

grouped). On Android, UIDs are now assigned to applications. That is, every application is

considered as a di↵erent user of the device. Android engineers wrongly assumed that they

could merely reuse the Linux UID and inherit all Linux protection mechanisms. The threat

model though, is not trivially transferable between these environments. For example, reveal-

ing UIDs to users in a traditional Linux environment is of low risk. On smarpthone operating

systems, revealing the UIDs to applications (not users) means that every application can

be made aware of other applications that are installed on the smartphone (from the UID

one can derive the unique package name of an app on Android). This can be problematic

since the mere presence of apps reveals sensitive information: a user might install a dating

app (e.g. Tinder) or lifestyle app (e.g. a gay social network like Hornet), or healthcare apps

(e.g. a diabetes app or a pregnancy app). Other apps might target the user or harvest and

sell this information about the user to third-parties. I further showed in my analysis on

shared process resources (see Chapter 4) that the list of installed apps on a smarpthone can

be highly indicative of its user’s personally identifiable information (PII) such as age range,

gender and, zip code, but also if they su↵er from a medical condition or allergies, salary

range, marital status and more.

Also, other information seemingly harmless on traditional static Linux environment, be-

come dangerous when available on a mobile platform. In Chapter 5 I show how address
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resolution protocol (ARP) information available to a physical user on a traditional Linux

machine, can be leveraged by third-party applications on smarpthones to track the user’s

location. In a published related work[11] we further showed that just by knowing whether

the speaker is on or o↵, can also enable a third-party app to track the smartphone user’s

driving route. These are adversarial capabilities not present on a static machine.

Thus it is very important when designing a new system to re-consider the adversary model

before adopting any security mechanisms or decisions from another system.

Contextual Threat Model: The threat model for a system should be desinged taking into

account the context within which the system will be deployed.

8.2 GRANULARITY OF MECHANISM

Saltzer et al. discusses complete mediation as a fundamental property for access control

design and GenCyber highlights the importance of domain separation and process isolation.

However there is no guideline on the granularity of isolation and mediation. The granularity

of mechanism refers to the importance of selecting principals (or subjects) at the right

granularity for isolation and mediation decisions.

For example, even though Android uses complete mediation this does not stop the attacks

from advertising libraries we discussed on Chapter 4. This is because all mediation mecha-

nisms control access at the process level. Nonetheless, advertising libraries (or in principle

any third-party library) on smartphone applications run within the same process boundaries

as their host apps. Thus any security mechanism enforced at the process level will not be

able to control access to resources by third-party libraries. One could split the libraries from

their host apps such that they run on their own processes something suggested by Shekhar

et al. [17]. In this case, mediation at process boundaries would be enough. Nonetheless,

the security mechanism should be deployed respecting the granularity of principals. This

principle would further help design distributed systems. In Chapter 7 we saw how a router

in a smart home could only enforce device-level policies. When smartphones are introduced

in that environment this mechanism becomes insu�cient. An authorized smartphone might

carry unauthorized apps which might try to gain access to smart home devices in the net-

work. The mechanism I introduced is based on the observation that access could happen at

application-level granularity. A corollary derived from the granularity of mechanism princi-

ple is the separation of origin which could further guide the implementation of some security

mechanisms.
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• Separation on origin: Principals or subjects in an access control scheme could be selected

based on their origins. An instantiation of this took place in web security with the same-

origin policy. The same-origin policy tries to tackle untrusted code running on a trusted

web page from accessing data on another web page. More recently Chromium (one of the

most popular open source browsers) introduced out-of-process iframes (OOPIF) which allow

a child frame of a web page to be rendered on a di↵erent process. The important security

decision here was the identification of trusted principals not at the web page level but at the

iframe level. Basically the focus should be to identify the lowest level where an origin can

execute code. Similarly, smartphone operating systems would benefit from security mecha-

nisms designed with principal isolation and mediation at lower than the process levels. For

example, code could be indentified based on the package name of their Java class hierarchy.

This would allow the design of mechanisms to protect against third-party libraries who take

advantage of their shared host app’s privileges.

Moreover in joint work with Tuncay, Ganju and Gunter [12], we found that third-party

apps can escalate their privileges and gain unauthorized access to resources. Even in this

case, the problems stem from sharing resources, such as system resources (e.g. location

information, user contacts, access to the microphone, etc.) and shared application compo-

nents (content providers, services, broadcast receivers, activities) on the smartphone (see

Section 2.1 for a description of the permission model, system resources and app compo-

nents). In this case, the vulnerabilities could have been prevented if the Android engineers

have followed the separation of origin principle. The solution we present in Tuncay et.

al. [12] relies on this observation. Custom permissions on Android which are declared by

untrusted principals (identified by their unique app identifiers on Android) should be de-

coupled from system permissions which should only be defined by system principals. Even

within the realm of custom permissions, a custom permission should be strictly associated

with the principal that defined it. Indeed in that work we implemented and evaluated this

redesign of the Android permission model which systematically eradicates the found security

problems. Figure 8.1 visualizes this change on the smartphone operating system.

• A case study for Android : Lets see how we can re-design security mechanisms given this

principle. Modern processors leverage the notion of protection rings. Protection rings are

basically successively less privileged domains with the data they can access. x86 supports

4 rings ranging from 0 (most privileged) to 3 (least privileged). Linux, only leverages ring

0 for the kernel and ring 3 for userspace apps. The problem with the implementation of

this mechanism on Android, is that third-party libraries run in the same ring as the host

apps. Android also leverages a permission model at its middleware which is essentially a

capability-based access control scheme. Resources are protected by permissions and apps are
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Figure 8.1: Alternative permission model which splits management of custom and system
permissions.

granted permissions to access them. A reference monitor checks on such resource requests,

whether the requestor app has the appropriate permission. However, these permissions are

granted at the process granularity which means they can be inherited by an app’s libraries.

Lastly, SELinux on Android further separates apps/processes in domains to enforce a type

enforcement MAC scheme. Even this domain separation does not help when the granularity

of the mechanism is coarse-grained.

Bearing the separation of origin principle in mind, we could identify third-party libraries as

principals. Once we do that, we can revisit the protection mechanism implementations. At

the lowest level, we could utilize an extra protection ring for third-party libraries. Apps could

run on ring 2, whereas libraries could run in the less privileged ring 3. Of course this would

require certain support from the underlying architecture to utilize more rings. Inside that

ring, principals should not have the ability to directly use system calls, access sensor drivers

etc. At the middleware layer, Android would grant permissions di↵erently to apps and their

libraries. This would allow the system to restrict the permissions that can be granted to

third-party libraries. For example, we could disallow libraries from using middleware APIs

to access sensors, dynamically load code, run background processes etc. Furthermore, we

could easily present the user with clear indications on whether a permission is requested or
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used by an app or an advertising library. Lastly at the SELinux type enforcement mechanism

we could also further isolate resources from libraries.

Evidently, the granularity of mechanism is a powerful principle which has a direct im-

pact on systems’ security. The origin of principal can facilitate granularity decisions to set

privilege boundaries.

Granularity of Mechanism: The granularity of a security mechanism (isolation, privilege

assignment) should match the trust model.

8.3 LAYERED RESPONSIBILITY

This principle refers to placement of security mechanisms at the right layers of the system.

Here layers could be layers in the software stack or privileged layers/domains. Lampson [228]

discusses defense in depth and GenCyber uses layering to argue about the placement of

multiple layers of defense. Here I provide arguments to reason about the responsibility

of each layer of defense. Saltzer et al. [229] posed the end-to-end argument which provides

reasoning against low-level function implementation in layered communication protocols. In

a nutshell the paper advocates avoiding mandatory functions in lower layers, if layers above

it have the necessary semantics to decide whether a function should be used. This avoids

unnecessary performance penalties. The paper discusses the subtleties in making those

decisions. Layered responsibility adds to that discourse focusing on security mechanisms.

While it might be tempting to move a security function in a layered system closer to

the application that leverages that function, sometimes relying on higher layers introduces

security problems. Let us consider the Android operating system as a layered architecture

with the following layers from bottom (higher privilege) to top (lower privilege): the kernel;

the middleware including system applications and; third-party applications. Note that the

layers I consider are based on their privileges. You can also think of them as protection rings,

or isolation domains. In most networking operations, relying only on the OS for security

is insu�cient: relying solely on the kernel (with its networking stacks) to authenticate the

external resource (a web domain, a Bluetooth device, an NFC device, a WiFi device) raises

mis-bonding issues (see Chapter 6). In particular, encryption integrated in the protocol

can tackle network adversaries but remains vulnerable to internal adversaries in the form

of third-party apps competing for access to the network channel. These apps have access

to the information after it is being decrypted by the protocol. Moreover, authentication

happens at the device level since the kernel does not have the necessary semantics to enforce
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app-level or user-level authentication. On the other hand, solely relying on third-party

applications/developers for security is bad practice. We found that most Android apps

which interact with external sources of information (SMSs, Bluetooth, NFC and Internet

devices) su↵er from lack or weak authentication (see Chapter 6), while others have found

that security is commonly implemented incorrectly by third-party developers [208]. In the

context of a smart home, we can think of an equivalent security architecture with the router

being the most trusted device and third-party IoT devices in the network as untrusted. In

that setting we found that most of the security vulnerabilities manifest again because of lack

or weak authentication, or implementation flaws on third-party IoT devices [29]. In contrast,

not only we should have security in multiple layers, but it is important to think about the

responsibilities of each layer in the overall security of a system.

For example, the networking protocol could ensure device level authentication and encryp-

tion to guarantee secure inter-device communication. Most communication protocols already

do or support that. However, the OS responsibility is to also guarantee secure access to re-

sources, whether these are internal (filesystem resources) or external (devices). Thus the OS

should have mechanisms to make sure that the expected application is utilizing a networking

channel at any given point. Currenty, on Android, this is mediated through permissions and

Linux group IDs (GIDs). Nonetheless, as I showed on Chapter 6, it does not guarantee that

apps will utilize their permissions only to connect to external resources we expect them too;

the permission provides access to the channel irrespective of what is on the other end. The

OS responsibility does not stop at deciding who should access the networking channel as

a whole. This might be true for files, which are mostly static and predictable resources.

In contrast, networking sockets can be used to access any unpredictable external resource.

Since we expect the OS to manage resources, the OS should have mechanisms to guarantee

correct multiplexing of such information to applications. For example, a Bluetooth Fitbit

should interact only with the Fitbit app. We discussed how the OS can leverage user-driven

decision making to support such decisions, or enforce MAC rules in enterprise settings where

admins have knowledge of the enterprise applications and resources. Lastly, authentication

should be performed by the application, as it is expected to do so in current implementa-

tions. The applications have the necessary semantics to decide whether the correct user is

logged into the app/service, and also can authenticate the remote resource. For example, an

app developer can decide whether two-factor authentication is mandated or not (a gaming

app might not need it, a banking app will benefit from it); an app developer can decide

whether the remote service is the expected one.

It is also tempting to move security operations in more privileged domains of respon-

sibility. ARMTrustZone and Intel SGX are technologies which support trusted execution
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environments (TEE) in systems. Programs and information in TEEs are strongly (harware)

isolated even from the kernel of the OS. Nonetheless, logic in TEEs should remain as simple

and small as possible (economy of mechanism). The security operations in the TEE should

match its responsibility. For example, we could ensure root-of-trust and enable remote at-

testation in the TEE but we should not expect it to perform application access control to

resources.

Layered Responsibility: Respect each layer’s responsibility when placing security mecha-

nisms in a layered system.
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CHAPTER 9: SUMMARY AND FUTURE DIRECTIONS

9.1 SUMMARY

In my work, I have performed a holistic security analysis on the security of modern smart-

phone operating systems. My analysis used Android as a usecase which is the most popular

smartphone operating system (> 80% of smartphone OS marketshare). Smartphones, are

equipped with advanced sensors and networking capabilities. Their always-on and always-

with-us nature renders them the de facto devices users utilize to perform a vast array of

daily tasks, from socializing, to performing financial transactions and management, medical

condition tracking, navigation etc. To maximize utility, modern smartphone operating sys-

tems rely on a multi-process architecture which supports concurrent execution of userspace

programs from a variety of sources. This allows third-party developers to create mobile

applications which can utilize a number of resources made available to them by the smart-

phone operating system to o↵er creative services. This creates a multi-tenancy issue on

smartphones where third-party applications compete for access to resources. In my work

I analyzed how shared resources in this environments, can be used by third-party tenants

in unexpected ways, to compromise the confidentiality of user and other tenant data on

smartphones. This understanding allows us to develop more accurate adversary models for

smartphone operating systems. I used this understanding to design e↵ective and e�cient

mechanisms for information leakage detection and prevention. My solutions are tested on

real smartphone applications, operating systems and devices.

Figure 1.1 illustrates the shared resources studied in my work. The Figure is redrawn here

for readability (Figure 9.2). In particular this thesis analyzed the security of the following

shared resources.

• Intra-process privileges

• Filesystem resources

• Communication Channels

• Smart External Devices

I have proven that shared resources can be the source of vulnerabilities on smartphone

operating systems. I have shown that existing isolation and security mechanisms are either

too coarse-grained or merely flawed, and as such are insu�cient to guarantee the confiden-

tiality of user or application data. Unfortunately, current smartphone operating systems
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Figure 9.1: Smartphone shared resources.

focus mostly on isolating third-party applications as a whole from the system. This is im-

portant for the integrity of the device. However, this treatment overlooks the severe private

information leakage across third-party apps, made possible through shared resources. My

work shows how by including this in our threat models can help us design more e↵ective

systems for detection and prevention of such leakage.

My designs are shown to be e�cient and e↵ective. More importantly I took an approach

which retrofits security into existing products. Figure 9.2 illustrates the main security en-

hancements my work introduces to smartphone operating systems. For example, in the case

of mobile advertising, it is unclear whether a prevention mechanism would be practical since

the OS vendors have strong business incentives to enable advertising. In this case I showed

how we can develop tools that can help users and app developers to discover how their in-

formation can be accessed by advertising libraries. In sharing filesystem resources I showed

how an abstraction layer can help us release contents of files at di↵erent granularities as

dictated by users through permissions. I have also showed how we can extend the use a

hybrid mandatory and discretionary access control scheme distributed across the middleware

and the kernel, to o↵er fine-grained protection to external to the smartphone OS resources.

Moreover, I demonstrated how we can build userspace network tra�c monitors which can can

help IoT endpoints such as routers enforce fine-grained application level decisions on flows
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Figure 9.2: Proposed security additions on smartphone operating systems.

targetting IoT devices. Lastly, based on my security analysis on shared smartphone operat-

ing systems, I introduced three new needed principles to guide the design of secure systems

(see Chapter 8): contextual integrity ; granularity of mechanism and; layered responsibility.

9.2 CONTRIBUTIONS

Next I list the main contributions of this work.

• Provides a systematic analysis of information reach of advertising libraries embedded in

smartphone apps. Previous work has focused on past and current behaviors of advertising

libraries, overlooking the fact that these behaviors can change opportunistically. This thesis

focuses on the fact that such libraries share process space and privileges with their hosts

and as such can eventually take advantage of those privileges. It systematically models all

shared privileges a library has with its hosts which leverages for the design of an automatic

open-source tool for estimating the risk of sensitive user information exposure by a host app

to its advertising library.

• Discovers new side-channels hidden in shared filesystem resources and demonstrates new

adversarial inference techniques. An analysis of Android shared filesystem resources led to

the discovery of new side-channels which can be exploited by malicious applications with a
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suite of new inference techniques to bypass the process isolation boundaries and infer a user’s

identity, medical condition and financial preferences. This work led to Google introducing

further restrictions on Android filesystem resource access by third-party apps.

• Unearths threats on Android’s communication with external resources. This work system-

atically studies Android’s shared channels of communication with external resources such

as Bluetooth and NFC devices, devices that connect through the Audio port, incoming

SMSs and, WiFi smart-home devices. It defines a new threat, called the device mis-bonding

(DMB) problem, to highlight the system’s incapacity to create application-level bonds. It

further demonstrates that Android’s system permissions are too coarse-grained to support

the utility of the apps while guaranteeing the confidentiality and intergrity of the data com-

municated through these channels. Furthermore it measures the prevalence of the problem

in the Android ecosystem.

• Introduces smartphone OS-level enhancements to safeguard the communication with An-

droid external resources, using both MAC and DAC. This is the first mechanism that provides

comprehensive protection of di↵erent kinds of Android external resources over their channels

in a uniform way. The enhancements are built on top of SELinux on Android and achieve

both MAC and DAC in an integrated, highly e�cient way, without undermining their se-

curity guarantees. These new techniques help both system administrators and ordinary

Android users to specify their policies and safeguard their accessories and other external

resources.

• Introduces a novel distributed application-level access control system to safeguard vulnera-

ble shared smart-home devices from malicious smartphone apps. It shows how smartphones

can collaborate with enforcing points in smart environments to enable fine-grained access

control for WiFi smart-home devices. The design focuses on OS-level enahancement at

the enforcing point (the router) which makes device-level decisions and utilizes trusted ap-

plications on smartphones for application-level decisions. The trusted applications utilize

novel tra�c monitoring techniques while the overall solution is independent from IoT device

manufacturers.

• Impact on real-world smartphone operating systems. Some of the threats stemming from

sharing filesystem resources (see Chapter 5), are now at least partially addressed by Google,

who overhauls the development of Android (the most popular smartphone operating system)

which is used by millions of users.

• New design principles for the secure systems. Proposed three new principles for the design

of secure systems.
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9.3 MOVING FORWARD

Shared resources can be the source of security issues in every multi-tenant environment

(e.g. cloud, smartphones). As devices become more interconnected, this creates a compli-

cated system of systems, where devices compete for and share not only networking, but also

physical, event and other resources.

For example, IoT devices are now increasingly controlled through new user interaction

modalities such as voice and gestures. In those environments, the control signals are com-

municated through the physical channel which is essentially shared between all devices and

humans in proximity. This is problematic since these signals can be spoofed by a proximity

adversary. An interesting direction would be the study of how these physical channels can

be exploited and how we can build better security mechanisms to mitigate such threats.

In addition, a lot of e↵ort is going into enabling smart cities and connected vehicles. The

vision is to enable next generation vehicles to communicate with each other and the infras-

tructure to improve navigation, positioning, awareness and optimize tra�c scheduling among

others. In this ecosystem, connected vehicles will share massive amounts of media streams

or outcomes based on those with each other and the infrastructure. Also the infrastructure

would o↵er services to connected vehicles based on crowdsourced and historic data. Shar-

ing these rich sensing streams and historic information, come with grave privacy concerns.

An interesting direction would be to study how an adversary can utilize such shared data

to fingerprint and profile individuals. From the defense perspective we need new technolo-

gies which can enable such next generation services in a privacy preserving manner without

destroying utility.
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