(© 2018 Soteris Demetriou

ANALYZING & DESIGNING THE SECURITY OF SHARED RESOURCES ON
SMARTPHONE OPERATING SYSTEMS
—REVISED VERSION—

BY

SOTERIS DEMETRIOU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Carl A. Gunter, Chair

Professor Klara Nahrstedt

Assistant Professor Adam M. Bates

Professor XiaoFeng Wang, Indiana University Bloomington

ABSTRACT

Smartphone penetration surpassed 80% in the US and nears 70% in Western Europe.
In fact, smartphones became the de facto devices users leverage to manage personal infor-
mation and access external data and other connected devices on a daily basis. To support
such multi-faceted functionality, smartphones are designed with a multi-process architecture,
which enables third-party developers to build smartphone applications which can utilize
smartphone internal and external resources to offer creative utility to users. Unfortunately,
such third-party programs can exploit security inefficiencies in smartphone operating sys-
tems to gain unauthorized access to available resources, compromising the confidentiality of
rich, highly sensitive user data.

The smartphone ecosystem, is designed such that users can readily install and replace
applications on their smarpthones. This facilitates users’ efforts in customizing the capabil-
ities of their smartphones tailored to their needs. Statistics report an increasing number of
available smartphone applications—in 2017 there were approximately 3.5 million third-party
apps on the offifial application store of the most popular smartphone platform. In addition
we expect users to have approximately 95 such applications installed on their smartphones at
any given point. However, mobile apps are developed by untrusted sources. On Android—
which enjoys 80% of the smarpthone OS marketshare—application developers are identified
based on self-sign certificates. Thus there is no good way of holding a developer account-
able for a malicious behavior. This creates an issue of multi-tenancy on smartphones where
principals from diverse untrusted sources share internal and external smartphone resources.
Smartphone OSs rely on traditional operating system process isolation strategies to confine
untrusted third-party applications. However this approach is insufficient because incidental
seemingly harmless resources can be utilized by untrusted tenants as side-channels to by-
pass the process boundaries. To make things worse, applications might include third-party
libraries, for advertising or common recognition tasks. Such libraries share the process ad-
dress space with their host apps and as such can inherit all the privileges the host app does.
Identifying and mitigating these problems on smartphones is not a trivial process. Manual
analysis on its own of all mobile apps is cumbersome and impractical, code analysis tech-
niques suffer from scalability and coverage issues, ad-hoc approaches are impractical and
sucseptible to mistakes, while sometimes vulnerabilities are well hidden at the interplays
between smartphone tenants and resources.

In this work I follow an analytical approach to discover major security and privacy issues

on smartphone platforms. I utilize the Android OS as a use case, because of its open-source

i

nature but also its popularity. In particular I focus on the multi-tenancy characteristic
of smartphones and identify the resources each tenant within a process, across processes
and across devices can access. I design analytical tools to automate the discovery process,
attacks to better understand the adversary models, and introduce design changes to the
participating systems to enable robust fine-grained access control of resources. My approach
revealed a new understanding of the threats introduced from third-party libraries within an
application process; it revealed new capabilities of the mobile application adversary exploit-
ing shared filesystem resources; and shows how a mobile app adversary can exploit shared
communication mediums to compromise the confidentiality of the data collected by external
devices (e.g. fitness and medical accessories, NFC tags etc.). Moreover, I show how we can
eradicate these problems following an architectural design approach to introduce backward-
compatible, effective and efficient modifications in operating systems to achieve fine-grained
application access to shared resources. Some of the problems we found are now addressed by

Google, which overhauls the development of Android, the most popular smartphone OS.

il

To my parents Yiannis and Maria, my brothers Michalis and Alexandros, my sister-in-law

Georgia and my niece Florentia for their unconditional love and support.

v

ACKNOWLEDGMENTS

This thesis would have not been possible to realize without the invaluable support and
guidance of my advisor and academic father Dr Carl A. Gunter. Professor Gunter trusted me
to explore issues that I find interesting without any constraints. I consider myself privileged
to be given the opportunity to work and learn from Dr. Gunter. I can not imagine having
a better advisor and mentor.

[would like to also thank Dr Xiaofeng Wang, whose indispensable guidance was continuous
throughout my work. I was lucky during the beginning of my studies to meet with Professor
Wang who got me involved in smartphone security, a topic which became the focus of my
thesis. Unequivocally I learnt a lot during my interactions with Professor Wang both on
how to find interesting problems and how to approach solving them.

Special thanks to Dr Klara Nahrstedt and Adam M. Bates for their feedback and guidance.
The final version of this thesis is shaped based on their astute observations.

My sincere thanks also goes to Dr. Michael Grace and Dr. Xiaoyong Zhou who provided
me with an opportunity to join their team as intern at Samsung Research America (SRA).
At SRA T got exposed to real problems modern smartphone operating system vendors face
and the approaches they take to tackle them.

Lastly, I would like to thank all the people I got to work with during my Ph.D. studies: Dr.
Carl A. Gunter; Dr. XiaoFeng Wang; Dr. Klara Nahrstedt; Dr. Kyu-Han Kim; Dr. Landon
Cox; Dr. Patrick Tague; Dr. Xiaoyong Zhou; Dr. Muhammad Naveed; Dr. Michael Grace;
Dr. Puneet Jain; Dr. Wei Yang; Dr. Aston Zhang; Dr. Yueh-Hsun Lin; Dr. Yuan Tian;
Dr. Animesh Shrivastava; Dr. Wenrui Diao; Dr. Feng Qian; Dr. Kai Chen; Dr. Xinhui
Han; Dr. Kehuan Zhang; Nan Zhang; Yeonjoon Lee; Dongjing He; Xiaorui Pan; Kan Yuan;
Whitney Merrill; Giiliz Seray Tuncay; Tongxin Li; Mingming Zha; Xianghang Mi; Peiyuan
Zong; Karan Ganju. My interactions with all of them shaped me both as an academic and

as a persoi.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 Motivation L 1
1.2 Problem Statement 3
1.3 Approach 4
1.4 Thesis Contributions 7
1.5 Thesis Organisation L 9
CHAPTER 2 BACKGROUND 10
2.1 Android OS 10
2.2 Android Security Modelo oo 14
2.3 Background on Techniques and Methodologies Used 21
2.4 Android’s Shared Resources 22
CHAPTER 3 LITERATURE REVIEW, 25
3.1 Advertising Libraries 25
3.2 Information Leaks through Filesystem Resources. 26
3.3 Shared Communication Channels 27
3.4 Shared IoT Devices 28
CHAPTER 4 SHARING PROCESS PRIVILEGES 30
4.1 Introduction 30
4.2 Analysis 32
4.3 Detection Design 42
4.4 Detection Evaluation 51
4.5 Utility and Limitations o 58
4.6 SUMMATY oo 61
CHAPTER 5 SHARING FILESYSTEM RESOURCES 63
5.1 Introduction 63
5.2 Analysis 65
5.3 Mitigation Design 82
5.4 Mitigation Evaluation 00 85
5.5 SUMMATY v v e e 86
CHAPTER 6 SHARING DIRECT COMMUNICATION CHANNELS 88
6.1 Introduction 88
6.2 Analysis 89
6.3 Mitigation Designo 105
6.4 Mitigation Evaluation 118
6.5 SUMMATY o 122

vi

CHAPTER 7 SHARING DEVICES IN IoT ENVIRONMENTS 123

7.1 Introduction 123
7.2 Analysis 126
7.3 Mitigation Designo 130
7.4 Mitigation Evaluation oo 141
7.5 Discussion 147
7.6 SUMMATY o o 149
CHAPTER 8 DESIGN PRINCIPLES 151
8.1 Contextual Threat Model 153
8.2 Granularity of Mechanism 0oL 154
8.3 Layered Responsibility o 157
CHAPTER 9 SUMMARY AND FUTURE DIRECTIONS 160
9.1 SUMMATY 160
9.2 Contributions 162
9.3 Moving Forward 164
REFERENCES 165

vil

CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Eleven years now, after the first iOS and Android enabled smartphones, the technology
behemoths are now responsible for 90% [1] of total smartphone sales in 2018. These de-
vices have revolutionized the way people communicate and manage personal and business
tasks. Their unprecedented nature, which combines mobility, computational power and a
model of easy to replace applications that can facilitate every facet of our everyday lives,
constitute them an integral tool for people of any age. This very model, designed to leverage
developers’ creativity to provide users with a menagerie of smartphone applications (apps
for short) of any perceived purpose, led to the release of an astounding number of apps in
official application markets. Statista reports an almost exponential increase in the number
of available smartphone apps on the official application store for Android devices, with a
recent gnaw-dropping recorded number of 3.5 million apps [2]. These apps cover a broad
spectrum of functionality: applications for entertainment purposes, like games for children
and for adults; apps for educational purposes that can be used at schools and at home; apps
that render managing financial investments trivial; apps that help people manage their time
and tasks; office apps, data management apps; even apps for medical purposes, facilitating
decision making for doctors, or helping patients manage their treatment or daily activities
to improve quality of life; and recently apps to control and interface with Internet of Things
(IoT) devices, such as connected motion sensors and cameras.

Increasingly, smarpthone apps incorporate third-party libraries for two main reasons: (a)
for advertising; (b) for utility. For example, Grace et.al found that approximately 50%
out of 100,000 collected apps use in-app advertising libraries (ad libraries for short) for
monetization [3]. They further found that a third of them integrate one ad library while
one of the apps they analyzed includes 20 such libraries. In our work, we further found that
33.3% out of 230,000 collected apps that request the camera permission, include at least one
third-party library [4]. These third-party libraries are used for a variety of purposes such as,
location services, character encoding, audio encoding/decoding, text recognition, credit card
scanning and computer vision support among others. This highlights the fact that including
third-party libraries is a common practice on the smarpthone ecosystem. These libraries,
interface with their host apps through APIs which the hosts utilize to pass information to

the libraries for their tasks.

In turn, the host applications utilize operating system resources and capabilities for their
own functionalities. Smartphone operating systems offer a rich API to application devel-
opers for accessing user data such as a user’s contact list, incoming SMSs or collaborate
with other applicaitons on the system. Smartphone APIs also allow processes to leverage
a smartphone’s advanced sensing and communication capabilities. These capabilities allow
contemporary phones to receive and transmit information from and to accessories, remote
servers and devices: Bluetooth is being utilized to allow smartphone users to manage their
medical conditions, keep track of their fitness progress and communicate with other Blue-
tooth enabled phones; NFC made credit card payments fast and seamless and can automate
repetitive tasks through the tap of the phone on an NFC tag; smartphone audio jacks can
be used again for monetary transactions [5] or for receiving sensitive information from ac-
cessories regarding its user’s body functions; SMS can be more than a message exchange
between users as it can be used for sensitive tasks i.e 2-factor authentication; also the ability
to connect through WiFi with remote domains allow app developers to offer mobile adver-
tising for monetization or interface with IoT devices in a home area network or across the
world.

Of particular interest, is the Android OS which dominates the smartphone marketshare [1].
Its open source nature led to the adoption of Google’s proud green robot by the vast major-
ity of hardware vendors, offering Android enabled devices for everyone, regardless of their
financial capabilities. Android smartphones are available from $40 to $800 with a variety of
different specifications. Flagship Android phones and tablets, now feature quad core proces-
sors, 4GB of RAM, in par with modern laptops and notebooks. The computational power
of those devices, in tandem with their ubiquitous, always-present nature and its current
penetration has dictated the use of Android smartphones for personal, business and medical
purposes.

This vast adoption of Android, created an equally large attack surface for malicious ap-
plications aiming to infringe users’ privacy. Unequivocally, investment in malware makes
more sense when a security vulnerability or breach affects a wide user base and Android is
the ideal candidate for doing just that. As malware targeting Android increases, we have
witnessed a large scale of malicious attempts [6] exploiting the system’s vulnerability to
gain root access, or charging users money, by sending SMSs or calling premium numbers [7].
Furthermore the scientific community delineated another spectrum of the popular system’s
vulnerabilities, using more sophisticated attacks such as permission re-delegation [8] and
capability leaks [9]. Lastly, in a data-driven world, multi-billion dollar industries such as

analytics and advertising, rely on building detail user profiles, which in essence incentivizes

them as well to follow aggressive data harvesting practices, which are not always in accord
with users expectations.

Android marketshare, penetration, use in sensitive settings and the fact that is being
targeted by the vast majority of smartphone malware, analytics and advertising networks,
highlight the significance of an analytical approach for studying the security of the platform
but also the need for designing backward compatible, efficient and effective defense mecha-
nisms that detect questionable data harvesting behaviors and prevent malicious ones. For
the rest of this thesis I will be using Android as a use case of a modern smartphone operating

system.

1.2 PROBLEM STATEMENT

The Android OS uses various security strategies to control userspace process access to
sensitive resources (Android apps run as userspace processes). Android leverages a Dis-
cretionary Access Control (DAC) scheme to isolate processes and their data. Moreover, it
recently introduced a Mandatory Access Control (MAC) scheme to further strongly isolate
system processes from third-party applications. Both are enforced at process level in the
kernel layer. On top of the kernel, lies the Android middleware which leverages a permission
model to govern process access to system and application resources. For example, when an
app wants to utilize the sensitive system API to record audio, it needs to first get granted
the MICROPHONE permission by the user of the system.

Unfortunately, these mechanisms are inadequate to guarantee the confidentiality of sen-
sitive information. All strategies are applied at the process granularity and as such fail
to identify threats from libraries which share the same privileges with their host pro-
cesses [10, 4]. The DAC scheme which protects filesystem resources is adopted from a
static environment. However, filesystem resources shared across processes in a station-
ary machine sometimes require different access control management when used on a mobile
platform [11]. The MAC scheme only focuses on isolating system processes from third-party
apps allowing attacks between apps of the latter kind. . Moreover, the Android permission
model mostly depends on user input when protecting access to communication channels and
as such it needs to strike a balance between usability and security granularity. In essense,
this model is both too coarse-grained and users are desensitized to permission prompts.
This allows third-party apps to gain unfetterd access to shared direct communication
resources such as the Bluetooth, NFC and Audio channels [13, 14] and shared indirect
communication channels such as WiFi devices on the same network [15]. This allows

malicious apps to stealthily attack other devices that can connect to the smartphone.

3

Previous works have been taking ad-hoc and impractical approaches to mitigate these
issues. Some works simply propose more permissions for controlling access to sensitive
resources at a finer-granularity [16]. However these introduce a permission overbloat problem
and exacerbate the desencitization of users to the permission model. Other works considered
spliting libraries from their host apps so we can utilize process level isolation [17]; these are
both inefficient and impractical as they break the business model of advertising networks, a
role increasingly assumed by smartphone vendors as well. Other works focus only on code
analysis for prevention which is not scalable and slow to utilize at runtime [3, 18, 19, 20, 21,
22, 23, 24, 25, 26| while other researchers propose ad-hoc approaches for quickly patching
found vulnerabilities; these are hard to maintain and usually do not address the root causes
of the security problems.

Instead, I postulate that we need an analytical approach to systematically reason about
the security challenges on smartphones. Such an approach will allow us to better model
the smartphone adversary and thus design unified, efficient, scalable and robust systems to

eradicate security problems.

1.3 APPROACH

There is no one-size-fits-all approach to securing smartphone systems. However, thinking
about the resources we need to protect and the principals that try to—or have an incentive
to—access those resources, greatly facilitates the process. Specifically, in my work I focus
on how different kinds of resources are shared between tenants at different granularities on
a smartphone platform to unearth security and privacy vulnerabilities. I then utilize these
results to drive design decisions in building tools and systems for detection and prevention
of information leakage through such shared resources. My solutions aim to satisfy the fol-
lowing important design properties: effectiveness; efficiency; backward compatibility and;
maintainability.

In particular, in my work I systematically analyzed four classes of shared resources and
found how tenants at different granularities can exploit them to compromise sensitive user
information. These classes are: (a) shared process privileges; (b) shared filesystem resources;
(c) shared indirect communication channels and; (d) shared direct communication channels
(c and d are depicted as connectivity resources). Lastly, in joint work with Tuncay, Ganju
and Gunter [12], we also found issues with the Android permission model which allow an
adversary to gain access to shared system and application resources. Figure 1.1 summarizes

the approach at a conceptual level.

PROCESS PROCESS

RESOURCES RESOURCES i
-
P = X APP
@ @ RESOURCES
[al () (7] K
x & — = &
! o
o ¢
= SYSTEM
L | ~ B
(|7) MIDDLEWARE | 4l s ™ & A RESOURCES
2 -
5 8 "7
z ‘ S
= = CONNECTIVITY
EEE 2 % N RESOURCES
i ..
S KERNEL e & ___________
...................................... FILESYSTEM
& RESOURCES

Figure 1.1: Smartphone shared resources.

First, executable code from different untrusted sources, might run within the same process
boundaries. Therefore they share privileges at the process level. For example, Android apps
are commonly distributed for free. In turn they offer advertising which can result in
monetizing user impressions and clicks among others. To achieve this return of investement
the app developers include ad libraries into their source code which are compiled with the
host application. As a result the advertising code runs within the same process as the host
app. This symbiotic relationship comes with an intrinsic sharing of privileges: a third-party
library can exploit that to access application data and platform resources. Other studies
have focused on the ad libraries’ current behaviors. Such approaches are limited since they
cannot predict future behaviors. In contrast, we model all the different ways an ad library can
access user data on the Android platform. Since in this case, the OS cannot make a decision
whether advertising data collection constitutes a malicious behavior, I instead designed a
detection system, called Pluto [10], which can be utilized by application markets to quantify
the risk associated with embedding an ad library into an app. Pluto leverages Android OS
domain knowledge combined with natural language processing and frequent pattern mining
techniques to automatically detect sensitive user information that can be inferred by an ad

library due to its vantage placement in a target app. Pluto performs a risk assessment and

provides a privacy-leakage risk score associated with embedding an advertising library in a
mobile app.

Second, I found that Android suffers from information leaks stemming from unprotected
filesystem resources. The protection of such resources on Android, is delegated to the tra-
ditional Linux Discretionary Access Control, where a user or a group of users is granted a
combination of the read, write and execute permissions. However, information seemingly
innocuous on a stationary machine, that is made available to any process, can have grave
privacy implications when used on a smartphone (or any multi-tenant mobile) platform.
Therefore, if some of those resources are transferred from Linux to Android without the
proper access control modifications, then private information leaks are a pragmatic and im-
minent threat. Indeed I found that an adversarial smartphone app can utilize such shared
filesystem resources as side-channels to infer a smartphone user’s identity, medical condition
and financial preferences. Since then a lot of other works followed, utilizing other shared
filesystem resources as side-channels. Google on version 6, introduced restrictions to third-
party application access to such resources.

Third, Bluetooth, NFC, Audio, and SMS constitute shared channels of direct communi-
cation between a smartphone and a remote or external source. Here we use external and
remote interchangeably as remote sources are indeed external resources for the mobile OS
on smartphones. Since these channels carry private information most of the times, Android
OS developers correctly protected access to those channels with permissions. However, not
only permissions are being neglected or granted without scrutiny from users [27] but even if
users bestow the appropriate attention, this work argues that they are very coarse-grained to
protect the resources they guard. Consider for example an app that requires the Bluetooth
permission to supposedly connect to an accessory. Once the permission is granted, that
app gains unfettered access to the Bluetooth channel irrespective of the accessory currently
connected to the phone. Similarly, an app with the NFC permission can access any NFC
device in vicinity. An app with the AUDIO permission cannot only be used to support a
speaker but can read data transmitted to a cable-connected fitness accessory [28]. In my
work, I extended the Android MAC scheme and introduced a flexible DAC scheme to allow
both enterprise administrators (admins for short) and users to construct rules to control at
application-level how these shared direct communication channels can be accessed. Such
control allows a messaging app to read all SMSs except from those that are protected, such
as an SMS from Chase which can be configured to be read only by the Chase Bank app.
It will also allow an app to talk to its Bluetooth headset but restrict it from talking to a

protected Bluetooth blood glucose meter and so on.

Lastly, smartphones are increasingly used to connect to WiFi smart-home devices. These
[oT devices are typically located behind a home area network router and are controlled
through smartphone apps. A lot of these systems tend to rely on the Wi-Fi router to au-
thenticate other devices [15] or suffer from common vulnerabilities devices such as hardcoded
credentials, weak or no authentication [29]. This treatment exposes them to attacks from
malicious smartphone apps, particularly those running on authorized smartphones, which
the router does not have information to control. Mitigating this threat cannot solely rely
on IoT manufacturers, which may need to change the hardware on the devices to support
encryption, increasing the cost of the device, or software developers who we need to trust
to implement security correctly. We could tackle such attacks at the smartphone OS with
stronger access control such as in the case of direct communication channels. However, this
would entail assuming that not only the owners, but also all guests of the household, or an
adversary that compromised the WiFi passphrase use our proposed smarpthone OS. Since
these devices are shared by the router, a more practical approach would be to built our
defense there. To tackle this problem I built a system which uses an approach inspired by
software-defined networking (SDN) (see [30] for a survey) to offer fine-grained protection:
each phone runs a non-system userspace Monitor app to identify the party that attempts to
access the protected [oT device and inform the router through a control plane of its access
decision; the router enforces the decision on the data plane after verifying whether the phone
should be allowed to talk to the device.

(N

Focusing on analyzing shared resources within a process, across processes and across de-
vices, allows us to discover new adversarial capabilities on smartphones and in environ-
ments where smartphones are introduced (e.g. IoT). This facilitates better modeling of

the smartphone adversary which leads to the design of robust systems for both detection

and prevention of malicious behaviors by untrusted userspace smartphone programs.
\

1.4 THESIS CONTRIBUTIONS

This thesis makes significant contributions in the analysis of smartphone adversary models
and the design of tools and system enhancements for detecting suspicious behaviors and

preventing malicious behaviors on the smartphone ecosystem.

e Provides a systematic analysis of information reach of advertising libraries embedded in
smartphone apps. Previous work has focused on past and current behaviors of advertising

libraries, overlooking the fact that these behaviors can change opportunistically. This thesis

focuses on the fact that such libraries share process space and privileges with their hosts
and as such can eventually take advantage of those privileges. It systematically models all
shared privileges a library has with its hosts which leverages for the design of an automatic
open-source tool for estimating the risk of sensitive user information exposure by a host app

to its advertising library.

e Discovers new side-channels hidden in shared filesystem resources and demonstrates new
adversarial inference techniques. An analysis of Android shared filesystem resources led to
the discovery of new side-channels which can be exploited by malicious applications with a
suite of new inference techniques to bypass the process isolation boundaries and infer a user’s
identity, medical condition and financial preferences. This work led to Google introducing

further restrictions on Android filesystem resource access by third-party apps.

e Unearths threats on Android’s communication with external resources. This work system-
atically studies Android’s shared channels of communication with external resources such
as Bluetooth and NFC devices, devices that connect through the Audio port, incoming
SMSs and, WiFi smart-home devices. It defines a new threat, called the device mis-bonding
(DMB) problem, to highlight the system’s incapacity to create application-level bonds. It
further demonstrates that Android’s system permissions are too coarse-grained to support
the utility of the apps while guaranteeing the confidentiality and intergrity of the data com-
municated through these channels. Furthermore it measures the prevalence of the problem

in the Android ecosystem.

e Introduces smartphone OS-level enhancements to safequard the communication with An-
droid external resources, using both MAC and DAC. This is the first mechanism that provides
comprehensive protection of different kinds of Android external resources over their channels
in a uniform way. The enhancements are built on top of SELinux on Android and achieve
both MAC and DAC in an integrated, highly efficient way, without undermining their se-
curity guarantees. These new techniques help both system administrators and ordinary
Android users to specify their policies and safeguard their accessories and other external

resources.

e Introduces a novel distributed application-level access control system to safequard vulnera-
ble shared smart-home devices from malicious smartphone apps. It shows how smartphones
can collaborate with enforcing points in smart environments to enable fine-grained access
control for WiFi smart-home devices. The design focuses on OS-level enahancement at
the enforcing point (the router) which makes device-level decisions and utilizes trusted ap-

plications on smartphones for application-level decisions. The trusted applications utilize

novel traffic monitoring techniques while the overall solution is independent from IoT device

manufacturers.

e Impact on real-world smartphone operating systems. Some of the threats we revealed, are
now at least partially addressed by Google, who overhauls the development of Android (the

most popular smartphone operating system) which is used by millions of users.

e New design principles for the security of systems. Proposed three new principles for the

design of secure systems.

1.5 THESIS ORGANISATION

In Chapter 2, I will present background knowledge on the Android operating system, its
security mehcanisms and its shared resources. In Chapter 3, I will provide a discussion of the
available literature on Android security. In Chapter 4 I will present my analysis on shared
process privileges by libraries and their host apps and discuss how this analysis allowed me to
build an automatic tool for assessign the potential exposure of sensitive user information to
advertising libraries. In Chapter 5 I will introduce new side-channels on Android stemming
from shared filesystem resources. I will also discuss new adversarial inference techniques
which exploit those side-channels to compromise user’s data confidentiality. In Chapter 6
I will analyze the security of shared direct communication channels with external resources
and propose security enhancements on the Android operating system to enable application-
level access control to such resources. In Chapter 7 I will look into new attack surfaces
introduced by smartphones sharing devices in smart-homes and propose a distributed fine-
grained access control scheme to protect smart-home devices from malicious smartphone
apps. In Chapter 8 I propose three new principles to guide the design of secure systems
stemming from my analysis on smartphone operating systems. Lastly, in Chapter 9 I will
conclude this treatise and discuss future directions. Lastly in Section 9 I will conclude this

thesis and discuss its findings.

CHAPTER 2: BACKGROUND

In this Chapter I provide some background on the Android OS and its security features.

2.1 ANDROID OS

The advent of Android was announced on November 5th, 2007. This exquisite mobile
platform was a result of a partnership of Google with OHA (Open Handset Alliance), a
consortium of telecommunication, software and hardware companies and its source code is
made publicly available. Android is an open source software stack encompassing a kernel
layer, a middleware layer and basic applications.

Since the announcement of the first Android version, a number of new OS releases followed
as depicted in table 2.1, with every version being playfully given a desert name [31]. Google
ships its Nexus devices with the unmodified Android open source code while other hardware
companies such as Samsung and HTC release their devices with appropriate modifications

to satisfy their specific Ul or hardware requirements.

Table 2.1: Android Versions [31]

No Release Number Code Name

1 1.0 Android Alpha
2 1.1 Android Beta
3 1.5 Cupcake

4 1.6 Doughnut

5 2.0-2.1 Eclair

6 2.2-2.2.3 Froyo

7 2.3-2.3.7 Gingerbread

8 3.0-3.2.6 Honeycomb

9 4.0-4.0.4 Ice Cream Sandwich
10 4.1-4.3.1 Jelly Bean

11 4.4-4.44 KitKat

12 5.0-5.1.1 Lollipop

13 6.0-6.0.1 Marshmallow
14 7.0-7.1.2 Nougat

15 8.0-8.1 Oreo

10

2.1.1 Architecture Overview

Android is usually depicted as a software stack featuring a Linux Kernel at the lower
level. On top of that lies the Android middleware which integrates libraries written in C,
the Android runtime, and the application framework written in Java. The Android software

stack is displayed in figure 2.1.

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Window Content View Notification
Manager Manager Providers System Manager

Package Telephony Resource Location XMPP
Manager Manager Manager Manager Service

LIBRARIES ANDROID RUNTIME

Surface Media . Core
Manager Framework PN Libraries

T F— Balik Virtdal
- I —

LINUX KERNEL

Display Camera Bluetooth Flash Memory Binder (IPC)
Driver Driver Driver Driver Driver

USB Keypad WiFi Audio Power
Driver Driver Driver Drivers Management

Figure 2.1: Android Software Stack [32]

Applications are also written in Java and can make use of a rich API provided by the
Application Framework to access resources on the device such as the SMSs or contacts and
perform actions such as place a phone call, handle an incoming phone call or SMS, access
the GPS or accelerometer data and so on. Nevertheless, use of native code (C, C++) is
not prohibited and apps can use it although they rarely do. An app can also use the JNI
(Java Native Interface) that allows Java code to interact with native code when use of both
is imperative. An application’s major components are Activities, Services, Content
Providers, Intents, Broadcast Receivers.

Activity: An Activity is usually correlated with a Ul screen on the phone. An activity can

display UI elements when in the foreground, invoke another activity (screen) or be invoked

11

to be shown on the foreground. It must extend the Android Activity class and follow the

Activity Lifecycle as shown in figure 2.2 given by the official Android documentation [33].

Activity
launched

onCreate()

v

onStart() -+ onRestart()

‘ A
User navigates A
to the activity onResume()

“"‘ App process ““‘ “ Activity
\ killed / running

Another activity comes

nto the foreground
User returns

‘ to the activity
)
onPause()

The activity is
no longer visible

Apps with higher priority
need memory

User navigates
* to the activity
)

onStop()

The activity is finishing or
being destroyed by the system

v

onDestroy()

7 ‘

(Aoty \"\
\ shut down

Figure 2.2: Activity Lifecycle [33]

Service: A Service is an application component that does not need a UI to run. It is
being used to perform tasks in the background and can continue running even if the parent
app is not. They have high priority and they are the last being killed by the OS in the event
that resources need to be freed. Even then they are immediately restarted once enough
resources are made available.

Content Provider: A Content Provider is a convenient structure provided by the appli-
cation framework to applications, to access databases on the device. For example if an app
needs to access the SMSs, it can use the appropriate content provider which allows the app
to query the SMS database.

12

Intents: Intents is a powerful inter-component communication tool for applications and
userspace processes. An application (built-in or third-party) can notify other applications
about an event, or even send data to interested applications through this mechanism. Inter-
ested applications can receive such broadcasted intents through Broadcast Receivers.

Broadcast Receiver: An application can register a broadcast receiver to receive specific
intents. For example an app can register to receive the intent sent by a framework app
notifying that the system has booted, or that a bluetooth device has just paired. Another
example is the Activity Manager that can receive intents regarding the intention of an
activity to launch a new activity. We will elaborate on how this works later on.

It is also important to understand that each Android application runs as a separate Linux
process with its own instance of the Dalvik Virtual Machine (DVM) as shown in figure 2.3.
Dalvik is an efficient process virtual machine with just-in-time (JIT) compilation specially
designed for Android due to its constraints in memory and processor speed. Android pro-
grams are usually written in Java and then compiled to bytecode. Then they are converted
from .class files compatible with the Java Virtual Machine, to Dalvik executable files (.dex).
Subsequently these .dex files are compressed in an apk (Android Application Package) and
installed on the Android device. In version 5.0, Android replaced Dalvik with Android
Runtime (ART) which performs a more efficient and power preserving ahead-of-time (AOT)

compilation, which compiles entire applications into machine code at installation time.

Linux Kernel

Dalvik Virtual Machine Dalvik Virtual Machine

Figure 2.3: Application Isolation on Android

2.1.2 Android Boot Sequence and the Zygote Process

When an Android device boots, the bootloader runs first, which eventually starts the

kernel. Once the Kernel is up and running it will mount the root filesystem and launch the

13

init process. This process will look into a file called init.rc which dictates which system
services will have to be launched next and set up filesystem and other system parameters.
Init will start the Service Manager which is responsible for managing services’ registration
and requests for registered services. The init process will also start the Zygote. The Zygote is
the parent process of every other process. For example since every application is essentially a
process, that must be forked out from the Zygote and this exactly what the Activity Manager
is doing. Next the Zygote initializes the Dalvik VM and forks the GUI process and the
System Server process in their respective DVMs. The System Server process is responsible
for starting the Android system services such as the Activity Manager, Telephony Manager,
Package Manager (handles installation/uninstallation of applications), Bluetooth and so on.

When the System Server starts a Service, that action goes through the Service Manager
which maintains an index of all started services. Now, if an app wants to access a system
service, it has to go through an RPC (Remote Procedure Call) mechanism called Binder
which in turn will deliver the request to the Service Manager. The Manager then will return
again through the Binder, a handle to the application which will allow it to use the service.
The Binder is implemented in the kernel and the app developers do not interact with it
directly when requesting a Service access.

Having a basic understanding of the Android platform and important terms covered we

will now scrutinize over the Android Security Model.

2.2 ANDROID SECURITY MODEL

Android employs a number of security features. We will focus on the inherent Linux
security, the permission model to protect sensitive API calls and the latest integration of

SELinux on Android which enables Mandatory Access Control on the kernel.

2.2.1 Application Sandbox

As stated before, Android features a Linux kernel. As a result it benefits from its
discretionary access control (DAC) on the filesystem. This is an implementation of
access control lists (ACLs), where for each object the system stores a list of users that
can access it. In Unix and in extend Linux and Android, users can be grouped together to
avoid long sparse lists. This is stored in the file’s node and when a user requests access to
it, the OS will check whether the requesting user is the owner of the resource. If that is not
the case it will then check if the user belongs to a group that can access it. Lastly it checks

whether the resource can be accessed by the rest of the world to decide if it will grant

14

access. The actions that can be performed by a user on a Linux file are one of three: Read;
Write or Execute.

On Android each application is considered a different user and runs in its own Linux
process. This way it owns its own memory stack and can access its own resources taking
advantage of Linux’s user-based protection. The system bestows a unique User IDentifier
called UID to every installed application and runs it in a newly forked process. Linux ensures
that no process can access another process’s resources and restrict communication between
them through its secure IPC (interprocess communication) mechanism. This is known as the
Application Sandbox and its implemented in the kernel. Thus it can protect applications
from each other whether they use Java or native code. Consequently, application sandbox
can be compromised only when the kernel itself is compromised.

However Android provides developers the capability to share resources among their own
applications: Apps are signed with certificates whose private key are in the acquisition of
their respective developers. Applications signed with the same certificate, can request to
share UID and thus consider as a single Linux user and share the same resources. This
request to the system, can be defined by the application developer in the app’s manifest
file, namely AndroidManifext.xml. The presence of that file in the app’s root directory is
non optional. It tells the system about the major components the app is using (Content
Providers, Broadcast Receivers, Services, Activities e.t.c), lists libraries that the app must
be linked against, requests permissions to access protected APIs, names the Java package for
the app which can be used to uniquely identify it and contains other essential information

about running the particular app.

2.2.2 Permission Model

Android offers applications a rich API to access resources on the system through its
application framework shown in figure 2.1. The Android sanbox allows access to some basic
resources. To protect access to resources that are considered sensitive, such as accessing
services that might cost users money, or functions that can lead to private information leaks,
Android employs a security mechanism called Permissions. According to this mechanism,
a permission is mapped with one or more sensitive functions. An application must declare
in its manifest all permissions required for it to run properly, according to the function call
(or resource accesses) it makes.

Android Permissions can have different protection levels. A permission’s protection
level can have the value normal, dangerous, signature or signatureOrSystem. A normal

permission is consider to be of minimal risk to the application, the system or the user. Such

15

permissions can be granted automatically by the system without user interaction during
installation unless their revision is explicitly requested by the user. A dangerous permission
is of higher risk as it can provide access to private information or device features that can
adversely impact the user. These kind of permissions must be presented to and accepted
by the user. A signature permission, is granted automatically by the system only if the
requesting application is signed with the same certificate as the application that declared
the permission. Lastly a signatureOrSystem permission that the system automatically grants
to the requesting application, if that application is either signed with the same certificate as
the declaring application or the requesting application is built as part of the Android system
image (i.e a system application). The first comprehensive study on Android Permissions was
conducted by Felt et al. [27].

Android permissions were granted by the user at installation time. In particular, a user
would have to accept all permissions an app requires to be able to even install an app. With
version 6.0 Android introduced the runtime permission model. With this change, dangerous
permissions are now requested and granted at runtime. The application developer decides
when a dangerous permission should be requested from the user. This is performed to
provide more context to the user when making such decisions. To reduce user burden,
dangerous permissions are requested only once, the first time the app requires it, unless the
user has manually revoked the permission. This ask-on-first-use model was first proposed by
Wijesekera et al. [34]. Normal and signature permissions are still granted at installation and
cannot be revoked by the user. Additionally, in version 6.0, Android introduced permission
groups which cluster permissions based on their utility [35]. According to the runtime model,
if a dangerous permission in a permission group is granted to an app, all the dangerous
permissions in that group will also be granted (if explicitly requested by the app) in order
to minimize user’s effort. There are currently nine permission groups on Android: calendar,
camera, contacts, location, microphone, phone, sensors, SMS and storage (Figure 2.4).

The Android OS checks system permissions in 2 ways as shown in Figure 2.5: Either at the
framework level or at the kernel level. Most commonly, an application can request access
to a sensitive API using the appropriate Manager. The Manager provides a convenient
way to apps to query a Service for a resource. The request will go from the Manager,
through the Binder to the Service, which will check whether the calling process has the
permission to access the requested resource. If it does, access is granted, otherwise a Security
Exception is thrown back to the application. Consider for example an application that
wants to connect to a paired Bluetooth device. That app will use the BluetoothAdapter
to find the BluetoothDevice it needs. Then it will obtain a BluetoothSocket handle calling
device.connectRFcommSocket for serial data transfer with the RFCOMM protocol. The

16

f g8

App permissions

Calendar

Body Sensors

Camera

Contacts

Location

Microphone

Phone

SMS

Storage

Figure 2.4: Permission groups on Android version 7.0 (Nougat).

socket handle can be used to call socket.connect to actually establish the connection.
The connect request will go through Binder RPC to the Bluetooth Manager Service which
binds to AdapterService. The Adapter Service is responsible to establish the connection on
behalf of the app. Before doing so, it checks whether the calling app has the BLUETOOTH
permission.

Alternatively an app can directly request access to a hardware feature. This request can
be checked for permission at the kernel layer. For example when an app is granted the
INTERNET permission during installation, its assigned UID is mapped with the Internet
Group’s ID (GID), which corresponds to the number 3003 and referred to with the constant
AID_INET in the kernel. Before an IPv4 or IPv6 socket is created, the kernel first checks
whether the requesting process belongs to the group AID_INET. If it doesn’t, it returns an

aCCess error.

17

Application Sandbox

SYSTEM SERVICE

APPLICATION

Userspace CONTACTS
D e T
Binder)
Network, Camera, GPS, Bluetooth
Bluetooth (BlueZz) (Bluedroid), NFC (NCI)

Figure 2.5: Android Permission Check

Custom Permissions. The permissions introduced above, are used to govern access to
system resources. In addition to those, Android allows application developers to define
theor own custom permissions which can be used to protect their applications’ components.

These are called custom permissions.

2.2.3 SELinux on Android

SELinux is a Mandatory Access Control (MAC) security mechanism, designed by United
States National Security Agency, and is integrated in various popular Linux distributions.
Smalley et al. [36] published a detailed solution to port SELinux on Android, called Security
Enhanced Android (SEAndroid).

Security-Enhanced Android is built on top of Android [36]. It is designed to mediate
all interactions of an app with the Linux kernel and other system resources. Furthermore,
SEAndroid confines even system daemons to limit the damage they can cause once they are
compromised. It also provides a centralized policy configuration for system administrators
and device manufacturers to specify their policies.

More specifically, SEAndroid [36] associates with each subject (e.g., process) and object
(e.g., file) a security context, which is represented as a sequence user: role: domain

or typel: 1levell] and indexed by a Security Identifier (SID). The most important

18

component here is type!. Under a type enforcement (TE) architecture, a security policy
dictates whether a process running within a domain is allowed to access an object labeled with
a certain type. Following is a policy specified for all third-party apps: allow untrusted app
shell data file:file rw file perms. This policy states that all the apps within the
domain of untrusted app are allowed to perform “rw_file perms” operations on the objects
with a type of shell_data_ file within a class? file.

SEAndroid appeared in Android in version 4.3, running in permissive mode. In this
mode, the system allows a process to access a resource even if that violates the policy.
However it records the violations and reports it in the system’s logs. It is common practice to
test SELinux policies in permissive mode, to identify policy inadequacies or unearth policy
bugs that might result to system crashes. In version 4.4 we saw SEAndroid running in
enforcing mode for several root daemon processes such as installd (responsible for installing
apps), the zygote (responsible for forking new processes for newly launched apps), the vold
process (volume daemon: manages device nodes) and the netd (network daemon: provides
access to the Network). All other processes, including system and third-party apps and
services still run in permissive mode.

The policy files are under external/sepolicy in AOSP’s (Android Open Source Project)
source code and are built with the system such that the resulting policy in binary code
is read-only and unable to be modified without shipping a new binary and rebooting the
phone. The most important files are mac_permissions.xml, file contexts, .te files for each
domain that processes can be assigned to and seapp_contexts. In mac_permissions.xml,
policy engineers can define a label to be assigned to an app, according to the certificate used
to sign it. That label is called seinfo. In file_contexts, every Linux file is assigned a security
type. In seapp_contexts, domains are defined for seinfo labels. Lastly a domain is defined
by creating a “domain name” .te file. Inside that file the rules dictating what a process that
belongs to that domain can access are defined.

Consider the following example. Let’s say that we want to assign an app called TestApp to
a domain called testdomain app. Then we want to allow that app to open the wallpaper file
/data/data/com.android.settings /files/wallpaper. First we must assign a security

context to the subject, i.e the file. Inside file_contexts we add the following line:

/data/data/com.android.settings/files/wallpaper \
u:object_r:wallpaper_file:s0

lrole is for role-based access and level for multi-level security.
2A class defines a set of operations that can be performed on an object.

19

This will assign the type wallpaper file to our file in question. Next we must create the
domain that will be allowed to access this file. For that we create under external/sepolicy a
testdomain app.te file. Inside this file we will place all the rules that will dictate what a

process assigned to this domain can access. Thus we include a rule like below:
allow testdomain_app wallpaper file:file open;

The class file is defined in the file external/sepolicy/access_vectors. In that file the
operation open is defined for subjects that will belong to the class file. Our rule will allow
any subject in the testdomain_app domain, to perform the action open on the wallpaper_file
object which is a file. We are still missing something though. We haven’t told the system
how to associate our TestApp app with the testdomain_app domain. For that we include
the app’s certificate (e.g testApp.x509.pem file) under built/target/product/security. Inside
external /sepolicy /keys.conf we define a tag name (e.g TESTTAG) to refer to our app’s cer-

tificate. To do that we use the following syntax:
[@TESTTAG]
ENG :testApp.x509.pem

Next in mac_permissions.xml we associate this certificate with an seinfo tag let’s say

test App_seinfo. To do that we include the following lines of code:
<signer signature="Q@TESTTAG">
<seinfo value="testApp_seinfo" />
</signer>

Lastly we associate the seinfo tag assigned to our app with the testdomain_app domain in

seapp_contexts by adding the following line:
user=_app seinfo=testApp_seinfo domain=testdomain_app

The SEAndroid module currently incorporated into the AOSP (Android Open-Source
Project) 4.3 and 4.4 defines five domains within its policy files: platform app; shared app;

20

media_app; release_app and untrusted_app. The platform domain is assigned to all apps
signed with the platform key, i.e packages that are considered as part of the core platform
such as System UI, Bluetooth, Settings e.t.c. The shared domain is assigned to the launcher
and contacts related packages while the media platform is assigned to the gallery app and
media related providers. The release domain is assigned typically to device’s vendor apps
and google apps. The last one, untrusted domain, is the domain assigned to all applications
installed by the user.

As noted before, these policy files are ready-only and compiled into the Android kernel
code. They are enforced by security hooks placed at different system functions at the kernel
layer. For example, the function open we saw before, is instrumented to check the compliance
of each call with the policies: it gets the type of the file to be opened and the domain of
the caller, and then runs avc has perm with the SIDs of both the subject (testdomain_app)
and object (wallpaper_file) to find out whether this operation is allowed by the policies.
Here avc_has perm first searches an Access Vector Cache (AVC) that caches the policies
enforced recently and then the whole policy file. In addition to the components built into
the kernel, SEAndroid also includes a separate middleware MAC (MMAC) that works on
the application-framework/library layer. The current implementation of MMAC is limited
to just assigning a security tag (testApp_seinfo) to a newly installed application (TestApp)
(through mac_permissions.xml). When Zygote forks a process for an app to be launched,
it uses that tag in tandem with a policy file (seapp_contexts) to decide which SELinux
domain should be assigned to it.

SELinux integration on Android creates new possibilities for defending the system and
the applications it supports and this work we will take advantage of this it and seamlessly

extend it to protect against critical vulnerabilities that we will discuss on later chapters.

2.3 BACKGROUND ON TECHNIQUES AND METHODOLOGIES USED

NLP Techniques: The NLP community has developed different approaches to analyze
unstructured data. For example, NLP is used to parse user reviews online or user voice com-
mands to digital personal assistants. Work focused on extracting grammatical information
to understand what the user is trying to convey. Part-of-speech Tagging (POS Tagging),
is a typical technique to achieve that. It is used to determine for each word in a sentence
whether it is a noun, adjective, verb, adverb, proposition, and other part of speach. A com-
mon problem in NLP arises when one needs to perform word sense disambiguation. That is,

to derive a given a word’s semantic meaning. This can be challenging as a word might have

21

multiple meanings and complex relationships with other words. To this end, Wordnet [37],
an English semantic dictionary has been proposed, where the community tried to capture
most of senses, of most of the English words. Wordnet also provides relationships between
words, such as whether two words are synonyms, or connected with is-a relationship and so
on. In essence, Wordnet is a graph with words as nodes and relationships as edges. To assist
in better capturing the relationships between words, the community has developed multiple
similarity metrics which are different ways to parse the Wordnet graph. For example, the
LCH [38] metric, uses the shortest paths between two words to determine how similar the
words are. To accurately determine which of the multiple senses of the word is the most
appropriate, one needs to carefully select the right similarity metric or design a new similar-
ity metric, and design her system in a way that incorporates domain knowledge. These are
challenges we had to overcome in our work to enable extraction of targeted data from local
files. Furthermore, our target files do not contain real words that can be used in an actual
conversation but rather variable names. These are some of the challenges I had to overcome
(see Chapter 4).

2.4 ANDROID’S SHARED RESOURCES

On a par with any multi-process operating system, modern smartphone operating sys-
tems manage process access to resources. This thesis performs a security analysis on such
shared resources across smartphone applications. In particular it focuses on shared process

privileges; shared filesystem resources; and shared connectivity resources.

e Shared Process Privileges. Each app on Android is assigned a unique static UID when
it is installed. This allows the operating system to differentiate between apps during their
lifetime on the device, so it can run them in distinct Linux processes when launched. In
this way Android leverages the traditional Linux process isolation to ensure that one app
cannot access another app’s resources.This is with the exception of apps signed with the
same developer key. In that case, the apps can indicate in their manifests that they should
be assigned the same UID. Developers also commonly utilize third-party libraries for either
utility (avoid reinventing the wheel for common funcitonality) or advertising (allows for
monetization of free apps). However, when developers include a third-party library, the
library is treated as part of the host app. The operating system will assign one UID for the
app as a whole, even though the library and host app have different package names. Every
time an app is launched, the OS will assign a process identifier (PID) to the app and associate
that with the app’s UID. Again this PID is shared between the host app and its libraries that

22

run within the same Linux process. As a result, the host app and the library components
will also share privileges and resources, both in terms of Linux discretionary access control
(DAC) permissions and in terms of Android permissions granted. The former allows the
library to access all the local files the host app is generating. The latter allows it to use the
granted permissions (e.g., ACCESS_COARSE_LOCATION) to access other resources on the
device (such as GPS), that can expose user information (such as her location).

This multifaceted ecosystem, where there are strong incentives for more data collection
by all stakeholders, needs to be better understood. Of particular interest are advertising
libraries offered by advertising networks which rely on building detailed user profiles to
optimize their services. Studying the current practices of ad libraries is an important place
to start. Indeed our community already found that ad libraries collect some types of data
for themselves even without the cooperation (or with the implicit consent) of the host app
developer. Such behaviors have been observed in the wild since 2012 [3] and as a routine
practice today [40] for certain types of information. Nonetheless, to fully assess the privacy
risk associated with embedding a library into an app, we need to take into account not only
past and current behaviors, but also all allowed events that can lead to breaches of users’
data confidentiality. My work aims to take the first step into the direction of modeling ad
libraries, not based on previous behaviors but based on their allowed actions on the Android
platform. I show how this can be leveraged to design a tool that can assess the targeted

data exposure to ad libraries (Chapter 4).

e Shared Filesystem Resources. Android is built on top of a stripped down version of a Linux
kernel. Linux, historically makes available a large amount of resources considered harmless
to normal users, to help them coordinate their activities. A prominent example is the process
information displayed by the ps command (invoked through Runtime.getRuntime.exec),
which includes each running process’s user ID, Process ID (PID), memory and CPU con-
sumption and other statistics. Most of such resources are provided through two virtual
filesystems, the proc filesystem (procfs) and the sys filesystem (sysfs). The procfs contains
public statistics about a process’s use of memory, CPU, network resources and other data.
Under the sysfs directories, one can find device/driver information, network environment
data (/sys/class/net/) and more. Android inherits such public resources from Linux and
enhances the system with new ones (e.g. /proc/uid stat). For example, the network
traffic statistics (/proc/uid_stat/tcp_snd and /proc/uid_stat/tcp.rcv) are extensively

utilized [41] to keep track of individual apps’ mobile data consumption.

e Shared Connectivity Resources. Android and other mobile systems are routinely employed

by their owners for managing their external resources. Particularly, almost every app running

23

e)
'J {

2
|
¥ 3 O

(a) Smartphone apps compete for connectivity — (c¢) Smartphones and their apps compete for
resources to access personal IoT devices. connectivity resources to access shared IoT
devices.

Figure 2.6: Shared connectivity resources can be used for accessing external devices.

on these systems is supported by a remote service, which interacts with the app through the
Internet or the telephone network (using short text messages). Such services are increasingly
being utilized to store and process private user information, particularly the data related
to online banking, social networking, investment, healthcare, etc. Moreover, the trend of
leveraging smartphones to support the Internet of Things, brings in a whole new set of
external devices, which carry much more sensitive data than conventional accessories (e.g.,
earpieces, game stations). In my work I categorize IoT devices into two classes: Personal
devices are devices which connect to smartphones directly, through a proximity protocol
such as Bluetooth, NFC, WiFi Direct e.t.c. (see Figure 2.6b). Examples include health and
fitness systems (e.g., blood pressure monitors [43], Electrocardiography sensors [44], glucose
meters [45]), and remote vehicle controllers (e.g., Viper SmartStart [46]) among others.
Other devices belong to the Shared class (see Figure 2.6d). Such devices are typically home
automation andvsecurity systems [47]. Examples are smart thermostats [48, 49], cameras
for streaming surveillance video to a mobile phone [50]; the baby monitors [51], the smart

refrigerators [52] and others.

24

CHAPTER 3: LITERATURE REVIEW

3.1 ADVERTISING LIBRARIES

Several efforts try to characterize the current mobile advertising libraries. MAdScope [40]
and Ullah et al. [53] both found that ad libraries have not yet exploited the full potential of
targeting. My work is driven by such observations and tries to assess the data exposure risk
associated with embedding a library in an app.

Many studies describe alternative mobile advertising architectures. AdDroid [54] enforces
privilege separation by hard-coding advertising functions as a system service into Android
platform. AdSplit [17] achieves privilege separation via making ad libraries and their host
apps run in separate processes. Leontiadis et al. [55] proposes a client-side library compiled
with the host app to monitor the real-time communication between the host app and the
ad libraries to control the exposed information. MobiAd [56] suggests local profiling instead
of keeping the user profiles at the data brokers to protect users’ privacy. Most of these
alternative architectures envision a separation of ad libraries from their host apps. However,
none of these solutions are deployed in practice as they all disrupt the business model of
multiple players in this ecosystem. I take a different approach by analyzing and modeling
the capabilities of ad libraries in order to proactively assess apps’ data exposure risk.

There are a number of studies that aim to—or can be used to—detect and/or prevent
current privacy-infringing behaviors in mobile ads. Those works mainly fall into three general
categories: (1) static scanning [3, 18, 19, 20, 21], (2) dynamic monitoring [22, 23, 24, 25],
and (3) hybrid techniques using both [26]. A combination of these techniques could detect
and prevent some of the attack strategies of ad libraries we discussed in this work, if they
are adopted in practice. However, such countermeasures can still fail to protect against all
allowed behaviors. For example, TaintDroid [25] and FlowDroid [20] cannot evaluate the
sensitivity of the data carried. Moreover, static code analysis will miss dynamically loaded
code, and code analysis in general cannot estimate the potential reach of libraries. Further,
by merely encrypting local files we cannot prevent libraries within the same process from
using the key the host app uses to decrypt the files. In addition, there is no mechanism to
address data exposure through app bundle information as we reveal in this work because (1)
this is not considered as a sensitive API from AOSP and (2) even if marked as sensitive it is
unclear how access to it by apps and/or libraries should be mediated, as there are legitimate

uses of it. My focus is not on detecting and tackling current behaviors but assessing the

25

data exposure given all allowed behaviors. This is critical when trying to assess the privacy
risk of an asset.

SUPOR [57] and UIPicker [58] seek instances where apps exfiltrate sensitive data. These
works also use NLP and machine learning techniques to find data of interest in user interfaces.
However, their focus is on data like account credentials and financial records, whereas I focus
on general targeted data with validation based on data of interest to advertisers. As with
most of the other work in this area, SUPOR and UIPicker seek existing exfiltration instances
rather than allowed instances, although some of their techniques can facilitate finding allowed

mstances.

3.2 INFORMATION LEAKS THROUGH FILESYSTEM RESOURCES

Information leaks have been studied for decades and new discoveries continue to be made
in recent years [59, 60, 61]. Among them, most related to my work is the work on the
information leaks from procfs, which includes using the ESP/EIP data to infer keystrokes [62]
and leveraging memory usages to fingerprint visited websites [63]. However, it is less clear
whether those attacks pose a credible threat to Android, due to the high non-determinism
of its memory allocation [63] and the challenges in keystroke analysis [62]. In comparison,
our work shows that the usage statistics under procfs can be practically exploited to infer an
Android user’s sensitive information. The adversarial inference technique I will introduce in
this work is related to prior work on traffic analysis [64]. However, those approaches assume
the presence of an adversary who sees encrypted packets. Also, their analysis techniques
cannot be directly applied to smartphone. The attack I demonstrate is based upon a different
adversary model, in which an app uses public resources to infer the content of the data
received by a target app on the same device. For this purpose, we need to build different
inference techniques based on the unique features of mobile computing, particularly the
rich background information (i.e., social network, BSSID databases and Google Maps) that
comes with the target app and the mobile OS.

Information leaks have been discovered on smartphone by both academia and the hacker
community [8, 9, 65]. Most of known problems are caused by implementation errors, either
in Android or within mobile apps. By comparison, the privacy risks which manifest due
to shared resources in the presence of emerging background information have not been
extensively studied on mobile devices. Up to my knowledge, all prior research on this subject
focuses on the privacy implications of motion sensors or microphones [66, 67, 68, 69, 70].
What has never been done before is a systematic analysis on what can be inferred from the

public resources exposed by both Linux and Android layers.

26

New techniques for better protecting user privacy on Android also continue to pop up [25,
71,9, 72, 73, 74, 8]. Different from such research, my work focuses on the new privacy risks
emerging from the fast-evolving smartphone apps, which could render innocuous shared

filesystem resources indicative of sensitive user information.

3.3 SHARED COMMUNICATION CHANNELS

Shared communication channels such as Bluetooth, NFC, Audio and SMS, rely on system
permissions for delegating access to third-party apps. The Android permission system has
been under scrutiny for years [75, 76, 77, 25, 78, 79, 77, 80, 81]. Much has been proposed
to extend this security model, allowing the phone user to selectively grant permissions to
apps [81], deny those with dangerous permission combinations [74], utilize app-defined fine
grained access control [75] or leverage IPC provenances for security protection [8]. However,
all these prior approaches are designed to guard a phone’s local resources. In contrast little
has been done on mobile OSes to protect the external devices that connect to smartphones.
In particular, on Android, an app that acquires the permissions to use a channel (e.g.,
Bluetooth, NFC, etc.) is automatically granted the access to any device attached to this
channel. There is nothing to bind a device to its authorized app.

Related to my study on how Android delegated access to SMSs, is Porscha [77], which
controls the content an app can access on a phone for digital rights management. Porscha
controls access to SMS messages through sending an IBE encrypted message to a Porscha
proxy on the phone, which further dispatches the message to authorized apps according
to a set of policies. While effective, this solution is ad-hoc and specific to SMSs. I follow
an architectural approach which allow me to propose a unified, easily maintainable and
extentible design for controlling access to all shared communication channels with external
resources.

Prior works on the security issues of health devices are also closely related to our work.
Rahman et al. [82] identified several vulnerabilities on Fitbit, a wireless wearable fitness
device, which can be leveraged to inject data into the device and launch a denial of service
attack against it. Li et al. [83] look into the security weaknesses of glucose monitoring and in-
sulin delivery systems and proposed the technologies for protecting those devices’ operations
using rolling-code and body-coupled communication. Also, Marti et al. [84] lay out a few
necessary requirements for building a secure mobile health care system. All such prior work
focuses on the security problems of a specific health device or the communication protocol

it uses, whereas my research aims at understanding the security implications of Android’s

27

shared communication channels to such external devices in proximity, in the presence of

malicious apps running on the phone.

3.4 SHARED IoT DEVICES

IoT attacks. Recent works demonstrated attacks on IoT devices [85, 86, 87, 88, 89, 90].
Fernandes et.al. found vulnerabilities on SmartThings’ applications [89]. Their work focuses
on a specific IoT hub that can integrate third-party IoT devices, whereas I propose a design
applicable to an infrastructure that exists in almost all households with IoT devices. [86, 87],
revealed vulnerabilities on smart-home devices. However they consider an adversary on a
separate device. [90] considers an intricate mobile adversary which colludes with a cloud. I
illustrate that the mobile adversary can succeed with minimal effort. All reported attacks

further motivate the need for practical smart-home defenses.

Android side-channels and network monitors. [91] used the VPN service on Android
for passive monitoring of mobile apps to collect user traffic information for analysis. However,
it redirects all packets to a server that further routes the packets. This raises privacy concerns

which I show we can avoid by implementing the routing functionality locally.

Access control. There have been various works on home access control which we classify
in three major areas: surveys [92, 93, 94]; access control systems [95, 96, 97, 98, 83, 99];
and user studies for usable policy specifications [100, 101]. More relevant to my study on
shared devices is the second. Nonetheless, most of these systems assume a clean-slate design
where the OSes of participating nodes can be modified. My proposed solution is backward
compatible: it requires just a software upgrade on a home’s router and downloading an app
on the phone. Other work focused on access control enforced on the mobile phones [102,
103, 104]. In Chapter 6 I also illustrate the design of hybrid MAC and DAC approach
on smartphone operating systems to guarantee applicaiton-level access control to devices.
This works well for personal devices which are typically owned by the smartphone user. In
contrast, smart-home devices are shared across a local area network where guest users might
connect their own smartphones which we cannot trust to carry our improved OS version. In
Chapter 7 I will show how we can build an access control scheme distributed across a home

area network router and trusted smartphones to tackle this problem effectively.

IDS and Firewalls. Work on intrusion detection systems (IDS), personal and application
firewalls [105, 106, 107, 108], focuses either solely at the host or at a network node, or
only at the network layer. The system I propose (Chapter 7) is distributed, consolidating

28

application level semantics from hosts, and network level information from the network node.
Furthermore, we do not require experts to set up policies.

In all previous works, the solutions are either ad-hoc, or impractical. In this thesis I
conduct a systematic analysis of the security of shared resources on smartphones which reveal
new adversarial capabilities of third-party smartphone apps. To mitigate such adversaries, I
design solutions focusing on both detection of information leakage and prevention at an the
operating or a distributed system level. My solutions follow four important design properties:

(a) effectiveness; (b) efficiency; (c) backward compatibility and, (d) maintainability.

29

CHAPTER 4: SHARING PROCESS PRIVILEGES

This chapter is based on joint work with Whitney Merrill, Wei Yang, Aston Zhang and
Carl A. Gunter [10].

Android enforces access control decisions at the process/application boundaries. However,
smartphone apps commonly utilize third-party libraries from other untrusted sources for
advertising. Thus, these libraries share all the privileges their host process is granted. Since
advertising networks depend on building detailed user profiles we expect them to follow
aggressive data harvesting techniques. In this chapter, I analyze how advertising libraries
can take advantage of the shared process privileges with their host apps. Then I utilize this
analysis to design a tool for automatic detection of potential sensitive information leakage

to advertising libraries.

4.1 INTRODUCTION

Advertisers aim to generate conversions for their ad impressions. Advertising networks
assist them in matching ads to users, to efficiently turn impressions into conversions. I call the
information that achieves this targeted data. Android smartphones contain rich information
about users that enable advertising networks to gather targeted data. Moreover, there is
considerable pressure on advertising networks to improve the number and quality of targeted
data they are able to offer to advertisers. This raises many privacy concerns. Mobiles often
contain sensitive information about user attributes which users might not comfortably share
with advertising networks but could make valuable targeted data. This, in turn, led to a
substantial line of research on privacy and advertising on mobiles in two general areas: (1)
strategies for detection and prevention [109, 22, 18, 19, 26, 3, 110, 23, 111, 53, 24, 40], and
(2) architectures and protocols that improve privacy protections [56, 54, 17, 55]. The first
of these approaches primarily provides insights into the current practices of advertisers and
advertising networks. The second examines a future in which a changed advertising platform
provides better privacy. However, some of the studies show that the development and use
of targeted data on mobiles is modest at present [53]. This is at least partially because
most applications do not pass along information about users to the advertising network—
through its ad library embedded in the app—unless the advertising network requires them
to do so [40]. This leave open an important question: what if advertising networks took full

advantage of the information-sharing characteristics of the current architecture?

30

In particular, when one wants to assess the privacy risk associated with an asset, she needs
to take into account not only past and current hazardous behaviors but all allowed actions
that can result in potential privacy loss [112]. In the case of opportunistic advertising
libraries, a privacy loss is possible if such libraries have the ability to access private user
information without the user’s consent. Current app privacy risk assessment techniques [113,
114], try to detect when sensitive data leaks from an app. To achieve that, they employ static
or dynamic analysis of apps and/or libraries. However, applying this sort of assessment is
constrained by the apparent practices of the advertising libraries. For example, every time
an ad library is updated, or a new ad library appears, such analysis must be performed
again. To make things worse, some ad libraries load code dynamically, [3] which allow them
to indirectly update their logic without dependency on the frequency of their host app’s
updates. In this way, any analysis dependent on current library behaviors is unreliable as
the analysis can not predict the behavior of updated code or dynamically downloaded/loaded
code. Thus, to assess such risks, we need to have a systematic way to analyze the potential
data exposure to ad libraries independent of current or apparent practices. A privacy risk
assessment should consider what an adversary is allowed by the system to do instead of only
what she is currently doing. My work takes the first step in this direction by analyzing
the shared intra-process resources available to libraries and modelling their data collection
capabilities on an Android platform.

I model opportunistic ad networks based on their abilities to access targeted data on an
Android platform through at least four major attack channels: protected APIs by inheriting
the permissions granted to their host apps; reading files generated at runtime by their host
apps and stored in the host apps’ protected storage; observing user input into their host apps;
and finally unprotected APIs, such as the PackageManager.getInstalledApplications()
that allow the ad library to access platform-wide information. We further categorize these
attack channels into two classes, namely the in-app and out-app exploitation class. The
in-app class contains attack channels that are dependent on the ad library’s host app. The
protected API’s, app local files and user input are examples of such channels. The out-app
class contains attack channels that are independent of the host app. The public API’s
are an example of this. In particular, Grace et. al. [3] identified that the list of installed
applications on a user’s device—which can be derived from a public API on Android—raises
privacy concerns. In this work I systematically explore how this information can be exploited
by an adversary in practice. I demonstrate and evaluate how well such APIs can result in
an adversary learning a user’s targeted data. Based on my data exposure modeling, I have
designed and developed a framework called Pluto. Pluto aims to facilitate assessment of the

privacy risk associated with embedding an untrusted library into an app. I show that Pluto

31

is able to reveal the potential data exposure of a given app to its ad libraries through the
considered attack channels. Frameworks like Pluto are extremely useful to app developers
who want to assess their app’s potential data exposure, markets aiming to better inform their
users about the privacy risk associated with downloading a free app, and users themselves.
In addition, I hope that this will spur similar academic attempts to capture the capabilities

of third-party libraries on smartphones and serve as a baseline for comparison.

4.2 ANALYSIS

4.2.1 Threat Model

A risk is the potential compromise of an asset as a result of an exploit of a vulnerability by
a threat. In this case, I define assets to be user targeted data, the threat is an opportunistic
ad library, and a vulnerability is what allows the ad library to access targeted data without
the device user’s consent or the consent of the library’s host app. Here, we examine the
capabilities of the ad libraries to collect such data on an Android platform.

Because libraries are compiled with their host apps, are in extend authorized to run as
the same Linux process as their hosts on an Android OS. Thus the ad library code and the
host app’s code will share the same identifier as far as the system is concerned (both the
static UID and the dynamic PID). In essence, this means that any given ad library runs with
the same privileges as its host app. Consequently, the libraries inherit all the permissions
granted by the user to the host app. There is no way for the user to distinguish whether
that permission is used by her favorite app or the ad libraries embedded in the app. This
permission inheritance empowers the ad libraries to make use of permission-protected APIs
on the device. For example, if an app granted the GET_ACCOUNTS permission, its libraries
can opportunistically use it to retrieve the user’s registered accounts (e.g., the email used to
login to Gmail, the email used to login to Facebook, the email used for Instagram, Twitter
and so on).

Furthermore, during their lifetime on the device, apps create local persistent files where
they store information necessary for their operations. These files are stored in app-specific
directories isolated from other applications. This allows the apps to offer seamless person-
alized services to their users even when they are not connected to the Internet. In addition
this practice enables the apps to avoid the latency of accessing their clouds, provided they
have one. Android offers a convenient way through its SharedPreferences class to store
and retrieve application and user specific data to an XML file in its UID-protected directory.

In that directory, apps can also create their own files typically using standardized formats

32

such as XML, JSON, or SQLite. In this way, they can utilize widely available libraries and
Android APIs to swiftly and easily store and parse their data. The ad libraries, running
as the same Linux user as their host apps, inherit both the Linux DAC privileges and the
SE Android MAC capabilities of their host apps. This allows them to access the app’s lo-
cally stored files as their hosts would. Consequently, the ad libraries could read the user
data stored in those files. Consider, for example, the app My Ovulation Calculator which
provides women a platform to track ovulation and plan pregnancy. This app, listed under
the MEDICAL category on Google Play, has been installed 1,000,000-5,000,000 times. By
parsing the app’s runtime generated local files, an ad library might learn whether its user
suffers from headaches, whether she is currently pregnant, and, if so, the current trimester
of her pregnancy. All these are targeted data which advertisers can monetize [115], making
them a valuable addition to ad libraries.

Moreover, an aggressive ad library could utilize its vantage position to peak on user input.
In particular, such a library could locate all the Ul elements that correspond to targeted
data related to user input [58, 57] and monitor them to capture the data as they become
available. For example, by monitoring the user’s input on Text Me! Free Texting &
Call, a communication app with 10,000,000-50,000,000 downloads, an ad library would be
able to capture the user’s gender, age and zip code. Note that these data constitute
the quasi identifiers [116] proven to be enough to uniquely identify a large percentage of
registered voters in the US.

Nonetheless, an ad library can exploit both the inherited privileges of its host app and
the position on a user’s device. Irrespective of the host app, the ad libraries, can make use
of public APIs to learn more about the user. Such APIs are considered harmless by the
Android Open Source Project (AOSP) designers and are left unprotected. This means that
the apps can use those APIs without the need to request permissions from either the system
or the user. In this chapter, I show that by merely acquiring the list of installed applications
through such APIs, one can learn targeted data such as a user’s marital status, age, and
gender among others.

To model these attack channels, I further categorize them them into two classes, namely
the in-app and out-app exploitation class. The in-app class contains attack channels that
are dependent on the ad library’s host app. The protected APT’s, app local files and user
input, are examples of such channels. The out-app class contains attack channels that
are independent of the host app. The public API’s are an example of this. Through the
rest of this work, we assume that an ad library can gain access to targeted data through

permission-protected APIs, runtime-generated app local files, user input, and unprotected
APIs.

33

4.2.2 Data Exposure through In-App Shared Process Capabilities

Ad libraries can leverage their position within their host apps to access exposed targeted
data. Some targeted data are dependent on what the host apps themselves collect from the
users. An ad library can access such data by parsing the files its host app created at runtime
to store such information locally, that is in its own UID-protected storage. Furthermore,
it can inherit the permissions granted to its host app and leverage that privilege to collect
targeted data through permission-protected APIs. Finally, it can peek on what the host
app user inputs to the app. In this section, I explore what an ad library can learn through
these in-app attack channels. We elaborate on our methodology and provide insights from
real world examples. To gain insight on what an ad library can learn, I perform manual
inspection of some real-world free apps. This way we can validate the assumptions about
data exposure through in-app attack channels and further create ground truth for test data
that we can use to do evaluations of the framework in subsequent sections.

I first cherry-pick a few free apps I selected for purposes of illustration. I downloaded the
target apps from Google Play and used Apktool to decompile them. I located the packages
corresponding to the Google AdMob advertising network library and located an entry point
that is called every time an ad is about to be loaded. T injected our attack logic there to
demonstrate how the ad library can ezamine local files. In particular, this logic dumps the
database and xml files that the app has created at runtime. I then compiled the app and ran
it on a physical device by manually providing it with some input. Here are some examples
of what such an aggressive ad library could learn in this position (or what AdMob is, in
principle, able to learn now).

I’m Pregnant helps women track their pregnancy progress and experience. It has 1,000,000
5,000,000 installations and is ranked with 4.4 stars ! on Google Play. The code was able
to read and extract the local files created by the host app. After manually reviewing the
retrieved files, I found that the host app is storing the weight of the user, the height, cur-
rent pregnancy month and day, symptoms such as headaches, backache and constipation. It
also recorded events such as dates of intercourse (to establish the date of conception) and
outcomes like miscarriage or date of birth.

Diabetes Journal helps users better manage their diabetes. It has 100,000-500,000 in-
stallations and ranked with 4.5 stars on Google Play. The code was able to extract the local

files generated by the app. Manually reviewing these files, I found that it exposes the user’s

! Applications on Google Play are being ranked by users. A 5-star application is an application of the
highest quality.

34

birth date, gender, first-name and last name, weight and height, blood glucose levels, and
workout activities.

TalkLife targets users that suffer from depression, self-harm, or suicidal thoughts. It has
10,000-50,000 installations on Google Play and ranked with 4.3 stars. In contrast with the
other two apps above, TalkLife stores the user information in a user object which it serializes
and then stores in a local file. In this case, some knowledge of the host app allows our code
to deserialize the user object and get her email, date of birth, and first name. Deserializing
the user object also provided the library the user password in plain text.

Thus, if an opportunistic advertising library is included in apps like these, then a careful
manual review of the apps will reveal some pathways to targeted data. At this point it helps
to have a little more terminology. Let us say that a data point is a category of targeted data
point values. For example, gender is a data point, whereas knowing that Bob is a male is
a data point value. What we would like to do, is examine a collection of apps to see what
data points they expose to ad libraries.

To explore these ideas and their refinement I develop three datasets listed in the first three
rows of Table 4.1. For the first, I make a list of the 100 most popular free apps in each of
the 27 categories on Google Play to get 2700 apps. After removing duplicate apps, we are
left with 2535 unique apps. We can call this the Full Dataset, F'D. From these I randomly
selected 300 apps for manual review. From these apps I removed the ones that crashed on
our emulator or required the use of Google Play Services. We will refer to this as the Level
One Dataset (L1). On this dataset, I searched for data point exposure by two means. First,
I inspected the manifest to see if the permissions themselves would suggest that certain types
of data points would be present. For example, we can predict that the address attribute
could be derived by the library if the host app is granted the ACCESS_COARSE_LOCATION or the
ACCESS_FINE_LOCATION permission, the email attribute from the GET_ACCOUNTS permissions,
the phone attribute from the READ_PHONE_STATE permission and the online search from the
READ _HISTORY_BOOKMARKS permission. Second, I launched the app, looked to see what local
files it produced, and looked into these files to see if they expose any particular data points.

The data points we consider must include user data that the ad libraries are likely inter-
ested in harvesting. To this end, I extract data points mostly based on a calculator provided
by the Financial Times (FT) [115]. This calculator provides illustrative information sought
by data brokers together with an estimate of its financial value in the U.S. based on analysis
of industry pricing data at the time the calculator was created. For example, according
to the F'T calculator, basic demographic information like age and gender are worth about
$.007. If an opportunistic advertising network can learn that a user is (probably) an accoun-

tant, then the cumulative information is worth $.079 (according to the calculator); if they

35

Table 4.1: Datasets

Name Number | Description

Full 2535 Unique apps col-

Dataset lected from the 27

(FD) Google Play cate-
gories.

Level One | 262 Apps randomly se-

Dataset lected from FD.

(L1)

Level Two | 35 Apps purposively

Dataset selected from L1.

(L2)

App 243 App bundles col-

Bundle lected through sur-

Dataset vey.

(ABD)

also know that this accountant is engaged to be married, this increases the value to $.179.
Engaged individuals are valuable because they face a major life change, are likely to both
spend more money and change their buying habits. An especially noteworthy data point is
a pregnancy. This is well illustrated by events surrounding Target’s successful program to
use the habits of registered expecting shoppers to derive clues about unregistered ones in
order to target them with advertising about baby care products [117]. The FT calculator
provides us with a realistic way of exploring the relative value of an information gathering
strategy. The precise figures are not important, and have probably changed significantly
since the introduction of the calculator, but they give some ballpark idea of value and the
system provides a benchmark for what a more accurate and detailed database of its kind
might use.

I abstracted the questionnaire-like attributes from the FT calculator into keywords and
used these as a guide to data points to find in the apps reviewed. For example, I transformed
the question “Are you a fitness and exercise buftf” into “workout”. We refer to the overall
attack technique that examines local files and uses protected APIs, as a level one inspection
(L1-I). T found 29 categories of data points in L1 by this means, including ‘gender’; ‘age’,
‘phone number’, ‘email address’, ‘home address’, ‘vehicle’, ‘online searches’, interests like
‘workout’ and others. Table 4.2 depicts some popular apps and the data points they expose
to ad libraries performing a level one inspection.

However, an ad library could also utilize the fact that it can eavesdrop on user inputs

in its host app. This can be done on Android by exploring the resource files of packages.

36

Table 4.2: Data exposure from popular apps to ad libraries performing level-one (L1-I) and

level-two (L2-I) inspection.

gtt:;itc;gy Category App Name Il\lllsl?:i.ll:i)tfion Exposed Data Points

L1-I MEDICAL Menstrual Cal- | 1x10%—5x10% | pregnancy, trimester, headache
endar

L1-I EDUCATION myHomework 1x105—5x10% | gender, age, address
Student Plan-
ner

L2-1 HEALTH & | Run with Map | 5 x 105 — 10 x | phone, email, first name, last

FITNESS My Run 106 name, age, gender, address,
workout

L2-1 LIFESTYLE BeNaughty 5 x 105 — 10 x | phone, email, age, gender, ad-
Online Dating | 106 dress, marital status, parent
App & Call

Once an interesting layout file is found, an offensive library can inflate the layout from the
library package and read from its Ul elements. With this strategy, the ad library can find
targeted data that are input by the user but not necessarily kept in local files. Let us call
the attack strategy that utilizes not only local files and protected APIs, but also user input
eavesdropping, a level two inspection (L2-I). To better understand what data points are
exposed to an ad library performing a level two inspection, I selected 35 of the apps in the
L1 dataset and reviewed them manually to find data points that level two inspection could
reveal. Lets call this the L2 dataset. The 35 apps in question are ones that exposed one
or more data points other than ones derived from the manifest. We make this restriction
to assure that there was no straight-forward strategy for finding data points in these apps
so we could better test the automated inference techniques we introduce later. Table 4.2
depicts some popular apps and the data points they expose to ad libraries performing a level
two inspection. We observe that apps expose not only demographic information but also
more sensitive data such as user health information. The complete list of apps and the data
points they expose is omitted due to space limitations.

Figure 4.1a displays the number of apks in the level one inspection that were found to
expose the basic data points we listed earlier. Figure 4.1b portrays a similar graph for the
We

observe that data points that can be derived by exploiting the host app’s permissions are

level two inspection. Here, I prune all data points with frequency less than three.

more prevalent than other ones. This is because the permissions are coarse-grained and app
developers are likely to use them for a number of reasons, whereas other data points would
be present only if the host app is explicitly collecting that information. Overall, it is clear
that targeted data is exposed by apps through in-app attack channels to ad libraries. Next

I will examine exposure through out-app channels.

37

25

20

JlIII||

0 -

-
[

Applications

vehicle workout online search ag gender address email phone
Data Points
(a)
25
20
wn
c 15
o
=]
S
9
o
<
3 10
0',—! I I
weight vehlcle stock onllne workout last first age gender email phone address
search name name
Data Points
(b)

Figure 4.1: Number of apps with data points inferred by (a) level one inspection of L1, (b)
level two inspection of L2.

38

4.2.3 Data Exposure through Out-App Shared Process Capabilities

Ad libraries can surreptitiously access targeted data not only through in-app attack chan-
nels but also from host-app-independent channels such as public APIs. Such APIs are con-
sidered to be harmless and thus made available to all applications on the platform without
the need of special permissions. In particular, Android provides a pair of publicly available
functions, which we will abbreviate as getIA and getIP, that return app bundles, the list of
installed apps on a mobile.? They can be used by the calling app to find utilities, perform
security checks, and other functions. They also have high potential for use in advertising.
An illustration of this is the Twitter app graph program [118], which was announced in late
2014. Twitter asserted its plans to profile users by collecting their app bundles® to “provide
a more personal Twitter experience for you.” Reacting to Twitter’s app graph announce-
ment, the Guardian newspaper postulated [119] that Twitter “reported $320m of advertising
revenues in the third quarter of 2014 alone, with 85% of that coming from mobile ads. The

7

more it can refine how they are targeted, the more money it will make.” This progression
marks an important point about the impact of advertising on privacy. Both the Financial
Times [115] and a book about the economics of the online advertising industry called The
Daily You [120] emphasize the strong pressures on the advertising industry to deliver better
quality information about users in a market place that is both increasingly competitive and
increasingly capable. This is a key insight of this chapter: what may seem opportunistic now
may be accepted business practice and industry standard in a few years, and what is viewed
as malicious today may be viewed as opportunistic or adventurous tomorrow. Twitter pro-
vides warnings to the user that Twitter will collect app bundles and offers the user a chance
to opt out of this. Other parties are less forth-coming about their use of this technique of

user profiling.

Use of App Bundles

Getting app bundles is a great illustration of the trajectory of advertising on mobiles. In
2012 the AdRisk tool [3] showed that 3 of 50 representative ad libraries it studied would
collect the list of all apps installed on the device. The authors viewed this as opportunistic
at best at the time. But what about now? We did a study of the pervasiveness of the use

of app bundles by advertising networks in Google Play. The functions getIA and getIP are

2Their formal names are getInstalledApplications and getInstalledPackages. The first returns the
applications, the second returns the packages and, from these, one can learn the application names.

3We use the term app bundle rather than app graph because we do not develop a graph from the app
lists.

39

built into the Android API and require no special permissions. We decompiled the 2700
apps we have collected from Google Play, into smali code # for analysis and parsed these
files to look for the invocations of get AP and getIP in each app. This allowes us to narrow
the set of apps for analysis to only those that actually collect a list of apps on the mobile,
which we deem an app bundle. I then conducted a manual analysis of the invocation of these
functions by ad libraries.

Of the 2700 apps selected for review, 165 apps were duplicates, narrowing our sample
size down to 2535 distinct apps. Of these, 27.5% (679/2535) contained an invocation of
either of the two functions. This total includes invocation of these functions for functional
(utility and security) as well as advertising purposes. To better understand if an ad library
invokes the function, analysis required a thorough examination of the location of the function
call to see if it is called by an advertising or marketing library. I found that many apps
pass information to advertisers and marketers. This analysis is conducted manually to best
capture a thorough list of invocations within ad libraries. Ultimately 12.54% of the examined
apps (318/2535) clearly incorporate ad libraries that invoke one of the functions that collects
the app bundle of the user. I found 28 different ad libraries invoking either getIA or getIP.
These results do not necessarily include those apps that collect app information themselves
and pass it to data brokers, advertising or marketing companies, or have their own in-house
advertising operation (like Twitter). These results demonstrate that many types of apps
have ad libraries that collect app bundles, including medical apps and those targeted at
children. Interestingly, I did not detect collection of app bundles by the three ad networks
identified by AdRisk. However, a number of other interesting cases emerged.

Radio Disney, for example, uses Burstly, a mobile app ad network whose library ® calls
getIP. Disney’s privacy policy makes no direct reference to the collection of app bundles for
advertising purposes. Use of this technique in an app targeted at children is troubling because
it might collect app bundle information from a child’s device without notifying either the
parent who assisted the download or an older child that this type of information is collected
and used for advertising purposes. Disney does mention the collection of “Anonymous
Information” but the broad language defining this does not give any indication that the

Radio Disney app collects app bundles.®

4The smali format is a human-readable representation of the application’s bytecode.

“burst ly/lib/apptracking/AppTrackingManager.smali

SFormally, they define anonymous information as “information that does not directly or indirectly identify,
and cannot reasonably be used to identify, an individual guest.” App bundles are similar to movie play lists;
it is debatable whether they indeed satisfy this definition.

40

Looney Tunes Dash! is a mobile app provided by Zynga that it explicitly states that
they collect ”Information about ... other third-party apps you have on your device.”” In
fact, this is the privacy policy for all Zynga apps.

Several medical apps (12) collect app bundles. Most surprisingly, Doctor On Demand:
MD & Therapy, an app which facilitates a video visit with board-certified physicians and
psychologists collects app bundles through the implementation of google/ads/ conversion
tracking. However, their linked privacy policy makes no reference to passing any user in-
formation to advertisers. Other apps in the medical category with advertising libraries that
collect app bundles include ones that track ovulation and fertility, pregnancy, and remind

women to take their birth control pill.

Survey Study

Upon learning of the prevalence of the app bundle collection by advertisers, we need to
better understand what type of information could be learned by advertisers based on the
list of apps on a user’s mobile device. To do this, we can devise a study that would allow us
to collect our own set of app bundles to train a classifier.

The study consisted of a survey and an Android mobile app launched on the Google Play
Store. The protocol for all the parts of the study was approved by the Institutional Research
Board (IRB) for our institution. All participants gave their informed consent. We required
informed consent during both parts of the study, and participants could leave the study at
any time. Participants were informed that the information collected in the survey and the
information collected by the mobile app would be associated with one another.

Participants included individuals over the age of 18 willing to participate in the survey
and who owned an Android device. Crowdsourcing platforms such as Amazon’s Mechanical
Turk are proven to be an effective way to collect high quality data [121]. The survey was
distributed over Microworkers.com a comparable crowdsourcing platform to Amazon’s Me-
chanical Turk (MTurk). We chose Microworkers.com over Amazon Mechanical Turk because
Amazon Mechanical Turk did not allow tasks that involve requiring a worker to download
or install any type of software.

Moreover, I designed the mobile app, AppSurvey, to collect the installed packages on a
participant’s phone. The study directed the participant to the Google Play Store to down-
load the mobile app. Upon launching AppSurvey, a pop-up screen provided participants
information about the study, information to be collected, and reiterated that the partici-

pation in the study was anonymous and voluntary. If the participant declined the consent,

"https://company.zynga.com/privacy/policy

41

no information would be collected. If the participant consented, the app uploaded the app
bundles from the participants phone and anonymously and securely transmit it to our server.
AppSurvey also generated a unique User ID for each individual which participants were in-
structed to write down and provide in the survey part of the study. Finally, AppSurvey
prompted participants to uninstall the mobile app.

The survey is designed based upon the FT calculator. Specifically, it consisted of 25
questions about basic demographic information, health conditions, and Internet browsing
and spending habits. The survey also contained two control questions included to identify
survey participants not paying sufficient attention while taking the survey. If either of these
questions were answered incorrectly, we excluded the survey response. In addition, the
workers were not compensated until after the finished tasks were reviewed and approved by
the survey conductors. Before taking the survey, participants were required to give informed
consent to the information collected in the survey. To link the app bundle information
collected by AppSurvey to the responses provided by participants in the survey, participants
were required to input the unique User ID generated by AppSurvey. The collection of this
data allows us to establish a ground truth for users’ app bundles.

The survey resulted in answers and app bundle information from 243 participants., and

1985 total distinct package names.

4.3 DETECTION DESIGN

The analysis in the previous section highlights the need for detecting information exposure
to ad libraries through shared process privileges. To this end I have design Pluto. Pluto
is a modular framework for estimating in-app and out-app targeted data exposure for a
given app. In-app Pluto focuses on local files that the app generates, the app layout and
string resource files, and the app’s manifest file. Out-app Pluto utilizes information about
app bundles to predict which apps will be installed together and employs techniques from
machine learning to make inferences about users based on the apps they have on their mobile.

I describe each of these in a pair of subsections.

4.3.1 In-app Pluto

In-app Pluto progresses in two steps as illustrated in Figure 4.2. First, the Dynamic
Analysis Module (DAM) runs the given app on a device emulator and extracts the files the
app creates. Then it decompiles the app and extracts its layout files, resource files, manifest

file and runtime generated files. At the second step, the files produced by the DAM are

42

Matching
Goals
Permissions L
I'M PREGNANT Manifest
Layout
Strings
‘ DECOMPILER %
L / -/
DAM Miners

Figure 4.2: Design of In-app Pluto

fed to a set of file miners. The file miners utilize a set of user attributes and user interests,
possibly associated with some domain knowledge, as a matching goal. A miner will reach a
matching goal when it decides that a data point is present in a file. When all the app’s files
are explored, the Aggregator (AGGR) removes duplicates from the set of matching goals and
the resulting set is presented to the analyst. Pluto’s in-app component’s goal is to estimate
offline, the exposure of targeted data—or data points—to ad libraries at runtime. In-app
Pluto can be configured to estimate data points for a level 1 aggressive library by looking
only at the runtime generated files and available permissions. To perform exposure discovery
for a level 2 of aggression, it mines targeted data also from the resource and layout files. In
essence Pluto is trying to simulate what an ad library is allowed to do to estimate what is
the potential data exposure from a given app. To perform in-app exposure discovery, Pluto
employs dynamic analysis and natural language processing techniques to discover exposure

of in-app data points. Here I report on a prototype implementation focusing on manifest,
SQLite, XML, and JSON files.

43

Dynamic Analysis

To discover the files that an app is generating at runtime, Pluto runs the app on an
emulator for 10 seconds and then uses a monkey tool to simulate user input. ® This can
generate pseudo-random streams of clicks, touches, and system-level events. I chose to use
a monkey because some apps might require user stimulation before generating some of their
local files. To validate this assumption, we performed two experiments. First, I configured
Pluto’s DAM module to run all 2535 apps in the FD dataset for 10 seconds each. I repeat the
experiment, this time configuring DAM to issue 500 pseudo-random events to each app after
its 10 second interval is consumed. As we see on Table 4.3, Pluto explores approximately 5%
more apps in the second case. ¥ More importantly, DAM_Monkey generates 1196 more files
than DAM which results in 100 apps with ‘interesting’ files more. Android’s Monkey was
previously found to achieve approximately 25.27% LOC coverage [123]. However, Pluto’s
components can be easily replaced, and advances in dynamic analysis can be leveraged in
the future. For example, PUMA [124] is a very promising dynamic analysis tool introduced
recently. If new levels of library aggression are introduced in the future, PUMA could be
used instead of Android’s monkey to better simulate behaviors that can allow libraries to

access user attributes at runtime.

Table 4.3: DAM’s coverage. * denotes interesting files (SQLite, XML, JSON)

% successful % #of apps w/
DA Strategy experiments #files | # *files | files
DAM 0.718 14556 9083 1911
DAM Monkey 0.763 15752 10171 2021

Once the execution completes, DAM extracts all the ‘runtime’ generated files. Subse-
quently, it decompiles the input android app package (apk) and extracts the Android layout

files, Android String resources and the app’s manifest file.

File Miners empowered by Natural Language Processing

Once the DAM module generates ‘runtime’ files, Pluto’s enabled file miners commence
their exploration. I have implemented four types of file miners in the prototype: MMiner;
GMiner; DBMiner; XMLMiner. The MMiner is designed to parse manifest files, the DBMiner
for SQlite database files, the XMLMiner for runtime generated XML files and the GMiner

8In our implementation we used the Android SDK-provided UI/Application Exerciser Monkey [122].
9 An unsuccessful experiment includes apps that failed to launch or crashed during the experiment.

44

is a generic miner well suited for resource and layout files. The miners take as input, a set

104n the form of noun words and a mapping between permissions and data

of data points,
points that can be derived given that permission.

Input processing: Pluto utilizes Wordnet’s English semantic dictionary [37] to derive a
set of synonyms for each data point. However, a word with multiple meanings will result
in synonyms not relevant to Pluto’s matching goal. Consider for example the word gender.
In Wordnet, gender has two different meanings: one referring to grammar rules and the one
referring to reproductive roles of organisms. In our case it is clear that we are interested
in the latter instead of the former. In this prototype, the analyst must provide Pluto with
the right meaning. While it is trivial to make this selection, for other data points it might
not be as trivial. For example, age has 5 different meanings in Wordnet. Other data points
which we have not explored, might have even more complex relationships. Visuwords.com
is a helpful tool which can be used to visualize such relationships and immensely facilitated
such selections. For example, the list of data points in the F'T calculator, is indeed feasible
to analyze manually. However, Pluto does not require this from an analyst. If the meaning
is not provided, Pluto will take all synonym groups into account with an apparent effect on
precision.

NLP in Pluto: The NLP community developed different approaches to parse sentences
and phrases such as Parts of Speech (POS) Tagging and Phrase and Clause Parsing.
The former can identify parts of a sentence or phrase (i.e., which words correspond to nouns,
verbs, adjectives or prepositions), and the latter can identify phrases. However, these cannot
be directly applied in our case because we are not dealing with well written and mostly
grammatically correct sentences. In contrast, Pluto parses structured data written in a
technically correct way (e.g., .sqlite, .xml files). Thus in our case we can take advantage of the
well-defined structure of these files and extract only the meaningful words. For the database
files, potentially meaningful words will constitute the table name and the columns names.
Unfortunately, words we extract might not be real words. A software engineer can choose
anything for the table name (or filename), from userProfile, user profile, uProfil, to
up. We take advantage of the fact that most software engineers do follow best practices and
name their variables using the first two conventions, the camelCase (e.g. userProfile) and the
snake_case structure (e.g. user_profile). The processed extracted words are checked against
Wordnet’s English semantic dictionary. If the word exists in the dictionary, Pluto derives

its synonyms and performs a matching test against the data points and their synonyms.

10We derived most of the data points from the FT calculator [115].
1Tn our prototype we used the JWT [125] interface to Wordnet, to derive sets of synonyms.

45

If a match is determined, then a disambiguation layer decides whether to accept or reject
the match. Next, I elaborate on the functions of the disambiguation layer.

Context Disambiguation Layer: Words that reach a matching goal, could be irrelevant
with the actual user attribute. Consider for example the word exercise. If a Miner unearths
that word, it will be matched with the homonymous synonym of the matching goal workout.
However, if this word is found in the Strings resource file that doesn’t necessarily mean that
the user is interested in fitness activities. It could be the case that the app in question
is an educational app that has exercises for students. On the other hand, if this word is
mined from an app in the Health and Fitness Google Play category, then it is more likely
this is referring to a fitness activity. Pluto employs a disambiguation layer that aims to
determine whether the match is valid. It attaches to every user interest the input app’s
Google Play category name. We call that a disambiguation term. For user attributes, the
disambiguation term is currently assigned by the analyst 2. In addition, Pluto assigns some
domain knowledge to data points. For attributes, it treats the file name or table name as
the domain knowledge, and for interests it uses the matching goal itself. The prototype’s
context disambiguation layer calculates the similarity between the disambiguation term
and the domain knowledge. If the similarity value is found to surpass a specific threshold,
then the match is accepted.

The NLP community already proposed numerous metrics for comparing how similar or
related two concepts are. The prototype can be configured to use the following existing
similarity metrics to disambiguate attribute matches: PATH [126]; LIN [127]; LCH [38];
LESK [128]. Unlike the first three metrics which are focused on measuring an is-a similarity
between two words, LESK is a definition-based metric of relatedness. Intuitively this would
work better with user interests where the disambiguation term is the app’s category name.
The other metrics are used to capture is-a relationships which cannot hold in most of
the user-interests cases. For example, there is no strong is-a relationship connecting the
user interest vehicle with the category transportation. '* LESK seems well fit to address
this as it depends on the descriptions of the two words. Indeed, LESK scores the (vehicle,
transportation) pair with 132 with (vehicle, travel and local) coming second with 103.

However, in this study I found that LESK might not always work that well when applied
in this domain. Studying the scoring of LESK with respect to one of our most popular user
interests in our L1 dataset we found it to be problematic. When comparing the matching

goal workout with the category Health and Fitness, LESK assigns it one of the lowest

12We used the word Person.
13We found that similarity metrics that find these relationships do not assign the best score to the
pair(vehicle, transportation) when compared with other (vehicle, *) pairs.

46

Table 4.4: Comparison between rankings of (interest, category name) pairs from LESK and
droidLESK. TF denotes the data point term frequency in local files created by apps in a

category.

DATA RANK | LESK TF TF*LESK

POINT

VEHICLE | 1 TRANSPORTATION | FINANCE TRANSPORTATION

VEHICLE | 2 BOOKS AND REF- | TRANSPORTATION | FINANCE
ERENCES

VEHICLE | 3 TRAVEL AND LO- | LIFESTYLE LIFESTYLE
CAL

WORKOUT| 1 BOOKS AND REF- | HEALTH AND FIT- | HEALTH AND FIT-
ERENCES NESS NESS

WORKOUT/| 2 TRAVEL AND LO- | APP WIDGET NEWS AND MAGA-
CAL ZINE

WORKOUT]| 3 MUSIC AND AUDIO | NEWS AND MAGA- | APP WIDGET

ZINE

scores (33), with the maximum score assigned to the (workout, books and references) pair
(113).

Here I present a new improved similarity metric that can address LESK’s shortcomings
when applied to our problem. I call our similarity metric droidLESK. The intuition behind
droidLESK is that the more frequently a word is used in a category, the higher the weight
of the (word, category) pair should be. droidLESK is then a normalization of freq(w,c) x
LESK (w,c). In other words, droidLESK is the weighted LESK were the weights are assigned
based on term frequencies. To evaluate droidLESK, I create pairs of the matching goal
workout with every Google Play category name and assign a score to each pair as derived
from droidLESK and other state of the art similarity metrics. To properly weight LESK
and derive droidLESK, I perform a term frequency analysis of the workout word in all
‘runtime’ generated files of the L1 dataset. I repeat the experiment for the word vehicle.
droidLESK’s scoring was compared with the scores assigned to the pairs by the following
similarity metrics: WUP [129]; JCN [130]; LCH [38]; LIN [127]; RES [131]; PATH [126]; LESK [128]
and HSO [132].

The results are very promising—even though preliminary—as shown in table 4.4. * We
observe that the proposed technique correctly assigns the highest score to the pair (workout,
health and fitness) than any other pair (workout,*). The same is true for the pair (vehicle,
transportation). droidLesk was evaluated on the two most prevalent user interests in our
dataset. Since this approach might suffer from over-fitting, in future work I plan to try this
new metric with more words and take into account the number of apps contributing to the
term frequency. I further discuss the effects of using droid LESK in Pluto’s in-app targeted

data discovery in the evaluation Subsection ?77.

MDue to space limitations, I omit uninformative comparisons.

47

4.3.2 Out-app Pluto

Out-app Pluto aims to estimate what is the potential data exposure to an ad library
that uses the unprotected public glA and gIP APIs. That is, given the fact that the ad
library can learn the list of installed applications on a device, it aims to explore what data
points, if any, can be learned from that list. Intuitively, if an ad library knows that a user
installed a pregnancy app and local public transportation app, it would be able to infer the
user’s gender and coarse location. However, the list of installed applications derived from
gIA and gIP is dependent on the device the ad library’s host app is installed, which renders
estimation of the exposure challenging. To explore what an ad library can learn through this
out-app attack channel, I derive a set of co-installation patterns that reveals which apps are
usually installed together. This way we can simulate what the runtime call to gIA or gIP
will result in given invocation from an ad library incorporated into a particular host app. I
then feed the list of co-installed applications into a set of classifiers we trained to discover
the potential data exposure through the out-app channel.

The Pluto out-app exposure discovery system runs machine learning techniques on a cor-
pus of app bundles to achieve two goals. First, it provides a Co-Installation Pattern module
(CIP) which can be updated dynamically as new records of installed apps are received. The
CIP module runs state-of-the-art frequent pattern mining (FPM) algorithms on such records
to discover associations between apps. For example, such an analysis can yield an associ-
ation in the form of a conditional probability, stating that if app A is present on a device
then app B can be found on that device with 2% confidence. When an analyst sets Pluto
to discover out-app targeted data regarding an app offline, Pluto utilizes the CIP module
to get a good estimation of a vector of co-installed apps with the target app. The resulting
vector is passed to the classifiers which in turn present the analyst with a set of learned
attributes. Second, it provides a suite of supervised machine learning techniques that take
a corpus of app bundles paired with a list of user targeted data and creates classifiers that

predict whether an app bundle is indicative of a user attribute or interest.

Co-Installation Patterns

The CIP module uses frequent pattern mining to find application co-installation patterns.
This can assist Pluto in predicting what will an ad library learn at runtime if it invokes glA
or gIP. We call a co-installation pattern, the likelihood to find a set of apps installed on a
device in correlation with another app installed on that device. In FPM, every transaction

in a database is identified by an id and an itemset. The itemset is the collection of one or

48

more items that appear together in the same transaction. For example, this could be the
items bought together by a customer at a grocery store. Support indicates the frequency
of an itemset in the database. An FPM algorithm will consider an itemset to be frequent
if its support is no less than a minimum support threshold. Itemsets that are not frequent
are pruned. Such an algorithm will mine association rules including frequent itemsets in
the form of conditional probabilities that indicate the likelihood that an itemset can occur
together with another itemset in a transaction. The algorithm will select rules that satisfy a
measure (e.g., a minimum confidence level). An association rule has the form N:N, where N is
the number of unique items in the database. An association rule is presented as X = Y where
the itemset X is termed the precedent and Y the consequent. Such analysis is common
when stores want to find relationships between products frequently bought together.

Pluto’s CIP uses the same techniques to model the installations of apps on mobile devices,
as itemsets bought together at a grocery store. Our implementation of Pluto’s CIP module
uses the FPGrowth [133] algorithm, a state of the art frequent pattern matching algorithm
for finding association rules. I have chosen FPGrowth because it is significantly faster than
its competitor Apriori [134]. CIP runs on a set of app bundles collected periodically from
a database containing user profiles that include the device’s app bundles and derives a
set of association rules, indicating the likelihood that apps can be found co-installed on a
device. Our CIP association rule will have the form 1:N because Pluto is interested in finding
relationships between a given app and a set of other apps.

CIP uses confidence and 1ift as the measures to decide whether an association rule is

strong enough to be presented to the analyst. Confidence is defined as conf(X = Y) =
supp(XUY)

supp(X)
for an association rule means that for 100% of the times that X appears in a transaction, Y’

where supp(X) is the support of the itemset in the database. A confidence of 100%

appears as well in the same transaction. Thus an association rule facebook = skype, viber
with 70% confidence will mean that for 70% of the devices having Facebook installed, Viber
and Skype are also installed.
. . oyt R o supp(XUY)
Another measure CIP supports is Lift. Lift is defined as: lift(X = Y) = ﬂ;lsupp?)p;)xsupp(Y)’
Lift indicates how independent the two itemsets are in the rule. A Lift of one will indicate

that the probability of occurrence of the precedent and consequent are independent of each
other. The higher the Lift between the two itemsets, the stronger the dependency between

them and the strongest the rule is.

49

Learning Targeted Data from App Bundles

Pluto uses supervised learning models to infer user attributes from the CIP-estimated app
bundles. Pluto aims to resolve two challenges in training models based on app bundles: 1)
skewed distribution of values of attributes; 2) high dimensionality and highly sparse nature
of the app bundles.

Balancing distributions of training sets: Based on the empirical data collected,
some attributes have a more skewed distribution in their values. To orient the reader using
a concrete example, consider an example where 1 of 100 users has an allergy. In predicting
whether a user has an allergy in this dataset, one classifier can achieve an accuracy of 0.99
by trivially classifying each user as having an allergy. In view of this, for the attribute “has
an allergy” the value “yes” can be assigned a higher weight, such as 99, while the value “no”
has a weight of 1. After assigning weights, the weighted accuracy for predicting an attribute
now becomes the weighted average of accuracy for each user; the weight for a user is the
ratio of the user’s attribute value weight to the total attribute value weights of all users.
Therefore, in this example, the weighted accuracy becomes 0.5, which is fair, even when
trivially guessing that each user has the same attribute value. In order to train an effective
model for Pluto, the distribution of training sets is balanced following the aforementioned
idea. To balance we adjust the weights of existing data entries to ensure that the total
weights of each attribute value are equal. In this way, the final model would not trivially
classify each user to be associated with any same attribute value. Accordingly, I will adopt
measures weighted precision and weighted recall in the evaluation where the total weights of
each attribute value are equal; this is to penalize trivial classification to the same attribute
value [135].

Dimension reduction of app-bundle data: Another challenge we face in this context
is the high dimensionality and highly sparse nature of the app bundles. There are over 1.4
million apps [136] on Google Play at this moment, and it is both impractical and undesirable
for the users to download and install more than a small fraction of those on their devices. A
recent study from Yahoo [137] states that users install on average 97 apps on a device. To
make this problem more tractable I used a technique borrowed from the Machine Learning
community which allows us to reduce the considered dimensions. The prototype employs
three classifiers, namely K-Nearest Neighbors (KNN), Random Forests, and SVM.

To apply these classifiers to our data, each user u; in the set of users U is mapped to an
app installation vectors a,, = {ai,...,a;}, where a; =1 (j = 1,... k) if u; installs a; on
the mobile device, otherwise a; = 0. Note that the app installation vector is k-dimensional

and k can be a large value (1985 in our study). Thus, classifiers may suffer from the “curse

50

of dimension” such that the computation could be dominated by less relevant installed apps
when the dimension of space goes higher. To mitigate this problem, we can use principal
component analysis (PCA) by selecting a small number of the principal components to

perform dimension reduction before applying a classifier.

4.4 DETECTION EVALUATION

In this section I evaluate Pluto’s components in estimating data exposure. We will first
evaluate Pluto’s performance to discover Level-1 and Level-2 in-app data points. Next we
will apply Pluto’s CIP module and classifiers on real world data app bundles and the collected

ground truth, and evaluate their performance.

4.4.1 Evaluation of Pluto’s in-app exposure discovery

In this section I present empirical findings on applying Pluto on real world apps.

Experimental setup: I provided Pluto with a set of data points to look for, enhanced
with the meaning—sense id of the data point in Wordnet’s dictionary—and the class of
the data point (i.e., user attribute or user interest). I also provide Pluto with a mapping
between permissions and data points and we configured it to use the LCH similarity metric
at the disambiguation layer for user attributes and our droidLESK metric for user interests.
I found that setting the LCH threshold to 2.8 and the droidLESK threshold to 0.4 provides
the best performance. To tune the thresholds, I parameterized them and ran Pluto multiple
times on the L1 dataset. A similar approach can be used to tune the thresholds on any
available - ideally larger - dataset !5, and data point set. In all experiments, all Miners
were enabled unless otherwise stated. The MMiner mined in manifest files, the DBMiner
in runtime-generated database files, the XMLMiner in runtime-generated XML files and the
GMiner in String resource files and layout files. I compared Pluto to the level-1 and level-2
ground truth we manually constructed as described in Section 4.2.

In-app exposure estimation: I ran Pluto on the set of 262 apps (Pluto L1) and the
full set of 2535 apps (Pluto FD). Figure 4.3 plots the distribution of apps with respect to
data points found within those apps. I observed that the number of data points found in
apps remains consistent as we increased the number of apps. I repeated the experiment for

the level-1 dataset that consists of 35 apps. Figure 4.4. depicts Pluto’s data point discovery.

5Note that it requires little effort to get Android app packages.

51

Pluto FD =PlutoL1 =—Manual L1

0.9

0.8

0.7

0 1 2 3 4 5 6 7

Data Points

Figure 4.3: CDF of apps and number of data points (level-1)

I compared Pluto’s data point prediction with the respective level-1 and level-2 manual
analysis 4.2.

Evidently, Pluto is optimistic in estimating in-app data points. In other words, Pluto’s
in-app discovery component can flag apps as potentially exposing data points, even though
these are not actually there. A large number of Pluto’s false positives stem from parsing the
String constants file. Parsing these files increases coverage by complementing our dynamic
analysis challenge in generating files that host apps created after the user logged in. It also
addresses the layer-2 aggressive libraries can read from the user input. However, this results
in considering a lot of extra keywords that might match a data point or its synonyms. Their
location in the Strings.xml makes it harder for Pluto to disambiguate the context for certain
data point classes. In this study, I makes the first attempt towards mitigating this pathology
by proposing droid LESK.

Pluto is designed to find user attributes, user interests, and data points stemming from
the host app’s granted permissions. Next, I present the performance of Pluto’s prototype
implementation with respect to the above categories.

Finding user-attributes: Figure 4.5 depicts the performance of Pluto in finding the
data point gender when compared to the level-1 and level-2 datasets and Figure 4.6 shows
the same for the user attribute age. Gender had absolute support of 13 in the level-1 dataset
and 18 in the level-2 and age had 12 and 9 respectively. We observe that Pluto is doing

better in discovering data points available to the more aggressive libraries. For example,

52

==Pluto L2 =——Manual L2

% apps

0 2 4 6 8 10 12 14 16

Data Points

Figure 4.4: CDF of apps and number of data points (level-2)

the word age, was found in a lot of layout files and Strings.xml files while the same was not
present in the runtime generated files. Comparing age with the level-1 ground truth, results
in a high number of false positives, since the analyst has constructed the ground truth for
a level-1 aggressive library. When Pluto is compared with the ground truth for a level-2
aggressive library, its performance is significantly improved.

Finding interests: Next, I evaluated Pluto’s performance in discovering user interests.
Figure 4.7 illustrates the user interest workout when Pluto is compared against the level-1
ground truth and the level-2 ground truth. Workout had absolute support of 5 in the level-1
dataset and 6 in the level-2. Again, Pluto does much better in the latter case for the same
reasons stated before.

Preliminary results for droidLESK: In the experiments I used droidLESK as the most
appropriate similarity metric on Pluto’s context disambiguation layer for user interests.
I compared that with an implementation of Pluto with no disambiguation layer and an
implementation that uses the LESK metric. droidLESK achieved an astonishing 103.3%
increase in Pluto’s precision whereas LESK achieved an improvement of 11.37%. This is
a good indication that droidLESK is a promising way of introducing domain knowledge
when comparing the similarity between words in the Android app context. I plan to further
explore droidLESK’s potential in future work.

Finding data point exposure through permission inheritance: Pluto’s MMiner

scrapes through application manifest files to look for permissions that would allow a level-1

53

0.9
0.8
0.7

0.6 -
WLl

04 -
0.3 -

W2

0.1 -

PRECISION RECALL

Figure 4.5: gender prediction performance given the L1 and L2 ground truth.

or level-2 aggressive library to get access to user attributes or interests. I compared Pluto’s
performance in two different configurations. In configuration 1 (L1 or L2), Pluto is set to look
for a data point using all of its Miners whilst in configuration 2 (L1:MMiner and L2:MMiner)
Pluto is set to look for a data point only using the MMiner, if the data point can be derived
from the host app permissions. We performed the experiment on the larger level-1 dataset,
providing as input the mapping between the permissions ACCESS_COARSE_LOCATION
and ACCESS_FINE_LOCATION with the data point address. Figure 4.8 depicts Pluto’s
performance in predicting the presence of address given the above two configurations for
both the L1 and L2 datasets and ground truths. As expected, Pluto’s prediction is much
more accurate when only the MMiner is used. It is clear that in the cases where an data
point can be derived through a permission, the best way to predict that data point exposure
would be to merely look through the target app’s manifest file.

The main reason for the false negatives we observe in all previous experiments was because
some data points that the analyst has discovered were in runtime files generated after the user
has logged in the app, or after a specific input was provided. Pluto’s DAM implementation

cannot automatically log in the app. We leave this challenge open for future work.

54

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2 -
0.1 -

WLl

W2

PRECISION RECALL

Figure 4.6: age prediction performance given the L1 and L2 ground truth.

4.4.2 Evaluation of Pluto’s out-app exposure discovery

Next, weneed to evaluate Pluto’s ability to construct co-installation patterns and predict
user attributes and interests based on information that can be collected through the out-app
channel. I ran Pluto’s CIP module and classifiers on the ABD dataset we collect from real
users (see Section 4.2).

Mining application co-installation patterns: Pluto’s CIP module implementation
uses FPGrowth [133], the state of the art frequent pattern matching (FPM) algorithm for
finding association rules. I chose FPGrowth because it is significantly faster than its competi-
tor Apriori [134]. T applied Pluto’s CIP module on the app bundles we collected through our
survey. I set FPGrowth to find co-installation patterns in the form 1:N and prune events with
support less than 10%. Table 4.5 lists the 5 strongest—in terms of confidence—association
rules that CIP found when run on the survey dataset.

We observe that Facebook is likely to be installed together with the Facebook Messenger
app. This is likely because Facebook asks their users to install the Facebook Messenger app
when using the Facebook app. Our survey dataset reflects this as well. The strong relation-
ship between the Facebook app and Facebook Messenger app revealed by FPM illustrates its

effectiveness for this application. Such rules are critical for Pluto to estimate co-installation

55

0.9
0.8

0.7

0.6

0.5

0.4

0.2 -

PRECISION

RECALL

WLl
W2

Figure 4.7: workout prediction performance given the L1 and L2 ground truth.

patterns between the input application and other applications. Pluto leverages such pat-
terns to provide an estimation of what user attributes can be potentially derived from the
app bundles of users that have the input app. Co-installation patterns can also be used to
reduce redundancy when combining the in-app data exposure of multiple applications. For
example, one might want to estimate what are the in-app data points exposed by app A
and app B. However, if these applications are installed on the same device, then the total

amount of information the adversarial library will get will be the union of both removing

duplicates.

Table 4.5: The strongest co-installation patterns found by the CIP module when run on

the survey app bundles.

Precedent Consequence Conf | Lift
com.facebook.katana com.facebook.orca | 0.79 2.10
com.lenovo.anyshare.gps | com.facebook.orca | 0.75 2.01
com.viber.voip com.facebook.orca | 0.74 1.98
com.skype.raider com.facebook.orca | 0.71 1.88
com.skype.raider com.viber.voip 0.70 2.32

56

0.9
0.8
0.7

WLl

05 - M L1:MMiner

L2

®L2:Mminer
0.2 -

PRECISION RECALL

Figure 4.8: address prediction performance in different configurations, given the L1 and
L2 ground truth.

Performance of Pluto’s classifiers: Pluto’s classifiers can be used to estimate user
attributes derived from CIP app bundles or real-time app bundles from user profiles. I
evaluated the performance of Pluto’s classifiers on real app bundles we collected from our
survey (see Section 4.2). I used the users’ answers to the questionnaire in the survey as the
ground truth to evaluate the classification results. To justify our use of dimension reduction
technique, we evaluated the classifier on both dataset before dimension reduction and dataset
after dimension reduction. The results on representative attributes are shown in Table 4.6
and Table 4.7 respectively.

Based on the results shown in both tables, Random Forest performs best across all pre-
diction tasks. The superiority of Random Forest in our evaluation agrees with the existing
knowledge [138]. Specifically, because our dataset has a relatively smaller number of in-
stances, the pattern variance is more likely to be high. The ensemble technique (voting by
many different trees) employed by Random Forest could reduce such variance in its predic-
tion and thus achieve a better performance.

Comparison of Table 4.6 and Table 4.7 show dimension reduction can effectively im-
prove the performance of Random Forest and KNN. However, the performance of SVM

becomes poorer after dimension reduction. One possible reason is that SVM can handle

57

Table 4.6: Performance of classifiers before dimension reduction

Classifior Age Marital Status Sex

P(%) | R(%) | P(%) | R(%) | P(%) | R(%)
Random Forest | 64.1 66.3 89.8 83.6 91.5 89.6
SVM 65.5 63.6 89.0 82.1 87.4 83.1
KNN 62.7 60.0 86.3 7.7 83.4 74.8
P = Weighted Precision, R = Weighted Recall

Table 4.7: Performance of classifiers after dimension reduction

Age Marital Status Sex
P(%) | R(%) | P(%) | R(%) | P(%) | R(%)
Random Forest | 88.6 88.6 95.0 93.8 93.8 92.9
SVM 44.8 35.4 66.9 50.5 80.9 70.1
KNN 85.7 83.6 92.5 91.2 91.6 89.9
P = Weighted Precision, R = Weighted Recall

Classifier

high-dimension data such as our original dataset. The model complexity of SVM is deter-

mined by the number of support vectors instead of dimensions.

4.5 UTILITY AND LIMITATIONS

Utility of Pluto: In this chapter, I propose an approach that can be leveraged to assess
potential data exposure through in-app and out-app channels to a third-party library given
its access to shared intra-process privileges. Note that even though I use ad libraries in
free apps as a motivating example, this approach can be adapted to assess data exposure
by any app to any third-party library. I chose ad libraries because they are quintessential
examples of third-party libraries with strong business incentives for aggressive data harvest-
ing. Motivated by rising privacy concerns related to mobile advertising, users can exert
pressure on markets to integrate data exposure assessment into their system and present
the results in a usable way to users when downloading an app. In light of this information,
users would be able to make more informed decisions when choosing an app. Furthermore,
government agencies, such as the Food and Drug Administration (FDA), could benefit from
this approach to facilitate their efforts in regulating mobile medical device apps [139] and
the Federal Trade Commission (FTC) could leverage Pluto to discover apps that potentially
violate user privacy.

Next, I describe a simple way for markets (and in extend other interested parties) to

utilize Pluto’s results and rank apps based on their data exposure. Intuitively, the harder

58

Table 4.8: Most risky apps based on their in-app data exposure. M = MEDICAL, HF =
HEALTH & FITNESS

CATEGORY| PACKAGE DESCRIPTION AVG #IN- | SCORE
STALL [0 - 10]

M com.excelatlife.depression Depression manage- | 100 x 103 — | 8.14
ment 500 x 103

M com.medicaljoyworks.prognosis | Clinical case simulator | 500 x 103 —1 x | 6.31
for physicians 106

HF com.workoutroutines. great- | Workout management 100 x 103 — | 7.33

bodylite 500 x 103

HF com.cigna.mobile.mycigna Personal health infor- | 100 x 10% — | 5.62

mation management 500 x 103

it is for an adversary to get a data point of a user, the more valuable that data point might
be for the adversary. Also, the more sensitive a data point is, the harder it will be to get it.
Thus sensitive data points should be more valuable for adversaries. Consequently, a market
could use a cost model, such as the one offered by the F'T calculator, to assign the proposed
values acting as weights to data points. In fact, Google, which acts as a data broker itself,
would probably have more accurate values and a larger set of data points. They could then
normalize the set of exposed data points and present the data exposure score for each app.
For example, let D be the set of data points in the cost model and X the set of data point
weights in the cost model, where |D| = |X| = n. We include the null data point in D
with a corresponding zero value in X. Also, let a be the app under analysis. Then the new

zo—min(X)

ranked value of a would be z, = +*——=— where z,, is the sum of all weights of the data
> zi—min(X)
1=1

points found to be exposed by aﬂp a. Here, min(X) corresponds to an app having only

the least expensive data point in D. > x; corresponds to an app exposing all data points
in D. z, would result in a value fronn: 1O to 1 for each app « under analysis. The higher
the value the more the data exposure. This can be presented in the applications download
site in application markets along with other existing information for that app. For better
presentation, markets could use a number from 0 to 10, stars, or color spectrum with red
corresponding to the maximum data exposure.

To provide the reader with a better perspective on the result of this approach, I applied
Pluto and performed the proposed ranking technique on the collected apps from the MEDICAL
and HEALTH & FITNESS Google Play categories respectively. In the absence of co-installation
patterns for all target apps, I do not take into account the effect of having an app on the
same device with another data exposing app '®. We found that most apps have a low risk

score. In particular 97% of MEDICAL and also 97% of HEALTH & FITNESS apps had scores

6Note that to perform the out-app Pluto analysis one needs co-installation patterns for all ranked apps.
Markets can easily derive those using the FPM approach described earlier. In that case, one should take
into account the UNION of in-app and out-app exposed attributes.

59

below 5.0. Those apps either expose a very small amount of highly sensitive targeted data,
targeted data of low sensitivity, or both. For example, we found net.epsilonzero.hearingtest,
a hearing testing app, exposed two attributes, the user’s phone number and age, and scored
0.02. This ranking technique ensures that only a few apps stand out in the rankings. These
are apps with a fairly large number of exposed data points including highly sensitive ones.
For example, the highest scored medical app com.excelatlife.depression with a score of
8.14, exposes 16 data points including “depression,” “headache,” and “pregnancy,” which
have some of the highest values in the F'T calculator. Table 4.8 depicts the two most risky
apps per category. Pluto in conjunction with the proposed ranking approach can help a
user /analyst to focus on those high risk cases.

These ranking results also depict the prevalence of targeted data exposure. As we observe
on Table 4.8 the highest ranked apps were installed in the order of hundreds of thousands of
devices. Consequently, highly sensitive data of hundreds of thousands of users are exposed to
opportunistic third-party libraries. I defer to future work the study of practical approaches
to mitigate the data exposure by apps to third-party libraries.

App Bundles: The collection of app bundle information by app developers, advertising
companies, and marketing companies is troubling. Currently, the ability of apps to use gIP
or glA with no special permissions provides an opportunity for abuse by both app devel-
opers and advertisers. My research demonstrates that this abuse is occurring. I further
demonstrate that such information can be reliably leveraged to infer users’ attributes. Un-
fortunately, companies fail to notify consumers that they are allowing the collection of app
bundles. With this, they have also failed to notify users as to what entity collects the in-
formation, how it is used, or steps to mitigate or prevent the collection of this data. The
failure of the Android API to require permissions for the gIP or glA removes from the users
the possibility to have choice and consent to this type of information gathering. To prevent
abuse of gIP or glA, app providers should notify users, both in the privacy policy and in the
application, that app bundles are collected. Additionally, applications should provide the
user the opportunity to deny the collection of this information for advertising or marketing
purposes. Potentially, the Android API could require special permissions for gIP or gIA.
However, the all-or-nothing permissions scheme might not add any additional value besides
notice to the user and the warning may not be necessary for an app that is using these two
functions for utility and functional purposes.

Limitations of the proposed approach: The estimation of data exposure to libraries
is constrained by the specific attack channels we consider. The prototype employs specific
examples for each channel and performs data exposure assessment based on those. Never-

theless, the cases we considered are not the only ones. For example, someone could include

60

the CAMERA permission or the RECORD_AUDIO in the protected APIs. The camera could be
used opportunistically to get pictures of the user in order to infer her gender or location.
The microphone could be used to capture what the user is saying and, by converting speech
to text and employing POS tagging, infer additional targeted data. More channels can also
be discovered such as new side channels or covert channels. These can be used to extend
Pluto for a more complete assessment. The current prototype and results can serve as a

baseline for comparison.

4.6 SUMMARY

In this Chapter I performed an analysis on the security of shared intra-process privileges.
I showed how an untrusted incentivized third-party library can exploit those shared priv-
ileges to aggressively harvest sensitive user information on a smartphone. In my analysis
I detailed the adversary model in this setting, and introduced previously unknown infer-
ence techniques for such advertisers. I then utilized these observations to built a tool for
automatically detecting potential information leakage to such adversaries. Figure 4.9 visu-
alizes this contribution on the smartphone ecosystem. The tool combines techniques from
code analysis, natural language processing and machine learning to emulate the informa-
tion reach of third-party libraries on smartphones. This study reveals a pressing need for
considering such intra-process adversaries when designing resource isolation mechanisms on
smartphones. Next I will look into the security of another shared resource, in particular

shared filesystem resources across userspace applications/processes on smartphones.

61

PROCESS PROCESS Library

RESOURCES | RESOURCES Leakage
H Detection
<N Host App : Host App 100l PP
& ooo; RESOURCES
< Libraries Libraries
E SYSTEM
= MIDDLEWARE RESOURCES
[9p)
>_
wn
O]
=z
'<_,: CONNECTIVITY
o RESOURCES
o
O KERNEL
FILESYSTEM
owser - DAC RESOURCES

Figure 4.9: Detecting information leakage to third-party libraries.

62

CHAPTER 5: SHARING FILESYSTEM RESOURCES

This chapter is based on joint work with Xiaoyong Zhou, Dongjing He, Muhammad Naveed,
Xiaorui Pan, Xiaofeng Wang, Carl A. Gunter and Klara Nahrstedt [11].

Mobile applications can access filesystem resources made available by the host operating
system. Android in particular is built on top of a stripped down version of the Linux kernel,
which is optimized for mobile devices. The Linux kernel uses a virtual process filesystem
(procfs) for efficiently mirroring some of the kernel data structures to userspace programs.
Files in this filesystem are protected using a traditional discretionary access control scheme.
However, files which hold seemingly harmless information on a static platform (e.g. desktop
machines) can be hazardous when accessed on a mobile platform. In Chapter I will present
my analysis on the Android shared filesystem resources. I will show that malicious mobile
applications can exploit unprotected files as side-channels to perform inference attacks and

compromise user confidentiality [11]. .

5.1 INTRODUCTION

Android provides unprivileged applications with access to basic local filesystem resources.
All such public resources are considered to be harmless and their releases are part of the
design which is important to the system’s normal operations. Examples include the coordi-
nation among users through the ps command and among the apps using audio resources they
access through he API call AudioManager.requestAudioFocus. However, those old design
assumptions on the public local resources are becoming increasingly irrelevant in front of
the fast-evolving ways to use smartphones. In [11] I identified two fundamental design/use
gaps that are swiftly widening, affecting the Android ecosystem:

Firstly, I found that there is a gap between Linux’s design and the smartphone use.
Linux comes with the legacy of its original designs for workstations and servers. Some of
its information disclosure, which could be harmless in these stationary environments, could
become a critical issue for mobile phones. For example, Linux makes the MAC address of
the wireless access points (WAP) available under its virtual process filesystem (procfs). This
does not seem to be a big issue for a workstation or even a laptop back a few years ago.
For a smartphone, however, knowledge about such information will lead to disclosure of a

phone user’s location, particularly with the recent development that databases have been

63

built for fingerprinting geo-locations with WAPs” MAC addresses (called Basic Service Set
Identification, or BSSID).

Secondly, I observed the manifestation of a gap between the assumptions on Android public
resources and evolving app design, functionalities and background information throughout
this study. For example, an app is often dedicated to a specific website. Therefore, the
adversary no longer needs to infer the website a user visits, as it can be easily found out by
looking at which app is running (through ps for example). Most importantly, today’s apps
often come with a plethora of background information like tweets, public posts and public
web services such as Google Maps. As a result, even very thin information about the app’s
behavior (e.g., posting a message), as exposed by the public resources, could be linked to
such public knowledge to recover sensitive user data.

Specifically, in this study I carefully analyzed the ways filesystem resources are utilized by
the OS and popular apps on Android, together with the public online information related

to their operations. My study discovered two confirmed new sources of information leaks:

e App network-data usage (Section 5.2.2). I found that the data usage statistics disclosed
by the procfs can be used to precisely fingerprint an app’s behavior and even infer
its input data, by leveraging online resources such as tweets published by Twitter.
To demonstrate the seriousness of the information leakage from those usage data,
I developed a suite of inference techniques that can reveal a phone user’s disease
conditions she is interested in from the network-data consumption of WebMD app, her

identity from that of Twitter app, and the stock she is looking at from Yahoo! Finance
app.

e Public ARP information (Section 5.2.3). I further discovered that the public ARP
data released by Android (under its Linux public directory) contains the BSSID of
the WAP a phone is connected to, and demonstrate how to practically utilize such

information to locate a phone user through BSSID databases.

I built a zero-permission app that stealthily collects information for these attacks. This
chapter elaborates on side-channel attacks designed and executed based on these newly found
information leaks throufh shared filesystem resources and discusses mitigation strategies.
Firstly we will see the capabilities that adversary (5.2.1) possess to be able to deploy such

attacks.

64

5.2 ANALYSIS

5.2.1 Adversary Model

The adversary considered in this study runs a zero-permission app on the victim’s smart-
phone. Such an app needs to operate in a stealthy way to visually conceal its presence
from the user and also minimize its impact on a smartphone’s performance. On the other
hand, the adversary has the resources to analyze the data gathered by the app using publicly
available background information, for example, through crawling the public information re-
leased by social networks, searching Google Maps, etc. Such activities can be performed by
ordinary Internet users.

In addition to collecting and analyzing the information gathered from the victim’s device,
a zero-permission malicious app needs a set of capabilities to pose a credible privacy threat.
Particularly, it needs to send data across the Internet without the INTERNET permission.
Also, it should stay aware of the system’s situation, i.e., which apps are currently running.
This enables the malicious app to keep a low profile and start data collection only when its
target app is being executed. Here we show how these capabilities can be obtained by the
app without any permission.

A malicious app should be able to share the surreptitiously stolen data with the adversary’s
remote location. Leviathan’s blog describes a zero-permission technique to smuggle out data
across the Internet [65]. The idea is to let the sender app use the URI ACTION_VIEW Intent
to open a browser and sneak the payload it wants to deliver to the parameters of an HTTP
GET from the receiver website. I re-implemented this technique in my research and further
made it stealthy. Leviathan’s approach does not work when the screen is off because the
browser is paused when the screen is off. I improved this method to smuggle data right
before the screen is off or the screen is being unlocked. Specifically, the adversarial app
continuously monitors /lcd power (/sys/class/lcd/panel/lcd power on Galaxy Nexus),
an LCD status indicator released under the sysfs. Note that this indicator can be located
under other directory on other devices, for example, sys/class/backlight /s6e8aa0 on
Nexus Prime. When the indicator becomes zero, the phone screen dims out, which allows
the app to send out data through the browser without being noticed by the user. After the
data transmission is done, the app can redirect the browser to Google and also set the phone
to its home screen to cover this operation.

A malicious app should also be aware of the system’s situation or state. The designed zero
permission app defines a list of target applications such as stock, health, location applications

and monitors their activities. It first checks whether those packages are installed on the

65

victim’s system (getInstalled Applications()) and then periodically calls ps to get a
list of active apps and their PIDs. Once a target is found to be active, our app will start
a thread that closely monitors the /proc/uid stats/[uid] and the /proc/ [pid]/ of the
target.

5.2.2 Side-Channel 1: per-App Network Traffic

Usage Monitoring and Analysis

Mobile data usages of Android are made public under /proc/uid_stat/ (per app) and
/sys/class/net/[interface] /statistics/ (per interface). The former was introduced
by Android to keep track of individual apps. These directories can be read by any app
directly or through TrafficStats, a public API class. Of particular interest here are two
files /proc/uid_stat /[uid]/tcp_rcv and /proc/uid_stat/[uid]/tcp_snd, which record
the total numbers of bytes received and sent by a specific app respectively. 1 found that
these two statistics are actually aggregated from TCP packet payloads: for every TCP packet
received or sent by an app, Android adds the length of its payload onto the corresponding
statistics. These statistics are extensively used for mobile data consumption monitoring [41].
However, my research shows that their updates can also be leveraged to fingerprint an app’s
network operations, such as sending HTTP POST or GET messages.

To catch the updates of those statistics in real time, I built a data-usage monitor that
continuously reads from tcp_rcv and tcp_snd of a target app to record increments in their
values. Such an increment is essentially the length of the payload delivered by a single
or multiple TCP packets the app receives and sends, depending on how fast the monitor
samples from those statistics. Our current implementation has a sampling rate of 10 times
per second. This is found to be sufficient for picking up individual packets most of the
time, as illustrated in Figure 5.1, in which I compare the packet payloads observed by Shark
for Root (a network traffic sniffer for 3G and WiFi) [140], when the user is using Yahoo!
Finance, with the cumulative outbound data usage detected by our usage monitor.

From the figure 5.1 we can see that most of the time, our monitor can separate different
packets from each other. However, there are situations in which only the cumulative length
of multiple packets is identified (see the markers in the figure). This requires an analysis
that can tolerate such non-determinism, which I will discuss later.

In terms of performance, the monitor has a very small memory footprint, only 28 MB,
even below that of the default Android keyboard app. When it is running at its peak speed,

it takes about 7% of a core’s cycles on a Google Nexus S phone. Since all the new phones

66

10000y
——1tcp _snd

—— shark for root

5000¢

cumulative tcp.len in bytes

the total length of two packets

0 10 20 30 40 50
packet sequence

Figure 5.1: Monitor tool precision

released today are armed with multi-core CPUs, the monitor’s operations will not have
noticeable impacts on the performance of the app running in the foreground as demonstrated
by a test described in Table 5.1 measured using AnTuTu [141] with a sampling rate of 10Hz
for network usage 5.2.2 and 50Hz for audio logging. To make this data collection stealthier,
I adopted a strategy that samples intensively only when the target app is being executed,
which is identified through ps (Section 5.2.1). The UI of the monitor tool is shown in Figure
5.2.

Table 5.1: Performance overhead of the monitor tool: there the baseline is measured by
AnTuTu [141]

Total | CPU | GPU | RAM | I/0
Baseline 3776 7T 1816 588 595

Monitor Tool | 3554 774 1606 589 585
Overhead 58% | 0.3% | 11.6% | -0.1% | 1.7%

However, the monitor cannot always produce deterministic outcomes: when sampling the
same packet sequence twice, it may observe two different sequences of increments from the
usage statistics. To obtain a reliable traffic fingerprint of a target app’s activity we designed
a methodology to bridge the gap between the real sequence and what the monitor sees.

My approach first uses Shark for Root to analyze a target app’s behavior (e.g., click on
a button) offline - i.e in a controlled context - and generate a payload-sequence signature

for its behavior. Once the monitor collects a sequence of usage increments from the app’s

67

Y & DO ¥

SensorTest

CPU Mem Net Audio

| com.webmd.android v

‘ Start Reader
|

‘ Stop Reader
|

‘ Monitor + Probe

Stop Monitor + Probe

Figure 5.2: Monitor tool Ul

runtime on the victim’s Android phone, I compare this usage sequence with the signature
as follows. Consider a signature (--- ,;, Sit1,- "+, Sitn, -), Where s; .. ;1 are the payload
lengths of the TCP packets with the same direction (inbound/outbound), and a sequence
(---,mj,--), where m; is an increment on a usage statistic (tcp_rcv or tcp_snd) of the
direction of s;, as observed by our monitor. Suppose that all the elements before m; match
the elements in the signature (those prior to s;). We say that m; also matches the signature
elements if either m; = s; or m; = s; + --- + s;4; with 1 < & < n. The whole sequence is
considered to match the signature if all of its elements match the signature elements.

For example, consider that the signature for requesting the information about a disease
condition ABSCESS by WebMD is (458,478,492 —), where “—” indicates outbound traffic.
Usage sequences matching the signature can be (458,478,492 —), (936,492 —) or (1428 —).

The payload-sequence signature can vary across different mobile devices, due to the dif-
ference in the User-Agent field on the HTTP packets produced by these devices. This
information can be acquired by a zero-permission app through the android.os.Build API.
The User-Agent is related to the phone’s type, brand and Android OS version. For example,
the User-Agent of the Yahoo! Finance app on a Nexus S phone is:

User-Agent: YahooMobile/1.0 (finance; 1.1.8.1187014079); (Linux; U; Android 4.1.1;
sojus

Build/JELLY_BEAN) ;

68

Given that the format of this field is known, all the adversary needs, is a set of parameters
(type, brand, OS version etc.) for building up the field, which is important for estimating
the length of the field and the payload that carries the field. Such information can be easily
obtained by a zero-permission app, without any permission, from android.os.Build and

System.getProperty("http agent").

Health Data

Next I will show that the data-usage statistics a zero-permission app collects through
shared filesystem resources, leak out apps’ sensitive inputs, e.g., disease conditions a user
selects on WebMD mobile [142]. This has been achieved by fingerprinting her actions with
data-usage sequences they produce. The same attack technique also works on Twitter 5.2.2
and Yahoo! Finance 5.2.2.

WebMD mobile is an extremely popular Android health and fitness app, which has been

installed 1 ~ 5 million times in the past 30 days [142]. To use the app, one first clicks to
select 1 out of 6 sections, such as “Symptom Checker”, “Conditions” and others as seen
in Figure 5.3. In my research, I analyzed the data under the “Conditions” section, which
includes a list of disease conditions (e.g., Asthma, Diabetes, etc.). Each condition, once
clicked on, leads to a new screen that displays the overview of the disease, its symptoms and
related articles. As we can see from Figure 5.4, all such information is provided through a
simple, fixed user interface running on the phone, while the data there is downloaded from
the web. I found that the changes of network usage statistics during this process can be
reliably linked to the user’s selections on the interface, revealing the disease she is interested
in.
Attack Methodology. I first analyzed the app offline (i.e. in a controlled context) using
Shark for Root, and built a detailed finite state machine (FSM) for it based on the payload
lengths of TCP packets sent and received when the app moves from one screen (a state of
the FSM) to another. The FSM is illustrated in Figure 5.5. Specifically, the user’s selection
of a section is characterized by a sequence of bytes, which is completely different from those
of other sections. Each disease under the “Conditions” section is also associated with a
distinctive payload sequence.

In particular, every time a user clicks on a condition she is interested in, there are a num-
ber of requests being generated: 3 POST {p;, p2, ps} requests which correspond to Ouerview,
Symptoms and Related Articles and 4 GET requests for ads and tracking. The 4 GETs can
be readily filtered out due to their fixed packet sized with small variations, e.g., the GET

69

WebMD
% Hepatitis C

Overview Symptoms

What is hepatitis C?

Settings Hepatitis C is a disease caused by a virus
- that infects the liver. In time, it can lead to
M Symptom Checker > permanent liver damage as well as
cirrhosis, liver cancer, and liver failure.
% Conditions >

Many people don't know that they have

P hepatitis C until they already have some
.‘ DrUgS & Treatments 4 liver damage. This can take many years.
; ; ; Some people who get hepatitis C have it
+ First Aid Information ? for a short time and then get better. This is
. . called acute hepatitis C. But most people
Bl Local Health Listings ? who are infected with the virus go on to
develop long-term, or chronic, hepatitis C.

Sa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>