(© 2020 Yunhui Long

UNDERSTANDING AND MITIGATING
PRIVACY RISK IN MACHINE LEARNING SYSTEMS

BY

YUNHUI LONG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Carl A. Gunter, Chair
Professor ChengXiang Zhai
Professor Bo Li

Professor Reza Shokri

ABSTRACT

Recent years have witnessed a rapid development in machine learning systems and a
widespread increase of machine learning applications. However, with the widespread adoption
of machine learning, privacy issues have emerged. This thesis studies the privacy risk in
modern machine learning systems in two ways.

First, we improve the understanding on machine learning privacy through attacks and
measurements. Due to the increasing complexity and lack of transparency of state-of-art
machine learning models, it is challenging to understand what information a model learns
from its training data and whether the information could be leaked through the model’s
predictions. Therefore, we design various attacks to infer different information from machine
learning models trained on sensitive data. By analyzing the performance of these attacks, we
get a better understanding on the privacy risk of sharing these models.

Second, we propose different levels of protection mechanisms to balance between privacy
and data utility. We divide the use of sensitive data in a modern machine learning system
into three levels based on the trade-off between data utility and privacy protection.

At the first level, we consider data with high utility requirement and relatively low privacy
protection, such as system logs with heterogeneous data of high dimensionality. This type
of data is very sensitive to noise injection, making it challenging to achieve strong privacy
guarantee without incurring great loss on data utility. To address this problem, we propose
empirical protections based on hypothesis tests. Our approach uses various hypothesis tests
to identify potential information leakage from the data and adds the minimum amount of
noise sufficient to mitigate the identified risks. Although this approach does not provide
strong theoretical guarantee, it allows users to share their data with higher confidence and
with minimum utility loss.

At the second level, we consider sensitive data that need to be shared for general purposes.
For example, datasets containing personal photos can be used in a wide range of applications
including face recognition, human pose extraction, and mood detection. However, these
photos are also extremely sensitive since they contain a lot of privacy information. For this
type of data, it is important to maintain a proper balance between privacy and data utility. On
the one hand, due to the sensitive nature of the data, it is necessary to apply rigorous privacy
protections such as differential privacy. On the other hand, to allow multiple applications
to use the released data, the privacy protection mechanisms need to preserve the original

data distribution to the maximum extent possible. Based on these requirements, we design a

i

novel approach G-PATE for training a scalable differentially private data generator, which
can be used to produce synthetic datasets with strong privacy guarantee while preserving
high data utility.

At the third level, we consider sensitive data that are useful for specific applications.
For this type of data, it is often not necessary to share the original dataset. Instead, data
owners can share differentially private machine learning models tailored to the need of the
applications. By only sharing the models, we limit the use of the sensitive data to the
approved applications while improving model utility under the same privacy guarantee. As
an example, in this thesis, we propose the first differentially private graph convolutional
network (DP-GCN). By guaranteeing edge-differential privacy, DP-GCN allows users to
analyze graph-structured data without leaking the sensitive connection information, such as

private real-life connections in social networks.

iii

To my parents, for their love and support.

v

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my Ph.D. advisor,
Professor Carl Gunter. Carl has taught me a lot about doing research and being an
independent researcher. I am especially grateful for his continuous support and encouragement.
He has always supported me to explore my ideas and to pursue the directions I am passionate
in. His advises and encouragement helped me build confidence in myself and guided me to
overcome many obstacles throughout my Ph.D. study. Thanks to Carl for his continuous
guidance and support.

Second, I am fortunate to have Prof. Carl Gunter, Prof. ChengXiang Zhai, Prof. Bo Li,
and Prof. Reza Shokri serve on my thesis committee. I would like to thank them for their
insightful questions, helpful suggestions, and valuable feedback. Their suggestions on earlier
versions of this work have inspired me to think more broadly about the problem and the
impact of this work.

In addition, I would like to thank my brilliant collaborators, including Carl Gunter, Xiaofeng
Wang, Bo Li, Kai Chen, Yang Zhang, Vincent Bindschaedler, Le Xu, and Lei Wang. This
thesis cannot be done without the kind assistance they all provided to me. In particular,
thanks to Xiaofeng for providing invaluable guidance on the projects and on doing research
in general, thanks to Bo for all the inspiring discussions and kind support.

Next, I want to express my appreciation to my Illinois Security Lab labmates: Muhammad
Naveed, Aston Zhang, Vincent Bindschaedler, Soteris Demetriou, Wei Yang, Giiliz Seray
Tuncay, Qi Wang, Avesta Hojjati, Hyun Bin Lee, Allyson Kaminsky, and Xiaojun Xu. I
would like thank them for the stimulating discussions and the pleasant working environment.
Besides, I would also like to thank all my friends for their kind support and company. In
particular, thanks to Silu Huang, Le Xu, and Mengjia Yan for the great time we had together.

Finally, I would like to thank my father Xiaorong Long, my mother Lanling Li, and my
boyfriend Chenxing Wang for their unconditional love and support. Their love gives me the
courage to pursue whatever I want, knowing that they will always be there by my side when

I need them.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1
(1.1 The Foundation: Understanding Privacy Risk under Pragmatic Adversarial [
[Modelsl e 2
(1.2 Three Levels of Privacy Protections| 2
(1.3 Thesis Contributions and Organizations, 4

CHAPTER 2 RELATED WORKI

6
[2.1 Privacy Attacks on Machine Learning Models| 6
[2.2 Differential Privacy and Rény1 Differential Privacy.| 7
9
9

[2.3 Empirical Privacy Protection Mechanisms|
[2.4 'Irade-Offs between Privacy and Utility|

| ON MACHINE LEARNING MODELS!

[3.1 Adversary Model| 12
[3.2 Pragmatic Membership Inference Attackl 15
3.3 FEvaluationl. 24
33
34
36
38
40
42
4.4 Protections against Indirect Membership Attacksf 52
(4.5 Reducing DTP| 59
M6 Discussionl 60

vi

[CWITHCONFIDENCE] o o oot e e 83
[6.1 Log Indistinguishability|. 85
[6.2 Indistinguishability Tests| 89
[6.3 Protections with Log Obfuscation| 95
6.4 Case Studies. 97

CHAPTER 7 SCALABLE DP GENERATIVE MODEL VIA PATE

.............................. 109
(.2 Theoretical Guarantees| Lo 113
[7.3 Experimental Evaluation|o 000000 115
(.4 Conclusionl. 120
................................... 121
(8.1 Difterentially Private GCN|, 122
[8.2 Experiments| 128

CHAPTER 9 CONCLUSION

REFERENCES . o 0o o oo 136

vil

CHAPTER 1: INTRODUCTION

Machine learning has been applied to a wide range of applications such as face recognition [I],
autonomous driving [2], and medical diagnoses [3| [4]. However, as machine learning systems
begin to play a more and more important role in our life, there is an increasing concern on the
potential privacy risks associated with these systems. From k-anonymity [5] to differential
privacy [6], different privacy definitions and mechanisms have been proposed to prevent
privacy leakage from sensitive datasets or machine learning models. Yet, privacy protections
often come at a cost of reducing data utility, and there have been a long-lasting discussion
around balancing this trade-off.

This thesis studies the privacy-utility trade-off from a multi-level perspective. The contri-
bution of the thesis can be summarized in the privacy pyramid shown in Figure As the
foundation of the pyramid, we study the privacy risk of machine learning systems through a
series of attacks under pragmatic adversarial models. These studies aim to provide a better
understanding of privacy risk in real-world scenarios. Based on this understanding, we divide
privacy protections into three levels with a distinct trade-off between privacy and utility
requirements at each level. At the first level, we consider data with high utility requirements
and relatively low privacy protection. At the second level, we design methods to share data
for general uses under strong privacy protections. At the third level, we focus on privately

sharing data for specific uses.

» Level 3: High Privacy Protection, Specific Uses

- — = Level 2: High Privacy Protection, General Uses
_—-—- Level 1: High Utility, Low Privacy Protection

—« Foundation: Understanding the Risk under Pragmatic
Adversarial Models

Figure 1.1: The Privacy Pyramid.

1.1 THE FOUNDATION: UNDERSTANDING PRIVACY RISK UNDER PRAGMATIC
ADVERSARIAL MODELS

Understanding the privacy risk associated with sharing a dataset or a machine learning
model is a foundational step towards balancing privacy and utility. Specifically, we aim to
understand privacy risks from two aspects: (1) What information can be inferred from the
released dataset or model? (2) What extra information or resources is needed to make a
correct inference?

To answer the first question, we take two approaches to analyzing the information leakage:
the attack-based approach and the test-based approach. In an attack-based approach, we
model the inference problem as a game between the adversary and the data owner, and
evaluate privacy risk as the adversary’s advantage or accuracy in inferring the sensitive
information. This approach has been commonly used in different attacks against machine
learning models |7, 8]. Although the attack-based approach provides a clear understanding
on the risk of a specific attack, it often fails to give a whole picture of the general privacy
risk. Therefore, we design the test-based approach to more efficiently understand the risk
of various attacks. Instead of performing the actual attacks, we design light-weighted
hypothesis tests based on statistics used in existing attacks. The test-based approach has
the advantage of being more efficient and more generalizable. This thesis applies both the
attack-based approach and the test-based approach to better understand privacy risk for
different applications. We use the attack-based approach to study privacy risk of machine
learning models under specific adversarial models, and utilize the test-based approach to
design generalizable privacy protection framework for releasing system logs.

To answer the second question, we focus on relaxing assumptions in existing privacy attacks
on machine learning models. First, we study membership inference attacks and property
inference attacks under a black-box adversary model that assumes the adversary can only
interact with the model through its prediction APIs. Then, we propose more pragmatic
adversary models by relaxing the assumptions on the adversary’s knowledge about the training
data distribution, the training model structure, and the attack target. By studying attack
performances under these more pragmatic adversary models, we get a better understanding

on the privacy risk in different real-life circumstances.

1.2 THREE LEVELS OF PRIVACY PROTECTIONS

Based on the understanding on privacy risk, we divide privacy protection into three different

levels with distinct privacy-utility trade-offs.

Level 1: High Utility, Low Privacy Protection. At the first level, we consider data
with high utility requirement and relatively low privacy protection. This type of data often
share the following three properties. First, the data usually have high dimensionality and
heterogeneous data structures. Second, the applications of the data are highly noise-sensitive.
Third, although privacy concerns do exist, there is no single privacy requirement that fits
all the applications. One example is the sharing of system logs. On the one hand, system
contains sensitive information that may leak business secrets or security vulnerabilities. On
the other hand, the availability of system logs from large companies is crucial for researchers
to continually design new systems or improve the performance of existing ones. Therefore,
there is an increasing need of sharing system logs under some privacy protection. Yet, strong
theoretical privacy definition such as differential privacy does not fit the need of protecting
business secrets and cannot achieve desirable level of data utility [9].

For this type of applications, we propose empirical protections to meet the strong utility
requirement while offering some levels of privacy protection. We design various hypothesis
tests to determine whether there is a risk for leaking the sensitive information and only
perform obfuscation if a hypothesis test fails. This approach allows users to avoid unnecessary
utility loss. If there is no strong indication that there is a privacy risk, the user can choose

not to add any privacy protections and share the original data.

Level 2: High Privacy Protection, General Uses. At the second level, we consider
sensitive data that need to be shared for general purposes. For example, datasets containing
personal photos can be used in a wide range of applications including face recognition, human
pose extraction, and mood detection. However, these photos are also extremely sensitive
since they contain a lot of privacy information. To prevent the sensitive information from
being leaked, it is important to ensure that the released data does not reveal identities of
individuals in the dataset. Consequently, we want to ensure a strong privacy guarantee
while preserving the distribution in the original dataset. To achieve these goals, we propose
differentially private data generative framework G-PATE. Our approach leverages generative
adversarial nets to generate data and exploits the Private Aggregation of Teacher Ensembles

(PATE) framework to protect data privacy.

Level 3: High Privacy Protection, Specific Uses. At the third level, we consider
sensitive data that are shared for specific applications. The privacy requirement for this type
of data is two-fold. First, we need a strong theoretical privacy guarantee to protect private
information. Second, we need to prevent the data to be used for unauthorized purposes.

These goals can be achieved by sharing differentially private machine learning models trained

for the desired applications. Compared to training a model on differentially private synthetic
data, ensuring privacy protection on the model often incurs less utility loss. Yet, this approach
relies on differentially private machine learning algorithms for state-of-art models. In this
thesis, we propose differentially private graph convolutional networks (DP-GCN), which is a

powerful tool for graph analysis with strong privacy guarantee.

1.3 THESIS CONTRIBUTIONS AND ORGANIZATIONS

Based on the understanding of pragmatic privacy attacks on machine learning systems,
this thesis proposes a multi-level privacy protection framework to provide different trade-offs
between privacy protection and data utility.

The contribution of the thesis can be summarized as follows:

e We advance the understanding on privacy risks of machine learning models under more

pragmatic adversary models.

e We propose a test-based approach to efficiently estimate the risk of various privacy

attacks and identify potential privacy leakage.

e We design a privacy protection framework that combines data obfuscation techniques
with privacy tests. This framework makes it possible to achieve empirical privacy

protections under strong utility requirements.

e We propose a scalable differentially private data generative model to allow privacy-

preserving data sharing for general purposes.

e We propose the first differentially private graph convolutional network based on node

clustering.

The thesis is organized as follows. In Chapter [2) we present the related work in privacy of
machine learning systems. In Chapter [3|to Chapter 5] we advance the understanding on privacy
risk of machine learning systems with different attacks and measurements. Compared to
existing attacks, our attacks consider more pragmatic adversarial models to better understand
the risk under real-world attackers. In Chapter [6] to Chapter [§, we design three levels of
protection mechanisms to achieve different trade-offs between privacy and utility. Specifically,
in Chapter [6], we propose empirical protections for data with high utility requirement and
relatively low privacy risk. In Chapter [7] we present a differentially private data generator

to assist sharing sensitive data for general uses. In Chapter [§, we consider the sharing of

sensitive data for specific applications and design differentially private GCN models to help
protect privacy in graph analysis. Chapter [J] concludes the thesis.

CHAPTER 2: RELATED WORK

In this chapter, we present the related work in privacy of machine learning systems.

2.1 PRIVACY ATTACKS ON MACHINE LEARNING MODELS

Membership Inference Attacks (MIA). In a membership inference attack, the adver-
sary’s goal is to infer the membership status of a target individual’s data in the input dataset
to some computation. For a survey, the adversary wishes to ascertain, from aggregate survey
responses, whether the individual participated in the survey. For machine learning, the
adversary wishes to ascertain whether the target’s record was part of the dataset used to
train a specific model. A successful MIA is a privacy violation because it indicates that the
target individual is identifiable from the aggregated statistics or models.

One of the first prominent examples of MIA occur in the context of Genome-Wide
Association Studies (GWAS). The seminal work of Homer et al. [10] show that p-values, a
type of aggregated statistics routinely published when reporting the results of studies, could be
used to successfully infer membership status. The experiment is performed on 86 individuals,
all of which can be identified with little false positives. Although this attack requires that the
adversary know the genome of the target individual, it teaches an important lesson: seemly
harmless aggregate statistics may contain sufficient information for successful membership
inferences, which leads to re-identification of individuals in the study. As a consequence of
this attack, NIH removed all aggregate data of GWAS from public websites [11].

More recently, it was shown that machine learning models are vulnerable to black-box
membership inference attacks. Shokri et al. [7] cast the attack into a classification problem
and show that an attack classifier can infer record membership with a precision of 93.5%,
when the target model is overfitted and has a testing accuracy around 65%. Hayes et al. [12]
show that similar attacks are possible on generative target models, and Salem et al. [13]
show that the attacker can also succeed only with access to data drawn from a different

distribution and without knowledge of the target model structure.

Property Inference Attacks. Property inference attacks on ML models were first formu-
lated by Ateniese et al. [I4]. The work proposed a white-box attack based on a meta-classifier
that takes model parameters as features and predicts whether the target model has the
property P or not. The attack is shown to be effective on Support Vector Machine (SVM) and
Hidden Markov Models (HMMs). Ganju et al. [§] extended the attack to Fully-Connected

Networks (FNNs) by improving the meta-classifier. Both attacks assume that the adver-
sary has white-box access to the target model and can obtain data drawn from the same

distribution as the training dataset.

Other Attacks on ML Models. Besides property inference attacks and membership
inference attacks, ML models are shown to be vulnerable to a variety of attacks. Model
inversion attacks [15, [I6] infer the missing features based on the class label of a record.
Model extraction attacks [17, I8, 9] infer the parameters or hyper-parameters of the target
model based on its predictions on a set of queries. Adversarial attacks [20] 21], 22] trick ML
models to give wrong predictions with high confidence by perturbing the queries. Poisoning
attacks [23], 24], 25] inject malicious records to the training dataset to make ML models make

wrong predictions.

2.2 DIFFERENTIAL PRIVACY AND RENYI DIFFERENTIAL PRIVACY.

Differential Privacy (DP). Proposed by Dwok et al., differential privacy [6] formalizes

the vague concept of privacy into a provable property.

Definition 2.1 ((g, §)-Differential Privacy). A randomized algorithm M with domain NI
is (e, 0)-differentially private if for all S C Range(M) and for any neighboring datasets D
and D"

Pr[M(D) € 8] < exp(e) Pr[M(D') € §] + 6. (2.1)

DP guarantees privacy protection against an attacker with precise knowledge about the
input dataset and all the entities in the universe except for the target individual. Follow-up
works on DP try to relax the background knowledge by building more realistic background
knowledge models [26], 27, 28, 29 B0]. Most of these relaxations can be unified under the
framework of membership privacy [31], which shows that protecting private information
is equivalent to preventing an attacker from knowing whether an individual is included in
the input dataset. Specifically, DP is shown to be equivalent to membership privacy with
mutually independent distributions. Other extensions on DP enhances protections on outliers

in a data set while relaxes protections on the remaining examples [32], 33].

Rényi Differential Privacy. Rényi differential privacy is a natural relaxation of differential

privacy. Defined below, its privacy guarantee is expressed in terms of Rényi divergence.

Definition 2.2 ((\,¢)-RDP). A randomized mechanism M is said to guarantee (A,)-RDP
with A > 1 if for any neighboring datasets D and D',

(Pr[M(D) =])H] <e (2.2)

Dy (M(D)|M (D)) = Pr M (D') = z]

10g EzNM(D)

1
A—1
(A, £)-RDP implies (g4, 0)-differential privacy for any given probability ¢ > 0.

Theorem 2.1 (From RDP to DP). If a mechanism M guarantees (A, e)-RDP, then M

log1/6
A—1

guarantees (e + ,0)-differential privacy for any § € (0,1).

Compared to DP, RDP supports easier composition of multiple queries and clearer privacy
guarantee under Gaussian noise. Specifically, RDP could be easily composed by adding the
privacy budget:

Theorem 2.2 (Composition of RDP). If a mechanism M consists of a sequence of My, ..., My
such that for any i € [k], M, guarantees (), &;)-RDP, then M guarantees (A, S.F_, &;)-RDP.

Suppose f is a real-valued function, and the Gaussian mechanism is defined as follows:
G, f(D) = f(D)+ N (0,0%), (2.3)

where N (0, 0?) is normally distributed random variable with standard deviation o and mean

0. The Gaussian mechanism provides the following RDP guarantee:

Theorem 2.3 (RDP Guarantee for Gaussian Mechanism). If f has sensitivity 1, then the
Gaussian mechanism G, f satisfies (A, N/ (202))-RDP.

Differentially Private Data Synthesis. Recently, various approaches have been pro-
posed for differentially private data generation. Priview [34] generates synthetic data based
on marginal distributions of the original dataset, and PrivBayes [35] trains a differentially
private Bayesian network. However, these approaches are not suitable for image datasets
since the statistics they use cannot well preserve the correlations between pixels in an image.
Both DP-GAN [36] and PATE-GAN [37] apply differential privacy to the training process of
generative adversarial networks (GAN). They both ensure differential privacy while training
the discriminator, and the privacy property of the generator is guaranteed by the post

processing property of differential privacy [38].

2.3 EMPIRICAL PRIVACY PROTECTION MECHANISMS

Log Anonymization. Prior studies have proposed various methods to hide user-identifiable
information in logs. These studies can be classified into two categories: log anonymization and
encryption. Log anonymization refers to the process of removing or redacting user identifiers
in system logs. For example, there has been extensive research on IP anonymization [39] 40, 41]
42, 143], 44], ranging from truncating all IP addresses to prefix-preserving pseudonymization [43],
44). Similarly, studies on timestamp anonymization has shown that it’s possible to convert
timestamps into relevant timestamps, which hide the exact time of the events but preserve the
orders |45, 46]. On the other hand, some research has studied the use of encryption mechanisms
in log privacy. Encryption methods, such as searchable encryption, can hide sensitive

information in logs while allowing the administrator to do certain analysis [47, 48, [49] [50].

Data Obfuscation. Data obfuscation is a mechanism to protect privacy by adding mis-
leading, false, or ambiguous information |51, 52]. For example, Sweeney [5] proposed the
use of generalization and suppression to hide identifying information in a dataset contain-
ing person-specific records. Bakken et al [53] designed a set of obfuscation primitives and
proposed properties to quantify the usefulness and privacy of the techniques. Some data
obfuscation techniques such as generalization and suppression could be used to obfuscate

logs.

Cryptographic Indistinguishability Obfuscation. Cryptographic indistinguishability
obfuscation is a cryptographic primitive that provides a formal notion of program obfuscation.
It requires that the obfuscation of two equivalent circuits Cy and C; should be computationally
indistinguishable [54]. This property can be guaranteed by algebraic hardness assumptions [54]

or the security of other cryptographic primitives such as public-key functional encryption [55].

2.4 TRADE-OFFS BETWEEN PRIVACY AND UTILITY

There has been a long-lasting discussion around the trade-off between privacy and utility.
In differential privacy, privacy and utility are distincted based on whether the information is
about specific individuals or large populations [6]. A privacy budget € is used to quantify the
privacy cost and to balance the trade-off between utility and privacy. Following differential
privacy, various privacy notions have been proposed to provide different ways to trade-off
privacy for utility. For example, membership privacy [31] quantifies privacy risk as the

adversary’s ability to infer whether an entity is in the input dataset. It generalizes differential

privacy by supporting different distirbution families to instatiate the privacy definition, and
differential privacy is equivalent to membership privacy under all mutually independent
distributions. Blowfish privacy [56] extends differential privacy with a policy that specifies the
information that must be kept secret and the constraints that may be known about the data.
Compared to differential privacy and its extensions, this thesis balance the privacy-utility
trade-off on a more general level. Specifically, we consider two questions: (1) what privacy
protection criteria should be applied and (2) what data should be shared. Based on these
two questions, we divide applications into three levels with different privacy and utility

requirements and propose different solutions for each level.

10

CHAPTER 3: A PRAGMATIC APPROACH TO MEMBERSHIP
INFERENCES ON MACHINE LEARNING MODELS

In this chapter, we revisit membership inference attacks from the perspective of a more
sophisticated pragmatic adversary who carefully selects targets and make predictions conser-
vatively. We design a new evaluation methodology that allows us to evaluate the membership
privacy risk at the level of individuals and not only in aggregate. We experimentally demon-
strate that highly vulnerable records exist even when the aggregate attack accuracy is close
to 50% (baseline). This chapter is based on joint work with Lei Wang, Diyue Bu, Vincent
Bindschaedler, Xiaofeng Wang, Haizu Tang, Carl A. Gunter, and Kai Chen [57].

Recent progress on machine learning has led to technological innovations for applications
such as autonomous driving, face recognition, and natural language processing. But it has
also uncovered new privacy threats. For example, in a Membership Inference Attack (MIA),
an attacker queries a machine learning model in order to infer whether a specific target record
was part of the training dataset.

Although seemly benign, inferring an individual’s membership in a dataset or participation
in a study can have serious privacy implications. For example, if the machine learning model
was trained using medical records of patients suffering from a sensitive medical condition
(e.g., cancer) then a successful membership inference may be devastating as it could reveal
medical conditions an individual suffers from. A different way of conceptualizing membership
inference is as a kind of re-identification attack from aggregated information (here the machine
learning model). Viewed this way, as suggested in [58], protecting membership information is
critical.

Recently, Shokri et al. [7] demonstrated the first MIA on classification models using
only black-box access. This spurred further research into MIAs in a machine learning
context [12) 13, [59]. In addition, some defensive measures have been proposed by Nasr et
al. [60]. Despite this promising new research, there are always concerns about whether MIA
indicate serious risks for widely used machine learning models. The concerns are two-fold.
First, some prior MIAs require the adversary to have control of the training algorithm [61], 59],
which may not always be realistic in practice. Second, despite recent work [7], 12 [13, [59] on
MIA, it remains unclear what it means for MIAs to be successful and what is the actual
privacy risk. For example, what does it mean for an adversary to achieve 80% accuracy in an
MIA? What information does he learn about each individual in the dataset? What if the
MIA achieves only 51.7% accuracy?

In this chapter, we make a step towards answering these questions by rethinking what

11

it means for a MIA to be successful from an adversary’s point of view. We argue that the
methodology used by prior work provides an incomplete picture. This can be understood
as follows. For example, (in one case) prior work [7] reports an attack accuracy of 51.7%
(whereas the random guessing baseline is 50%). This unequivocally demonstrates the existence
of successful MIAs but does little to elucidate the actual privacy risk because it is compatible
with two vastly different scenarios: (1) 1.7% of individuals having their membership status
permanently and unequivocally at risk and the other 98.3% being safe; and (2) all individuals
having a probability of 0.517 (instead of 0.5) of having their membership status correctly
guessed (and anything in between these scenarios). As a privacy violation, the first scenario
is arguably much more serious.

Prior work considers an indiscriminate adversary whose attack success is averaged over all
targets, without regard to the cost of false positives or negatives. In contrast, we consider a
pragmatic adversary who carefully selects targets based on their (perceived) vulnerability to
membership inference and attempts to minimize false positives by trading off coverage for
precision. We argue that such a conservative adversary is more realistic — and thus more
reflective of the true privacy risk — because in the real world there is often a cost for making
false accusations, thus making such an adversary value correct positive inferences more than
correct negative inferences.

We propose novel attacks that better match this setting and allows us to distinguish
between two critical aspects of membership inference: (a) the attacker’s success averaged
over targets, and (b) the attacker’s success for a specific target averaged over the random
idiosyncrasies of the model’s training data and choices during training (e.g., initial random
weights values). From a privacy perspective, both (a) and (b) should be minimized by
prospective defenses. In fact, the only existing defense with provable privacy guarantee, i.e.,
differential privacy [62], puts a tight bound on both. In contrast, prior work has only focused
on (a) thus providing an incomplete picture of the privacy risk. Indeed, our study reveals
that a pragmatic adversary can achieve high precision (e.g., 95.05% on MNIST) in cases
where prior work’s methodology implies only barely above-the-baseline accuracy (i.e., 51.7%).
It is worth noting that such findings occur even when the machine learning model is not
overfitted, a setting for which prior work on black-box MIA reports significantly lower risk of

membership privacy violation.

3.1 ADVERSARY MODEL

We consider an adversary mounting a MIA against already trained machine learning models.

We assume that the adversary has black-box access to the target models, i.e., he can issue

12

arbitrary queries and retrieve the answers (e.g., the probability vector) from the models; the
number of queries, however, may be limited.
In this section, we formulate the attack model used in prior MIAs as the indiscriminate

attack and propose our more sophisticated attack model named pragmatic attack.

3.1.1 Indiscriminate Attack

In an indiscriminate attack, an attacker performs the attack over a set of randomly picked
records, and the attack advantage is evaluated over all the records. Let D be a set of
records, and A be the training algorithm. The attack could be described as the following

distinguishing game between a user and an adversary:

1. The user randomly splits D into a training set Siyaj, and a testing set Siest of the same

size.
2. The user trains a model M = A(Siain). The adversary has black-box access to M.
3. Vre D, x, =1if r € Sizain, otherwise z, = 0.
4. Vr € D, the adversary obtains a guess z,. € {0,1}.

5. Vr € D, the adversary succeeds if z/. = x,., otherwise the adversary fails.

The adversary’s probability of success p is calculated as the number of successes of the
adversary divided by the number of records in D. Prior work on MIA have used two metrics to
evaluate the performance of an indiscriminate attack: the attack accuracy and the adversary
advantage. In most attacks |7, [13], the attack performance is evaluated by the attack accuracy,
which equals to the probability of success p. In addition, Yeom et al. [59] defined the adversary
advantage as the probability of winning the distinguishing game over random guessing, and

the advantage is calculated as 2p — 1.

3.1.2 Pragmatic Attack

Although the indiscriminate attack model has been widely adopted in prior attacks and
defenses, it ignores the potential influence of the cost of attacks and false positives. In this
chapter, we consider a pragmatic attack, where the adversary carefully selects attack targets
and tries to minimize false positives. Let D be a set of records, and A be the training

algorithm. We formalize the attack process as the following distinguishing game:

13

1. The adversary chooses a target » € D.

2. The user randomly splits D into a training set Sty and a testing set Siest of the same

size.
3. The user trains a model M = A(Siain). The adversary has black-box access to M.
4. x, = 1if r € Siam, otherwise x, = 0.
5. The adversary produces a guess z!. € {1, L} and performs an attack only if 2/, = 1.
6. If /. = 1 and x, = 1, the adversary succeeds. If 2/ = 1 and x, = 0, the adversary fails.

We repeat steps (2)-(6) to estimate the adversary’s probability of success on the target record
r over the randomness of sampled training set Si.;, and the training algorithm A.

Pragmatic attacks are different from indiscriminate attacks in two aspects. First, instead of
naively attacking all the records, a pragmatic adversary carefully selects the attack targets to
avoid wasting time and resources on records that are unlikely to be vulnerable to membership
inferences. The process of target record selection greatly reduces the chance of making false
predictions and increases the probability of success. Second, a pragmatic adversary tries to
minimize false positives because there is often a high cost for making false accusations. In a
pragmatic attack, an adversary makes a positive inference (i.e., /. = 1) only if she has high
confidence that the target record is in the training dataset, otherwise she makes no inferences
(e, x,. = 1).

We define two metrics to evaluate the performance of the attack: (1) the precision of the
attack is the probability of success among all the positive inferences (i.e. Pr[z, =1 | 2. = 1]);
(2) the coverage of the attack is the probability of making a positive inference when the
target record is in the training dataset (i.e. Pr[z/ =1 |z, =1]). We evaluate the attack
precision and coverage of each target record over the randomness of the training algorithm
and sampling of training dataset.

The adversary makes a false positive inference when z/. = 1 and z, = 0. False positives are
often associated with high cost and could reduce the adversary’s credibility, so a pragmatic
adversary attempts to minimize the number of false positives and maximize the attack
precision. On the contrary, the adversary makes no inferences when z/. = 1, so a low coverage
does not incur extra cost for the adversary. Therefore, it is acceptable to have a relatively

low attack coverage.

14

Target Model 1

0 in
X ¥ -
Slpgd ©
a® Vulnerable Records (] () @ Membership Al | Target Model 2
-.‘ Selection -‘ Infe‘r:ance =
Target Records Vulnerable Records
l@uery Models Model e o Target Model 3
Predictions Target Model 4
Target Model 5
Target Models
Step 1: Select vulnerable records Step 2: Identify vulnerable models Step 3: Infer positive membership with
trained on target records high confidence

Figure 3.1: Attack Overview.

3.1.3 Adversary Knowledge

Similar as the previous work [7], we further assume that the adversary either (1) knows
the structure of the target model (e.g., the depth and the number of neurons each layer of
the neural network) and the training algorithm used to build the model, or (2) has black-box
access to the machine learning algorithm used to train the model. We also assume that the
adversary has some prior knowledge about the population from which the training records are
drawn. Specifically, the adversary can access a set of records that are drawn independently
from that population, which may or may not overlap with the actual training data for the
target models; but the adversary does not have any additional information about whether
these records are present in the training data. These records can often be obtained from

public dataset with similar attributes or from previous data breaches.

3.2 PRAGMATIC MEMBERSHIP INFERENCE ATTACK

3.2.1 Attack Overview

The goals of our attack are different from the goals of an indiscriminate attack in two
aspects: (1) the adversary is only interested in positive membership inferences because
positive membership information is more valuable to the adversary and more risky to the
users. Positive membership inference allows the adversary to associate public available
information (i.e., the machine learning models) with some identifiable auxiliary information
(i.e., the record of an individual known to the adversary). Because this association is similar

to re-identifying individuals in an anonymized dataset, positive membership inference attack

15

has been considered as a type of re-identification attack in prior work [58]. Moreover, given a
correct positive membership inference, the adversary knows that the individual is a participant
of a study, which may further leak more information about that individual. (2) The adversary
wants to re-identify individuals in the training dataset with high precision because false
inferences can be costly. Around these goals, we design a three-step pragmatic attack as
shown in Fig. 3.1l Below, we briefly explain each step of the attack.

Step 1: Selecting Vulnerable Target Records In an overfitted model, almost all
records are vulnerable to MIA| so a indiscriminate attack can achieve high accuracy. However,
when the model is well-generalized, the model gives similar predictions to members and
non-members of the training dataset. Therefore, identifying vulnerable target records is the
key to an effective pragmatic attack. First, we select vulnerable records by estimating the
number of neighbors they have in the the sample space represented by the records available
to the adversary. Records with fewer neighbors are more vulnerable under MIA because
they are more likely to impose unique influence on the machine learning models. In order
to identify neighbors of a given record, we train reference models to imitate the behavior
of target models. We further construct a new feature vector for each record based on the
intermediate outputs of reference models on this record, which implies this record’s influence

on the target machine learning model.

Step 2: Identifying Vulnerable Models Next, we query the target models and identify
the models that are trained on target records. Specifically, we design two attack methods
distinguished by their queries to the target models: A direct inference attack infers the
membership of a target record based on the model’s prediction on that record; an indirect
inference attack infers the membership of a target record based on the record’s influence on
the model’s predictions on seemingly uncorrelated records (called enhancing records). We
use novel techniques that iteratively search for and select enhancing records. Our indirect
inferences using the enhancing records can successfully infer the presence of a target record
without querying it. Moreover, the indirect inferences sometimes outperform direct inferences
by accumulating more information from multiple queries. Note that although we design and
evaluate our attack with multiple target records and target models, in practice, the adversary

may choose a single target model or a single target record to attack.

Step 3: Inferring Positive Membership Finally, we make positive membership inference
over the combinations of all target records and target models. Since there is often a high

cost when making incorrect inference, we only infer a target record to be in the target model

16

Last layer’s output before Softmax function

Hidden

7\ ! Softmax
S () ' Function
| 7

Figure 3.2: Last layer output of a two-layer neural network. We use the last layer output of
locally trained nueral networks as features for vulnerable record selection.

if the predictions of the model indicate a high probability of success in the attack. We use
hypothesis testing methods to make the decision: under the null hypothesis the record is not
present in the training dataset; under the alternative hypothesis the target record is in the
training dataset. We reject the null hypothesis when the p-value is smaller than a cut-off
threshold.

3.2.2 DBuilding Reference Models

We exploit a target record’s unique influence on the outputs of a machine learning model to
infer the presence of the record in the training set of the target model (called target training
set). To identify such influence, we need to estimate the model’s behavior when the target
record is not in the target training set. To achieve this goal, we build reference models, which
are trained using the same algorithm on reference datasets sampled from the same space
as the target training set, but not containing the target record. The process of building
reference models are illustrated below.

To start with, we need to construct k reference datasets with the same size as the target
training set. Since most practical machine learning models are trained on large training
datasets, it is difficult for an adversary to get access to an even larger dataset with k times
records as the target training set. Consequently, if we build the reference datasets by sampling
without replacement from the whole set of reference records, the resulting datasets may share
many records, and the reference models built from them would be alike and give similar
outputs. To address this issue, we use bootstrap sampling [63] to generate the reference
datasets, where each dataset is sampled with replacement. Bootstrap sampling reduces

overlaps among reference datasets, providing a better approximation of datasets sampled

17

Step 1: Use reference models Step 2: Extract the outputs ~ Step 3: Concatenate the outputs
to make predictions on r before Softmax function to generate new features

Reference

Model 1 01
New feature vector for
vulnerable record selection
/ Reference 0o f= [OT, 02 Ok]

Model2 =~ T T YL Ma.

\ Reference o

Model k k

r

Figure 3.3: Features for vulnerable records selection. We concatenate intermediate outputs
of locally trained reference models and use them as features for vulnerable records selection.

from distribution of the target training set. Each reference dataset is then used to train a

reference model using the same training algorithms as used for training the target model.

3.2.3 Selecting Vulnerable Records

Not all training records are vulnerable to MIA. In general, we want to measure the potential
influence of a target record so as to select vulnerable records with the greatest influences
and subject them to MIA in the subsequent steps. It is worth noting that, although the
training records imposing unique influence on the model are often outlier records (i.e., with
distinct feature vectors) in the training set, the outlier records do not always have unique
influence on the model because the training algorithm may decide that some features should
be given higher weights than others and some features should be combined in the model.
For example, a neural network trained on hand written digit datasets learns the contour of
written digits is more important feature than individual pixels [64]. Therefore, instead of
using the input features, we extract high level features more relevant to the classification
task to detect vulnerable records.

Specifically, when attacking neural networks (e.g., see Figure for a two-layer fully
connected neural network), we construct new feature vectors by concatenating the outputs
of the last layer before the Softmax function from the reference models (Figure [3.3)), as the
deeper layers in the network are more correlated with the classification output [65]. We then
measure the unique influences of each record using its new feature vector. Let f be the the
new feature vector of the record r. We call two records r; and ry neighbors if the cosine
distance between their feature vectors f; and f; is smaller than a neighbor-threshold .

Note that the neighboring records are difficult to be distinguished by MIA because they

have similar influence on the model. When a neighbor of r occurs in the training dataset,

18

the model may behave as if r is used to train the model, leading to the incorrect membership
inference result. Our goal is to select the vulnerable records in the entire record space with
fewer or no neighbors likely to be present in the training set (assuming the training records
are independently drawn from the record space) as putative targets of MIA.

Given a training dataset with N records and a reference dataset with N’ records, both
sampled from the same record space, and a target record r, we count the number of neighbors
of r in the reference dataset, denoted as N,. Then, the expected number of neighbors of r in
the training dataset, N,,, can be estimated as E [N,] = N/ x NW/

A record r is considered to be potentially vulnerable (and as the attack object), only
if E[N,| < B, where § is the probability-threshold for target record selection. We stress
that the approach for vulnerable records selection presented here relies only on the record
space (represented by the reference records accessible by an adversary) and the reference
models (built using reference records), and is independent of the target model; as a result, the

computation can be done off-line even when used to attack a machine learning as a service

(MLaaS).

3.2.4 Direct Inference

In a pragmatic attack, the goal of the adversary is to achieve high precision on the selected
target records instead of achieving high accuracy over all records. Therefore, we attack each
target record separately by computing the deviation between its output given by the target
model and those given by the reference models. We expect that each training record has
a unique influence on the model, which can be measured by comparing the target model’s
output with the output of reference models (trained without the target record) on the record.
We quantify the difference between the outputs using the log loss function. Given a classifier
M and a record r with class label y,, let p,, be M’s output probability of class label y,. The
log loss function [66] £ (M, r) is defined as:

L(M,r)=—logp,,. (3.1)

The log loss function is commonly used as a criterion function [66] when training neural
network models. £ (M, r) is small when M gives high probabilities on correct labels.

Given a target model M, a target record r, and k reference models, we first obtain the
log loss of all the reference models on r as Ly, Lo, ..., Li. We view these losses as samples
independently drawn from a distribution D(L), and estimate the empirical cumulative
distribution function (CDF) of Dy, as F/(L), which takes a real-valued loss L as input. We

19

, Selected
Random Record Record Enhancing Enhancing

Generation * Clustering Record Selectionr_rr_x_,,_ _— Records

- ~—

l Not Selected

Enhancing Record
— Optimization

Figure 3.4: Steps for generating enhancing records.

use the shape-preserving piecewise cubic interpolation [67] to smooth the estimated CDF.
Based on the log loss of the target model M on the target record r, £ (M, r), we estimate the
confidence of r to be present in the training set by performing a left-tailed hypothesis test:
under the null hypothesis Hy, r is not present in the training set (i.e., £ (M, r) is randomly
drawn from D(L)), while under the alternative hypothesis r is used to train M (i.e., £ (M,r)
is smaller than samples in D(L) because of the influence of r in the training). Therefore, we
calculate the p-value as:

p=F(L(M,7), (3.2

which gives the confidence that r is used for training M only if p is smaller than a threshold

(e.g. 0.01) so that the null hypothesis is rejected.

3.2.5 Indirect Inference

Besides reducing a model’s loss on its own, a training record also influences the model’s
outputs on other records. This influence is desirable to improve model generalization: in
order to give correct predictions on unseen records, a model needs to use the correlation
it learns from a training record to make predictions on queries with similar features. On
the other hand, however, these influences can be exploited by an adversary to obtain more
information about the target record through multiple queries to enhance MIA. Interestingly,
we show that MIA can be achieved by queries of records seemingly uncorrelated with the
target record, making the attack hard to detect and defense.

The key challenge for inference without querying the target record is to efficiently identify
the enhancing records whose outputs from the target model are expected to be influenced by

the target record. To address this problem, we develop a method consisting of the following

20

Update reference models

Reference Reference Model
Model w/ Target

Batches
w/ Target

Figure 3.5: Building positive reference models by updating the model with the training set
including the reference records plus the target record.

steps: random record generation, record clustering, enhancing record selection, and enhancing
records optimization (as shown in Figure [3.4)).

Random Record Generation To start with, we randomly generate records from which
the enhancing records are selected. Specifically, we adopt one of the following two methods for
random record generation: (1) when the feature space is relatively small, we uniformly sample
records from the whole feature space; (2) when the feature space is large, since the chance
of getting enhancing records by uniform sampling is slim, we generate random records by
adding noise to pre-selected vulnerable target records. We use Gaussian noise for numerical

attributes and candle noise [68] for categorical attributes.

Enhancing Record Selection To identify records whose target model’s output may be
influenced by the target record r, we approximate the target model’s behavior using a group
of positive reference models that are trained using reference records plus the target record
r. To save the effort of retraining the positive reference models, we add the target record
into batches sampled from the original reference dataset and update the reference models
by training on the batches plus the target record. Figure shows the process of updating
reference models.

We select the enhancing records by comparing the predictions between the positive reference
models (i.e., “in models”) and the original reference models (that are trained without the
target records, i.e., “out models”). We denote the ith original and the ith positive reference

model as M., and respectively. Given a record r with class label gy, and another

r
refi ?

arbitrary record ¢, let M (q,y,) be the model M’s output probability of y,. on the query q.

21

We calculate r’s influence on ¢q as follows:

k
1) = 1 0 (M (0,) = M (4:02)) 3.3

=1

where k is the total number of original (or positive) reference models, and t is a threshold

function defined as follows:

b (2) = 1 if x>0, (3.4)

0 otherwise.

Algorithm 3.1 Enhancing Records Selection Algorithm

I(r,q) < iy t (M, (,9r) = Mues, (g,00)) /&
if [> 0 then
Accept ¢
else
Reject ¢
end if

We identify a randomly generated record ¢ as an enhancing record for the record r if I(r, q)
approaches 1, which indicates that adding r to the training dataset almost always increase
the models’ output probability on the class label y, for the query ¢. In practice, we use g
in the MIA on the target record r only if I(r,q) is greater than a threshold 6 (e.g. 0.95).
Algorithm summarizes the entire algorithm for query selection.

Enhancing Record Optimization When the target model has a large record space (e.g.,
with high-dimension feature vectors), the chance of finding an enhancing record among
randomly generated records is slim. To address this issue, we propose an algorithm to search

for enhancing records for a target record r by optimizing the following objective function:

max [(r,q), (3.5)

q

where [(r,q) is the influence function defined in Equation [3.3] Optimizing I (r,¢) is time-
consuming because I (r,q) consists of a non-differentiable threshold function t. Therefore,
instead of solving the optimization function in equation 3.5 For simplification, we approximate

the maximization of I (r,q) with the minimization of the sum of multiple hinge loss functions

22

Step 1: Use reference models to make Step 2: Concatenate the prediction vectors
predictions on a random query q from all reference models

Reference

Model 1 > b1 \
Feature vector
for query selection
; Reference

Model 2 P2 ——fq = [p1,p2....PK]

\ Reference

Model k Pk

g

Figure 3.6: Generating query features for query selection.

defined as follows [69]:

k
mqinz max (O, v — (M:efi (Q, yr) — Myt (Q7 yr)))) (3‘6)
i=1

where v is a parameter indicating the margin width. If a randomly generated record are
rejected by the query selection algorithm, we minimize the objective function in Equation
using gradient descent [70] to check if the resulting record is acceptable as an enhancing

record.

Record Clustering (Optional) Note that it is inefficient to repeat the query selection
and optimization algorithms on all random records because the predictions of the models
on most records are highly correlated: the models giving high output probabilities on some
record are also likely to give high output probabilities on correlated records. To improve
the efficiency of query selection, we propose an algorithm to identify the least correlated
enhancing records from a large number of randomly generated records.

First, we estimate the correlation between records based on the model’s predictions on
them. We construct a feature vector f; for a record ¢ by concatenating the reference models’
outputs on it (Figure . If two queries ¢; and ¢, have highly correlated feature vectors,
the models’ outputs on ¢ do not add much information to the models’ outputs on ¢;.

Next, we formulate the problem of selecting a subset of least correlated records as a graph
theoretical problem. We build a graph where records are the nodes and pairwise correlation
between records is the weight on edges connecting the corresponding nodes. This allows us
to recast our problem as the k-lightest subgraph problem [71], which is NP-hard. We obtain
an approximate solution using hierarchical clustering [72]. For this, we cluster the records

into k disjoint clusters based on their pairwise cosine distance. Finally, in each cluster, we

23

select the record with least average cosine distance to all other records in the same cluster.

As shown in Figure [3.4] we use the enhancing record clustering algorithm before the
enhancing record selection and enhancing record optimization steps to improve the efficiency
of the attack.

Indirect Inference with Multiple Queries After identifying multiple enhancing records,
we repeat the attack in section by querying each of these records. Because the outputs on
these queries may be correlated, we combine the resulting p-values using Kost’s method [73],

with the covariance matrix estimated from the query features generated in the query selection

step (Figure [3.6).

3.3 EVALUATION

3.3.1 Experimental Setup

We evaluated the performance of our attack from the following three aspects: the precision
of the attack, the coverage of the attack, and the effectiveness of vulnerable record selection
method.

For each dataset, We constructed 100 target models. To get a better understanding of
MIA’s performance, we wanted the baseline precision to be 0.5 for each target record. That is,
each target record should occur in 50 out of the 100 target models. Therefore, we generated
training datasets by randomly splitting the target records into two datasets of the same size,
each serving as a training set for a target model. We repeated this process for 50 times and
generated the training datasets for 100 target models.

The precision of the attack is the percentage of successful inferences (i.e., the target
record is indeed in the training dataset) among all inferences. The coverage of the attack is
the percentage of successful inferences among all the cases that the target record is in the
training set (i.e. 50 times the number of records). In practice, a high precision is often more
important than a high coverage because there is usually a high cost associated with making
false inferences.

We define true positive (TP) to be the case that the target record is indeed in the training
dataset when the adversary inferred it as in and false positive (FP) to be the case that the
target record is not in the training dataset when the adversary inferred it as in. We evaluate
the effectiveness of our vulnerable record selection method by looking at the true positives

and false positives of each vulnerable record under different selection criteria.

24

e
ot
o 8
]
26
n
v 4
he]
o
E2
=
=]
0
0.00 0.25 0.50
p-value

. in
s out

0.75 1.00

(a) p-values for all records in

of models per record

1.0
EE in ‘ . - .,
40 = out 0.9 .Oo~
2 0.8
w0
0
20 v 0.7
o
0.6
0 0.5 T T T T
0.00 0.25 0.50 0.75 1.00 0.6 0.7 0.8 0.9
p-value Coverage

(b) p-values for selected

(c) attack performance on

MNIST records in MNIST MNIST

sl in

S out
g i) 1.0
g6 S . in
= g - out 09
] b7 10 c -
o4 a c0.8
i ") {4 .
S o 807 .
o 2 o 5 o . v ..
E E 0.6
Y g .
5] o
#0 # 0 0.5 T T -

0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00 0.05 0.10 0.15
p-value p-value Coverage

(d) p-values for all records in (e) p-values for selected (f) attack performance on

Adult records in Adult Adult
- ° 1.0
- o H
S 10.0 = in 3 15 B in 091,
v = out = B out .
- 75 @ 5 .
g 210 So08y ., . .
2 50 5]
z > 3 o7 . ¢
3 S 5 o
E 25 1S 0.6
Y- Y
o o
0 0.5 . ‘ : ‘
* 0%080 o025 050 075 1.00 0.00 025 050 075 1.00 0.05 010 015 020
p-value p-value Coverage

(i) attack performance on
Cancer

(h) p-values for selected
records in Cancer

(g) p-values for all records in
Cancer

Figure 3.7: Evaluation of MIA on Adult dataset. In (a), (d), and (g), we performed
hypothesis testing on all records over 100 target models. There was no significant difference
between the distributions of p-values for models trained with the target record (labeled “in”)
and models trained without the target record (labeled “out”). This result indicates that the
attack cannot achieve high precision without the step of vulnerable record selection. In (b),

(e), and (h), we performed the same hypothesis testing on the selected vulnerable records
over 100 target models. Our attack was effective because there was a distinction between the
p-value distributions of “in" models and “out” models. Most models with a small p-value were

models trained with the target record (i.e. “in” models). (c¢), (f), and (i) show the varying
precision and coverage with cut-off p-value ranging from 0.005 to 0.05. Our attack focused
on achieving high attack precision because false accusations can be costly for attackers.

25

+ @=0.1, p=0.1
+ @=0.05, B=0.1
s+ @=0.1,B=05

. .
10.0 x
v v 10 a
> > Q
=] = v Z 75
= = b=]
& 8 v g v
o v 5 t 5.0 * v
2 2 3
2
= = . F 25
v v
0 0.
0 20 40 0 5 10 %% 2.5 5.0 7.5 10.0

False Positive

(b) Adult Dataset

False Positive

(a) MNIST Dataset

False Positive

(c) Cancer Dataset

Figure 3.8: Effectiveness of vulnerable record selection in a pragmatic attack. We evaluated
the effectiveness of vulnerable record selection by plotting the number of true positive
inferences and false positive inferences of each selected record. Each point in the figure

represents a target record. Points can overlap because the attack can have the same

performance on different records. For each target record, the attack was performed over 100

target models (50 “in” models and 50 “out” models). Records selected under different criteria

were plotted with different colors and shapes. Records with cosine distance smaller than «
were considered as neighbors.

3.3.2 Dataset

UCI Adult The UCI Adult dataset [74] is a census dataset containing 48,842 records and
14 attributes. The attributes are demographic features and the classification task is to predict
whether an individual’s salary is above $50K a year. We normalized the numerical attributes
in the dataset and used one hop encoding [75] to construct the binary representation of
categorical features. We randomly selected 20,000 records for training target models, and
each training dataset contains 10,000 records. The remaining 28,842 records served as the

adversary’s background knowledge.

UCI Cancer The UCI cancer dataset [74] contains 699 records and 10 numerical features
ranging between 1 to 10. The features are characteristics of the cell in an image of a fine
needle aspirate (FNA) of a breast mass. The classification task is to determine whether
the cell is malignant or benign. We randomly selected 200 records for training, and each
training dataset contains 100 records. The remaining 499 records served as the adversary’s

background knowledge.

MNIST Dataset The MNIST dataset [76] is an image dataset of handwritten digits
with 60,000 handwritten training examples and 10,000 testing examples. The images are

normalized such that the digits are positioned at the center of the 28x28 pixel field. The

26

classification task is to predict which digit is represented in an image. We randomly selected
20,000 images for training and 40,000 images as the adversary’s background knowledge. Each
training set for target models and reference models contains 10,000 images. We used the

10,000 testing images to calculate testing accuracy.

3.3.3 Models

Neural Network For the Adult dataset, we constructed a fully connected neural network
with 2 hidden layers with 10 units and 5 units respectively. We use Tanh as the activation
function and SoftMax as the output layer. The model is trained with batchsize of 100 and
20,000 epochs. For the MNIST dataset, we constructed 2 convolutional layers with ReLu as
the activation function, followed with max pooling layers. We then added a fully connected
layer of 1,024 neurons, and we also used dropout techniques to reduce overfitting. Finally,
we added an output layer and a Softmax layer. The model is trained with batchsize of 50
and 10,000 epochs. For the Cancer dataset, we used a vanilla neural network with no hidden
layer. The model is trained with batchsize of 10 and 3,000 epochs.

Google ML Engine Since the Google Predictions API used in the prior attack is depre-
cated, we used Google ML Engine to train target models on ML cloud. When training the
model, we used the sample code provided by Google, which has pre-built model structures
for training models on Adult dataset and MNIST dataset. Specifically, for Adult dataset, the
sample code uses Google estimator [77] which hides low-level model structure from the user;
for MNIST dataset, the sample code builds a neural network with 2 fully-connected hidden

layers.

3.3.4 Direct Inference

We evaluated the performance of direct inferences by their precision and coverage on
different datasets and models. We set a fixed vulnerable record selection criterion for each
dataset. The neighbor threshold o was 0.2, 0.4, and 0.1 for MNIST, Adult, and Cancer
respectively. This threshold represented the maximum cosine similarity between neighbors.
Records with cosine similarity smaller than « were considered as neighbors. Therefore,
this threshold varied for different datasets depending on the dimensionality of records. We
evaluated the influence of this threshold later in this section. We selected records with
probability threshold g = 0.1. That is, the likelihood that a neighbor of the record occurs in

the training dataset was smaller than 0.1.

27

Dataset (Model) V;{lenctzrfdb;le Precision | Coverage
MNIST 27 95.05% 66.89%
Adult 13 73.91% 5.23%
Cancer 5 88.89% 3.20%
MNIST (Google) 1 100% 4%
Adult (Google) 7 80% 2.67%

Table 3.1: Performance of Direct Inference. We measured the performance of a direct
inference attack by its precision and coverage. To achieve a high precision, we selected a few
vulnerable records (neighbor threshold o = 0.2 for MNIST, 0.4 for Adult, and 0.1 for Cancer;
probability threshold § = 0.1), and made positive inferences only when attack confidence is

high (p < 0.01).

Dataset (Model) g‘ralmng Testing
ccuracy | Accuracy
Adult 0.85 £ 0.01 0.85
Cancer 0.95+£0.04 | 0.94 £0.03
MNIST 0.99 0.98
Adult (Google) | 0.84 +0.03 | 0.84 + 0.02
MNIST (Google) 0.90 0.90

Table 3.2: Training and Testing Accuracy of Target Models. All the target models were
well-generalized models with difference between training and testing accuracy smaller than
0.01.

In Fig. we plotted the average number of models per record with different attack
p-values. The models trained with the target records are labeled as “in” and the models
trained without the target records are labeled as “out”. The attack was effective only when
there was a distinction between the p-value distribution of “in” models and “out” models. The
figure shows the necessity of selecting vulnerable records before doing the inferences. When
the attack hypothesis testing was performed on all target records, the p-value distributions
of “in” models and “out” models were indistinguishable. Therefore, the attack was unlikely to
have a high precision no matter what p-value cutoff we selected. On the other hand, when
we performed the same hypothesis testing on the selected vulnerable records, there was a
clear distinction between the p-value distributions of “in" models and “out” models, which
led to successful membership inference attacks.

The cut-off p threshold controls the trade-off between precision and coverage. We would
only make a positive inference if the p-value obtained from the attack is smaller than the
threshold. Since there is a cost for false inferences, we chose small p thresholds in the attack.
In Fig. 3.7, we plotted the different attack precision and coverage obtained by cut-off p

28

label: 5 label: 2 label: 2 label: 8

> 1 7 ¢

label: 8 label: 8 label: 8 label: 8
label: 3 label: 3 label: 7 label: 0
label: 5 label: 3 label: 9 label: 5

E 4 ¢ 5

Figure 3.9: Vulnerable Examples in MNIST Dataset

threshold varying between 0.005 to 0.05.

Our attack mechanism was less effective on the Adult Google ML model since we did not
have access to the exact model structure due to the use of Google estimator. Instead, we
used raw features to select target records. This limitation reduced the number of vulnerable
target records we identified from 13 to 7. However, it also showed that the attack is possible

even when the adversary does not know the model structure.

3.3.5 Selection of Vulnerable Records

The p-value distributions in Fig. shows the importance of vulnerable records selection.
We further explored how this step influenced the attack performance by changing the neighbor
threshold « and the probability threshold 5. Fig. shows the records selected by different
selection thresholds. Each point in the figure represents a target record. Points at the upper
left corner are more vulnerable to MIA than those near the baseline. Smaller neighbor
thresholds or higher probability thresholds increased the number of selected vulnerable target
records. However, as we tried to attack more records at the same time, there was a higher
chance that we would make false positive inferences due to the influence of a record similar
to one of the target records, which decreased the attack precision.

To study what kinds of records are vulnerable, we plotted the vulnerable target records
selected from MNIST dataset with « = 0.2 and 5 = 0.1 (Figure. As we expected, some of
the vulnerable target records are outliers in the dataset. However, some vulnerable examples
actually increase model utility by providing rare but useful features for the classification

task. For example, the images of digit 8 written in different directions may help a model on

29

Dataset| Cut-off Prec. Coverage Prec. Coverage
p-value (direct) (direct) | (indirect) | (indirect)
0.01 - 0 1 14%
Adult 0.1 70.83% 34% 75% 24%
Cancer 0.01 1 6% - 0
0.1 66.67% 52% 88.89% 16%
0.01 96.15% 1 1 2%
MNIST 0.1 89.29% 1 52.38% 22%

Table 3.3: Comparison between direct and indirect inferences. We performed the attack on
the same selected record with direct inference and indirect inference. The result indicates
that membership inference attack is feasible without directly querying the target record. On
Adult dataset, indirect inferences even outperformed direct inferences.

‘Yulnerable record

Enhancing record A

Enhancing record B

Figure 3.10: A vulnerable record from MNIST with its two enhancing records. In practice, it
is difficult to find out what the target record is, by looking at the enhancing records used by
an adversary.

recognizing similar written digits in testing examples. However, since these images are rare
in the dataset, they have a unique influence on the target models, making them vulnerable
to our attack, and the fact that this influence is useful in predicting unseen examples does

not mitigate the risk.

3.3.6 Indirect Inference

For some vulnerable target records, we achieved the same level of attack performance
by querying enhancing records. For each dataset, we randomly sampled 5,000 records,
selected 50 of them by record clustering, and tested them with the enhancing record selection
algorithm. If less than 10 enhancing records were selected, we ran the enhancing record
optimization algorithm to improve the records. The initial records for the Cancer dataset
and the Adult dataset were randomly sampled from the feature space while the records for

the MNIST dataset were generated by adding noise to the target records due to the large

30

Regularization | Training | Test Acc. 7# of Prec. Coverage
Coefficient A\ Acc. Target
Records
0 0.99 0.98 52 90.84% 68.31%
0.001 0.99 0.99 1 54.8%
0.01 0.98 0.98 1 93.36% 4%

Table 3.4: Attack Performance w.r.t. Regularization (o« = 0.2, § =2, p < 0.01). We applied
L2 regularization with varying coefficients A\. Experiment results show that applying
regularization reduced, but did fully eliminate the privacy risk of a pragmatic adversary.

feature space.

We selected 1 target record in each dataset. For the Cancer dataset, we selected 47
enhancing records whose euclidean distance to the target record range between 6 and 19.3 with
a selection criterion I (r,q) > 0.95. Since the Cancer dataset has relatively low dimensional
features, enough enhancing records were accepted, and enhancing record optimization was
not needed. For the Adult dataset, we relaxed the enhancing record selection criterion to
I(r,q) > 0.9 and found 15 enhancing records after the optimization step. For the MNIST
dataset, we further relaxed the enhancing record criterion to I (r,q) > 0.8 due to the high
dimensional feature space. We identified 41 enhancing records generated by adding noise to
the target record.

Table [3.3| shows the performance of indirect inferences. For both the Cancer dataset and
the Adult dataset, attacking with the enhancing records has compatible performance as
querying the target record. Moreover, for the Adult dataset, querying the target record did
not successfully infer any cases with a 0.01 cut-off p-value, but by combining the predictions
on enhancing records, we achieved a precision of 1 and a coverage of 14%. For the MNIST
dataset, we achieved a precision of 1 and a coverage of 2% when p < 0.01. Although this
performance is less impressive compared to a direct inference on the same record (whose
precision and recall are both close to 1) it’s still an indication that membership inference
attack can succeed without querying the target record.

The effectiveness of indirect inferences shows that prior defenses |78, [79] based on direct
inferences could not eliminate the risk of membership inferences. Moreover, we plotted both
the target record and the enhancing records and found that the enhancing records in no
means represent the target record, indicating that our attack is hard to detect (Figure .

31

3.3.7 Influence of Regularization

Regularization is a common method for improving model generalization. It is shown to
be an effective defense against the prior MIA [7]. To study its effectiveness on our attack,
we applied L2 regularization on neural networks trained on MNIST set even though the
models were not overfitted. In doing so, we limited the model capacity which increased the
risk of underfitting. Specifically, when the regularization coefficient A went from 0.001 to
0.01, testing accuracy decreased by 0.01 indicating that the model might be underfitted due
to over regularization.

Table shows the model accuracy and attack performance before and after applying 1.2
regularization with varying coefficients A\. Applying regularization reduced the number of
vulnerable target records in the dataset, but did not completely eliminate the privacy risk.
The remaining vulnerable records were attacked with high precision. Specifically, when L2
regularization was applied with coefficient A = 0.01, we still identified 1 vulnerable target
record, which was inferred with precision close to 1.

Applying regularization mitigated the model’s privacy risk of some vulnerable individuals
but did not eliminate the risk of all individuals. Moreover, since the most vulnerable record
was identified with high precision, regularization may not be a good approach when the
data owner wants to provide privacy protection for all individuals whose records are in the

dataset.

3.3.8 Comparison with Indiscriminative Attacks

To compare with the attack proposed by Shokri et al. [7], we reproduced the attack on the
same target models and the same vulnerable records in our attack. Specifically, we trained
one attack classifier per class for each dataset. The attack classifiers are neural networks with
one hidden layer of 64 units. We used ReLU as the activation function and SoftMax as the
output layer. We only performed the attack when the probability given by the attack classifier
was higher than a certain threshold (called attack confidence threshold). We evaluated the
performance of the attack under various attack threshold as shown in Table The attack
precision was relatively low (e.g. < 70%) on all three datasets even when a high attack

confidence threshold was used.

32

Dataset Attack Confidence Precision | Coverage
Threshold
Cancer 0.8 50.25% 40%
(3 records) 0.9 - 0
Adult 0.6 66.67% 4.92%
(13 records) 0.7 - 0
0.6 50% 56.25%
MNIST 0.7 19.6% 6.25%
(27 records) 0.8) 0

Table 3.5: Performance of the attack of Shokri et al. [7] on the same target models and the
same target records. To imitate the attack strategy of a pragmatic adversary, we performed
prior attack on the selected target records and made predictions only when the attack
classifier has high confidence. However, the prior indiscriminative attack could not achieve
high precision even under a low coverage.

3.4 DISCUSSION

In this section, we explain the limitations of our attack, and further discuss the potential

mitigation to the information leaks in machine learning models.

3.4.1 Limitations

In the meantime, our current attack is preliminary. Our techniques for identifying outliers
cannot find all vulnerable instances: it is possible that some instances not considered to
be outliers by our current design still exert unique influences on the model, which need to
be better understood in the follow-up research. Moreover, the current way to search for
the for the enhancing records, through filtering out random queries, is inefficient, and often
does not produce any results. More effective solutions could utilize a targeted search based
upon a better understanding about the relations between the target record and other records.
Fundamentally, it remains unclear how much information about the training set is leaked out
through querying a machine learning model and whether more sensitive techniques can be

developed to capture even a small signals for a record’s unique impact.

3.4.2 Mitigation

Adversarial Regularization and Adversarial Examples Prior research has used ad-
versarial regularization [78] and adversarial examples [79] as defenses against membership

inference attacks. However, both defenses assume an indiscriminate adversary that trains an

33

attack classifier based on the model’s direct prediction on the target records. Meanwhile, the
pragmatic attack strategy in our work is more sophisticated, and our indirect queries are
hard to identify. Therefore, it is challenging to model the attacker for privacy regularization

or to generate adversarial examples for the attack.

Generalization and perturbation As mentioned earlier, generalization has limited effect
on mitigating our more sophisticated membership inference attack: as demonstrated in our
study, even after applying the L2 regularization (with a coefficient of 0.01), still a vulnerable
record in MNIST dataset can be attacked with a precision of 1 (Section [3.3.7). In the
meantime, adding noise to the training set or to the model to achieve differential privacy can
suppress the information leak [62]. However, in the presence of high-dimensional data, which
is particularly vulnerable to our attack, perturbation significantly undermines the utility
of the model before its privacy risk can be effectively controlled [80]. So we believe that a
practical solution should apply generalization and perturbation together with proper training

set selection, detecting and removing those vulnerable training instances.

Training record selection We believe that there is a fundamental contention between
selecting useful training instances, which bring in additional information, and suppressing
their unique influence to protect their privacy. An important step we could take here is to
automatically identify outliers and drop those not contributing much to the utility of the
model. To this end, new techniques need to be developed to balance the risk mitigation and
the utility reduction for those risky instances. A machine learning model could be built to

automatically decide whether an instance should be in the training set or not.

3.5 CONCLUSIONS

In this chapter, we take a step forward to better understanding information leaks from
machine learning models. In contrast to prior work, we consider a more sophisticated
pragmatic adversary who carefully selects targets and makes predictions conservatively.
We demonstrate new membership inference attacks allowing such an adversary to identify
vulnerable targets, and we deploy a novel methodology to evaluate the risk. Our results show
that this new methodology better reflects the privacy risk of membership inference. In fact,
it highlights cases where prior work underestimates the risk, achieving low attack accuracy
(barely above the random-guessing baseline), whereas our pragmatic adversary still achieves
high precision (at the cost of lower coverage). Specifically, our study reveals that a pragmatic

adversary can achieve high precision (e.g., 95.05% on MNIST) in cases where prior work’s

34

methodology implies only barely above-the-baseline accuracy (i.e., 51.7%). In addition, our
study highlights the conflict between selecting informative training instances and preventing
their identification through their unique influences on the model, and points to the direction

of using training data analysis and selection to complement existing approaches.

35

CHAPTER 4: TOWARDS MEASURING MEMBERSHIP PRIVACY

In this chapter, we investigate and analyze membership attacks to understand why and how
they succeed. Based on this understanding, we propose Differential Training Privacy (DTP),
an empirical metric to estimate the privacy risk of publishing a classifier when methods such
as differential privacy cannot be applied. DTP is a measure of a classifier with respect to
its training dataset, and we show that calculating DTP is efficient in many practical cases.
We empirically validate DTP using state-of-the-art machine learning models such as neural
networks trained on real-world datasets. Our results show that DTP is highly predictive of
the success of membership attacks and therefore reducing DTP also reduces the privacy risk.

This chapter is based on joint work with Vincent Bindschaedler and Carl A. Gunter [81)].

Machine learning models are widely used to extract useful information from large datasets
and support many popular Internet services. Companies like Amazon [82], Google [83], and
Microsoft [84] have started to provide Machine Learning-as-a-Service (MLaaS). Data owners
upload their data and obtain black-box access to a classification model which can be queried
through an API.

Recent academic work has pointed out several security and privacy issues with this
MLaaS paradigm. Models can be stolen or reverse engineered [85], sensitive population-level
information can be inferred [86] [87]; even the corresponding training datasets can be targeted
by inference attacks. In particular, Shokri et al. [7] propose a membership attack to infer
sensitive information about individuals whose data records are part of the training dataset.

Membership attacks are not new or specific to MLaaS and are known credible threats in
various contexts such as in Genome-Wide Association Studies (GWAS) [10]. In principle,
membership attacks are easily thwarted by ensuring that the model is trained using a
differentially private process. Unfortunately, it is not always feasible to use a learning
algorithm that satisfies differential privacy. Some classification models cannot readily be
trained in this way, or doing so may come at the cost of an unacceptable utility loss.

This issue is exacerbated by the fact that if a classification model is trained without
differential privacy, then little is known about its membership privacy risk; there is a gap
in our ability to analyze the risk. At the same time, there is no reason to believe that all
classification algorithms leak the exact same amount about their training datasets — a model
that is badly overfitted has the potential to leak more than one which is not. Yet there is
currently no framework or principled way to measure this in practice.

In this chapter, we investigate why and how membership inference attacks succeed. We

36

derive a general attack framework and perform experiments on state-of-the-art classifiers
trained on real-world datasets. Our goal is to design a metric which reflects membership
privacy risk and can easily be calculated on a classifier.

We identify a simple measure called Differential Training Privacy (DTP) which quantifies
the risk of membership inference of a record with respect to a classifier and its training
data; the higher the DTP value, the higher the risk. We extend DTP to a metric over the
classifier, by computing the DTP value of all records in the training dataset and taking the
maximum—the worst case risk. DTP is not a substitute for a differentially private learning
algorithm. Rather DTP provides an objective basis for decision making. For example, when
two classifiers exhibit similar performance, it is preferable to publish the one with the lowest
DTP.

Informally, given a classifier A(T') trained on a dataset 7', the membership leakage of a
record t € T is quantified by comparing that classifier’s predictions to those of a classifier
trained without record ¢, i.e., A(T \ {t}). We assume black-box access, so an adversary can
only learn information by querying the classifier. In this setting, membership attacks are
predicated on distinguishing whether the classifier was trained on 7" or 7"\ {¢}. This is what
DTP measures. Differences in predictions can occur for any query, but we initially focus on
direct attacks which expect the maximum difference to be observed when querying features of
t.

We provide experimental validation of direct attacks on both traditional classifiers such
as naive Bayes and logistic regression and state-of-the-art models such as neural networks
trained on two real-world datasets: a purchase dataset containing the shopping history of
300,000 individuals, and the popular UCI Adult dataset. Specifically, we perform several
membership inference attacks on these classifiers, including the most effective attack known.
Results suggest that DTP is a powerful predictor of the accuracy of direct attacks. Concretely,
for neural networks learned on the purchase dataset, the Pearson correlation coefficient of the
maximum membership attack accuracy with DTP is 0.8936. For classifiers with DTP-values
under 0.5, none of the attacks we performed ever inferred membership status of any individual
with accuracy greater than 66.5% (baseline: 50%). By comparison our attacks almost always
have over 90% accuracy when DTP is larger than 4.

Although we do not know of any practical indirect attacks—which query the classifier
for features other than those of t—we cannot exclude the possibility that such attacks may
outperform direct ones. In fact, we produce a counter-example that this is indeed possible.
We explore whether this situation occurs for known classification algorithms and derive a
set of theoretical results, including a simple criterion (for classifiers) called training stability.

For algorithms which satisfy training stability, the direct attack is always superior to any

37

indirect attack.

Contributions. We propose Differential Training Privacy (DTP) to quantify membership
inference risk of publishing a classifier. DTP is used to inform the decision of whether to
release a classifier when techniques to achieve differential privacy cannot be employed. We
advocate for the DTP-1 hypothesis: if a classifier has a DTP value above 1, it should not
be published. We test this hypothesis by designing effective attacks on records with DTP
greater than 1 based on different classifiers and datasets.

We present a general membership attack framework and evaluate three types of attacks
on several classifiers trained on two real-world datasets, including the most effective attack
known prior to this work—which we improve upon. Our empirical study of the relationship
between the accuracy of membership attacks and DTP, reveals the latter to be a powerful
predictor of the former.

We establish training stability as an important desideratum for classifiers, and prove that
naive Bayes, random decision trees, and linear statistical queries satisfy it but £-NN does

not.

4.1 PROBLEM STATEMENT

Consider a data owner with a dataset D. We assume that the dataset is divided into
multiple classes and each record in the dataset consists of a class label and a vector of features.
We also assume that the data owner randomly partitions the dataset into a training set and a
validation set. A machine learning model is trained on the training set. The model captures
the correlations between the features and the class labels. It takes a feature vector as input
and outputs a vector of probabilities for each class.

Suppose the data owner wants to make the model available for public queries. That is,
he intends to allow anyone to submit a feature vector and get predictions from the model.
In this chapter, we want to estimate the membership inference risk of releasing the model
based on simple measurements and theoretical analysis. Specifically, given a machine learning
model, we want to answer the following questions: Is there a privacy risk if the model is open
to public queries? Are certain models riskier than others? Which records have higher privacy
risks?

We consider the privacy risk in the setting of membership privacy. The privacy risk of a
record is estimated by the adversary’s ability to infer whether the record is a part of the
training set. We estimate this risk under the assumption that the machine learning models

are trained by trusted parties. That is, we expect the parties training and releasing the model

38

have the goal of protecting the training set to the extent this is practical and will therefore not
be motivated to create a covert channel by embedding private information into the model’s
predictions. Under this assumption, we inspect the risk of accidental privacy leakage—the
risk that a machine learning algoirthm would accidentally learn too much information about
an individual record during the training process.

To estimate privacy risk under a strong adversary, we assume that the adversary knows
all the records in D, the size of the training set sampled from D, and the machine learning
algorithm used to train the model. We assume the training set to be uniformly sampled from
D. Therefore, each record in D is equally likely to be included in the training set, and the
adversary does not know which records are included. The goal of the adversary is to perform
a membership inference attack by querying the machine learning model. That is, given a
particular target record t € D, he wants to infer whether ¢ is used to train the model he

queries.

Notations. Let T be the training set of the model. Since 7" is randomly sampled from D,
we call D the candidate set for T.

We define X™ to be a set of all possible features and Y to be the set of all possible class
labels: {y1,92,...,yx}. Each record z € D can be divided into two parts: the feature vector
x € X™ and the class label y € Y. Let A be the classification algorithm and ¢ = A(T') be
the output classifier. We assume that for each query x, ¢(x) returns a vector of conditional
probability of all class labels y € {y1,92,...,yx} given feature vector x. We use p.(y | x) to
represent the conditional probability of class label y given feature x, predicted by classifier
c. That is, ¢(x) = (p.(y1 | X),p(¥2 | X), ..., p.(yx | X)). For classifiers that do not directly
provide predicted probabilities, these can be obtained through normalization over the class
labels.

In membership inferences, the adversary wants to infer whether a specific record t =
(x® y®) € D is part of the training set 7. We call ¢ the target record of the attack.

There are two approaches that an adversary can take to perform a membership inference
attack on a target record ¢t. He can launch a direct attack by querying the features of the target
record x). Or, he can perform an indirect attack by querying some feature vector x # x(*).
Intuitively, a direct attack should have better performance than an indirect attack because
querying the features of ¢ should give more information about ¢ compared to querying other
features. In this chapter, we first study the membership privacy risk under this assumption.

In section we test this assumption by analyzing some commonly used classifiers.

39

4.2 DIFFERENTIAL TRAINING PRIVACY

We propose a measure of membership privacy risk of a target record ¢ with respect to

classification algorithm A and training set 7.

Definition 4.1 (Differential Training Privacy). A record t € T is e-differentially training
private (e-DTP) with respect to classification algorithm A and training set T, if for all
x € X™ and y € Y, we have

par)(y | x) < epamph (v | x) (4.1)

and

par)(y | X) > e pary (v | X). (4.2)

That is, the target record ¢ is DTP with algorithm A and training set 7" if the predicted
conditional probability of any class label y given any feature vector x does not change much
when t is removed from 7T'. By definition, a record ¢ with low DTP only has a small influence
on the output of the classifier A(T"). Since a classifier’s output is also influenced by other
factors such as random initialization and unexpected records in the training set, from the
adversary’s perspective, the small influence by ¢ is indistinguishable from the influence by
other uncertain factors. Therefore, records with low DTP are less vulnerable to membership
inference attacks.

Unlike differential privacy [62], DTP is a local property related to the training set. Therefore,
DTP is experimentally measurable given a target record ¢, a training set 7', and a classification
algorithm A. We use the following definition of DTP metric to quantify the privacy risk of
the target record t.

Definition 4.2. (DTP Metric). Given classification algorithm A, training set 7', and target
record t, the differential training privacy metric DTP () is the least € such that ¢ is e-DTP
with A and T

In practice, DTP 4 r(¢) is calculated as the maximum ratio between the predictions given

by A(T) and A(T'\ {t}) for all x € X" and for all y € Y. That is,

_ (%,9)
DTP4r(t) = _max ™", (4.3)
where
ng,y) — max (PaA(T) (y | x) 7pA(T\{t})(y | X)) _ (4.4)
pA(T\{t})(?/ | x) PAT) (y [x)

40

DTP 41(t) can be naively measured by brute force over all x € X™ and all y € Y. However,
considering the potentially large size of X™ this approach is neither practical nor efficient.

Therefore, we propose pointwise differential training privacy (PDTP) as a relaxation of DTP.

Definition 4.3. (Pointwise Differential Training Privacy). A record t € T is e-pointwise
differentially training private (e-PDTP) with respect to classification algorithm .4 and training
dataset T, if for all y € Y, we have

pary(y | xD) < e pary(y | x?) (4.5)

and

pary(y | x) > e~ par gy (y | xP). (4.6)
Similarly we propose the following definition for the metric PDTP(A, T):

Definition 4.4. (PDTP Metric). Given classification algorithm A, training set 7', and target
record t € T, the pointwise differential training privacy metric PDTP7(t) is the least e
such that ¢ is ePDTP with A and T.

PDTP is a relaxation of DTP which bounds the change of the classifier’s response on a
single query x| when t is removed from the training set. Because of this, PDTP can be
efficiently calculated given any classification algorithm A, training set T', and target record ¢
by training an alternative classifier A(7"\ {¢}). This process is similar to the leave-one-out
(LOO) cross-validation technique used in machine learning [88]. Since LOO is a core technique
for evaluating a machine learning model, there is considerable experience with both learning
algorithms for which its calculation is easier and optimizations to improve this performance.

The measurement PDTP 4 (¢) is useful for two different reasons: First, PDTP 4 () is a
lower bound of DTP 4 (). When DTP 4 r(t) cannot be efficiently calculated, data owners
can use PDTP 4 r(t) as an optimistic estimation of a classifier’s privacy risk. If a target
record ¢ has high PDTP with A and T, releasing the classifier A(T") brings high privacy risks
for t. Therefore, PDTP can be used as an indicator of membership privacy risk. Second,
PDTP reflects the performance of a direct membership attack. When the adversary uses
c(x®) to infer the membership of ¢, it is sufficient to bound the change of ¢(x®) when ¢ is
removed from the training set of c¢. Since we assume direct membership attacks have better
performance than indirect ones, PDTP 4 r(¢) is a good estimation of membership privacy risk
of t.

41

4.3 CASE STUDIES

DTP measures the sensitivity of a target record ¢ on the predictions of a classifier A(T).
Intuitively, the larger ¢’s influence on the predictions of A(T) is, the more these predictions
leak about ¢. This, in turn, makes ¢ more vulnerable to membership inference attacks.
However, to use DTP to calculate the membership risk, we still need to answer the following:
How do we use PDTP to estimate the risk of membership attacks? How accurate are these
estimations? What values of PDTP indicate a potential privacy risk?

In this section, we answer these three questions through a series of experiments on direct
membership attacks.

To demonstrate PDTP’s effectiveness in measuring risks of membership attacks, we study
the performance of three types of direct membership attacks on different datasets and
classification algorithms. We find that, when a membership inference attack is effective, i.e.,
the attack accuracy is greater than 0.7, PDTP 4 1(¢) is highly correlated with the attack’s
accuracy on t, and the correlation is higher for attacks with higher accuracy.

To identify high-risk records, we use the DTP-1 hypothesis: if a classifier has a DTP
value above 1, it should not be published. Since PDTP is a lower bound for DTP, we use
PDTP measurements to identify records that do not satisfy DTP-1 criterion and demonstrate

effective membership attacks on these records.

4.3.1 Datasets

We first introduce datasets used in the experiments.

UCI Adult Dataset (Adult). The dataset [89] contains 48,842 records extracted from the
1994 Census Database. Each record has 14 attributes with demographic information such as
age, gender, and education. The class attribute is the income class of the individual: > 50K
or <= 50K. The classification task is to predict an individual’s income class based on his
demographic information. We use all the features except the final weight (fnlwgt) attribute,
which is a weight on the Current Population Survey (CPS) file used for accurate populations
estimates. We randomly sample 2,000 records as candidate set D, and 1,000 records out of

D as training set.

Purchase Dataset (Purchase). Similar to the purchase dataset in [7], we construct
a dataset containing user’s purchase history based on Kaggle’s “acquire valued shoppers”
challenge. The original contains the user’s transaction histories, including product category,
product brand, purchase quantity, purchase amount, etc. We pre-process the dataset by

constructing one record for each customer. We use the product category attribute in the

42

original dataset to create 836 binary feature attributes. Each feature attribute is a product
category (e.g., sparkling water), and the value of the attribute is true if and only if the
corresponding customer has purchased this product in the past year. We cluster the dataset
into 10 clusters using k-means based on Weka’s implementation [90]. Each cluster represents
a type of consumer buying behavior. We use the cluster index of each record as its class
label. The classification task is to predict a consumer’s buying behavior based on products
he has purchased. We randomly sample 2,000 records as candidate set D, and 1,000 records

out of D as training set.

4.3.2 Machine Learning Models

We study the performance of membership attack and PDTP measurements on three

different machine learning models.

Neural Networks (NN). We build a fully connected neural network with one hidden layer
of 64 units and a LogSoftMax layer. We use Tanh as the activation function and negative
log-likelihood criterion as the classification criterion. We use a learning rate of 0.01 for both
datasets. The maximum epoch of training is set to 100 for the adult dataset and 30 for the
purchase dataset. When preprocessing the adult dataset, we convert categorical attributes

into binary attributes and normalize all the numerical attributes.

Naive Bayes Classifiers (NB). We build a Naive Bayes classifier [91] to predict the class
label based on Bayes Theorem under the assumption of conditional independence. We use

Laplace smoothing [92] to smooth the categorical attributes in the dataset.

Logistic Regressions (LR). We build a logistic regression model using Weka’s implemen-

tation of Logistic model trees [93].

Binning the Predictions. We limit the precision of the model outputs using data binning
technique with a bin size of 0.01. Since the outputs of the classifiers are probabilities in the
range of [0, 1], we divide this range into 100 bins of the same size. Instead of returning the
original output of a classifier, we make the model return the center of the bin to which the
original output belongs. For example, if a classifier predicts a class label to have 0 probability
given a feature vector, the output of the classifier would be 0.005, which is the center of the
first bin. This binning technique prevents models from leaking private information that does
not significantly contribute to their accuracy. It also prevents PDTP measurements from

getting unreasonably large due to close-to-zero denominators.

43

4.3.3 Attacks

Given a target classifier ¢ = A(T') and a target record t, a membership attack distinguishes

between the following hypotheses:
Hy: t¢T and H : teT.

In all of the following attacks, we assume that the adversary gets the target classifier’s
prediction on the target record ¢(x) = (p.(y1 | V), p(y2 | x), ..., p.(yx | X)), and tries
to launch a membership attack on ¢ using this information. We also assume the adversary is
powerful enough to know the size of training set T" and has access to the candidate dataset
D and the classification algorithm A based on Kerckhoffs’s principle.

Let ¢; = p(y; | x) (1 <i < k). Here, ¢; represents the class probability for class label
y; predicted by the target classifier given the features of the target record. Therefore, the
vector q = ¢(x®) = (q1,¢s, ..., qx) can be viewed as a probability distribution over all the

possible class labels.

Untargeted Attacks. We reproduce the membership attack of [7] on a neural network
model learned on the purchase dataset. This attack converts the membership inference
problem into a classification task with two class labels: class label “in” represents hypothesis
H, (t € T), and class label “out” represents hypothesis Hy (t ¢ T'). Concretely, the attack

consists of two steps:

Step 1: Training Shadow Classiffiers. The adversary trains shadow classifiers to sim-
ulate the behavior of the target classifier A(T"). First, he samples M shadow datasets
T1,T5, ..., Ty of the same size as the target dataset T. Then, he trains M shadow classifiers
A(Ty), A(T,), ..., A(Ty) using the same classification algorithm as the target classifier A(7T).

In experiments, we take M = 20.

Step 2: Building the Attack Classifier. The adversary uses the shadow classifiers to label
each record in the candidate dataset D according to Algorithm The algorithm takes the
shadow classifiers and the candidate dataset as input and outputs a dataset D,iack, Which
serves as the training set for the attack classifier.

In experiments, the attack classifier is a fully connected neural network with one hidden
layer of 32 units and a LogSoftMax layer. We use ReLU as activation function and negative
log-likelihood criterion as classification criterion. We set the learning rate to 0.01 and the

maximum epochs of training to 30 iterations.

Step 3: Launching the Attack. Given a target record t, the adversary constructs a new

feacture vector by concatenating the original feature vector x*, the original class label y®,

44

Algorithm 4.1 Step 2 of Untargeted Attack

Require: A set of shadow classifiers {A(T}), A(T3), ..., A(T\)}, candidate set D
Ensure: Training set of the attack classifier D,ttack
Dattack — @
for j=1,2,...,M do
for r € D do
q") « (PA(Tj)(?h | %), D) (v | Xm))
£0) (x5,)
if r € T; then
Dittack < Dagtack U { (f(T), in) }
else
Dattack < Dattack U { (f(r), Out) }
end if
end for
end for

and the target model’s prediction on the target record c¢(x®). That is,

B = (0,0, e(x)). (4.7)

The adversary queries the attack classifier with the new feature vector and gets a prediction
consisting of two probabilities: p;, is the probability of class label “in”, and pg. is the
probability of class label “out”. The advesary accepts hypothesis H; if, and only if, pi, > pous-

We call this type of attack an untargeted attack because the attack classifier obtained
from step 2 can be used to attack all the records in the candidate dataset. Therefore, when
the adversary tries to attack multiple records, he only needs to run step 1 and step 2 once.
Step 3 of the attack, which needs to be repeated on each targeted record, has much lower
computational overhead. Although this attack is more efficient when the adversary wants
to find out any vulnerable records, it has lower accuracy compared to some of the targeted

attacks.

Distance-Based Targeted Attacks. When the adversary has a specific target record
in mind, he can design attacks tuned to perform well only on the target record. We call
this type of attacks targeted attacks. In a distance-based targeted attack, an adversary uses
shadow models to estimate the average predictions of classifiers satisfying hypothesis H,
and those of classifiers satisfying hypothesis H;. Then he calculates the distance between
¢(x) and the two average predictions and accept the hypothesis under which the average

predictions are closer to ¢(x). Concretely:

Step 1: Training Shadow Classifiers. Let n = |T|. The adversary uniformly samples M

45

datasets 17, Ty, ..., Ty of size n — 1 from D\ {t}, and takes T; = T; | J{t} for all 1 < j < M.
The adversary trains a pair of shadow classifiers A(T}), A(Tj) for all 1 < j < M, and gets

their predictions on the target record:

P = (Pacry) (130 Py (82 1), gy (e [%)) (48)

and

out __

P; <PA(T]<)(?J1 | X)>P,4(T]<)(y2 | %), .. 7PA(T;)(yk | X)) :

out

Take ﬁin - M Z] 1p] and ﬁout =M Z] lpj
be viewed as two probability distributions over all the possible class labels.

Like the query result q, p;, and p,,, can

Step 2: Comparing KL-Divergence. The KL-Divergence [94] between two distributions P
and @ is defined to be

Dxi(P || Q) = Z D log (4.9)

The adversary infers the membership of ¢ by comparing q’s KL-Divergence to p;, and P,
and accepts hypothesis H; if, and only if, Dxr(q || Pout) > DPxi(d || Pin)-

In the experiment, we take M = 5. That is, for each target record ¢, we sample 5 datasets
and train 10 shadow classifiers. 5 of the shadow classifiers are trained with ¢ in the training

set, and the other 5 are trained without ¢ in the training set.

Frequency-Based Targeted Attacks. In a frequency-based targeted attack, the adversary
trains the same shadow models as in the distance-based membership attack. However, instead
of calculating the average of the predictions, the adversary counts the frequency that the
predictions of classifiers satisfying hypothesis Hj fall into the same bins as ¢(x) as well as
the frequency that the predictions of classifiers satisfying hypothesis H; fall into the same
bins as ¢(x). The adversary accepts the hypothesis under which predictions more often fall
into the same bin as ¢(x).

The first step of a frequency-based targeted attack is the same as the distance-based
targeted attack. The adversary trains 2m shadow classifiers, m of which with ¢ in training
set. In the second step, for 1 < i < k, the adversary calculates 0" as the number of shadow
models that are trained with ¢ in training set and gives the same predicted probability on

m” is calculated as the number of shadow

class label y; as the target dataset. Similarly, o
models that are trained without ¢ in the training set and gives the same predicted probability

on class label y; as the target dataset.

46

Membership Attack | Accuracy | Precision | Recall F1 Correlation | p-Value
Untargeted Attack 0.6680 0.6386 0.8500 | 0.7294 0.4864 < 0.01
Frequency-Based Attack 0.6257 0.5933 0.8253 | 0.7174 0.5052 < 0.01
Distance-Based Attack 0.8533 0.8470 0.9087 | 0.8768 0.7653 < 0.01
Table 4.1: Performance of Three Membership Attacks on NN-Purchase.
Finally the adversary estimates the following ratio:
PriteT|cx)= o
rft T |e(x)=d] 70
The adversary accepts hypothesis H; iff PrifeTle()=a] -
y y I BrftgTle(0=a] ~

Like for the distance-based membership attack, we take M = 5 in the experiment and

train 10 shadow models for each target record.

4.3.4 FEvaluation Metrics

Multiple Iterations of Attacks.

each membership attack. In each iteration, we partition the candidate set into two equal-sized

To evaluate their performance, we run 100 iterations of

parts: Dy and D,. First, we use D; as training set and D as test set. A target classifier
A(Dy) is trained on the training set and available for public queries. We randomly select 100
records out of D as the adversary’s target records. For each target record ¢, we run a targeted
attack with A(D;) as target classifier. In each membership attack, the goal of the adversary
is to predict whether t € D; by querying A(D;). Then, we switch the role of D; and Ds,
and use D, as the training set and D; as test set. We then repeat the membership attack
with A(D;) as target classifier. This process ensures that the target record occurs once in
the training set and once in the test set in each iteration so that the baseline accuracy is
always 0.5. Since we can only calculate PDTP of a record ¢ when ¢ is in the training set, we
measure the PDTP of t as PDTP 4 p, (¢) if t € Dy and as PDTP 4 p,(t) if ¢ € Dy. Hence, in
each iteration, we launch two membership attacks and get one PDTP measurement for each
record in D based on definition [£.3] We repeat this process for 100 iterations. Ideally, one
should calculate a record’s average PDTP over 100 PDTP measurements. However, PDTP
measurements over multiple datasets contain redundant information. As shown in figure [4.2]
average PDTP taken over 10 measurements has approximately the same correlation with
performance of membership inference attacks as average PDTP taken over 100 measurements.
Therefore, to save time, we only take PDTP measurements in the first 10 iterations. For

each target record, we use the average of its 10 PDTP measurements to estimate its overall

47

* Attack Accuracy | Yo wi™ * Attack Accuracy
Baseline Accuracy " * Baseline Accuracy
Eod
0.9 p = 0.4864 i . Jre 09+ p = 0.5052
* *
*
g 0.8 ** * g 0.8 * *
8 * % * 8 **
< *H * Kk < L * * *}***
s 0.7 & - 2 0.7 * * * F -
3 * . - > * % . ™ * *
= Y = * F A B PN
ﬁ * * % ﬁ * ¥ * ** f* * hd
L 06} * ¢ e g L 06| < * oewat BE*
gf * % * * * g-_’ * * * * * 4
5) * . ;& 3 - " - ** % x ok
05 * . P . *k K * 05 * **
% * = % * ** *
* * * *
0.4 * L L L 0.4 L L L)
0 1 2 4 5 0 1 2 4 5 6

3
Average PDTP

(a) Untargetted Membership Attack on

NN-Purchase.

3
Average PDTP

(b) Frequency-Based Membership Attack on

NN-Purchase.

1 * * ¥ 1 * *
* ok * * L o A
o TR B oo kR BT o
09 *:*f* K 09 B it
’ * b * " : : ¥ & ’ * v * * ;*: ¥ &
> i ** > i %
(¢} * Q *
© 08+ - * Attack Accuracy 08¢ I * Attack Accuracy
3 ’ & 3 Baseline Accuracy 3 e Baseline Accuracy
2 * 2 * %
5 0.7 * p=0.7653 0.7 > . p = 0.8936
< * o %, < * *
S * © -
= * = .t
$ 06+ EIL) 0.6
o * o
*
0.5%* * * H HH * 05
04 . ‘ ‘ : 0.4 ‘ : . ‘ ‘ '
0 1 2 4 5 0 1 2 3 4 5 6

3
Average PDTP

Average PDTP

(c) Distance-Based Membership Attack on
NN-Purchase.

(d) Maximum Per-Target Accuracy of Three
Membership Attacks on NN-Purchase.

Figure 4.1: Membership Attacks on NN-Purchase.

membership risk.

Per-Target Attack Accuracy. We want to analyze the privacy risk of each record
in D separately. That is, instead of looking at the membership attack accuracy on each
training set, we are interested in the overall attack accuracy on a single record over the 200
membership attacks. Therefore, we propose per-target attack accuracy on a record t as the
adversary’s proportion of correct membership inference on t over all the attacks performed on
t. For example, in the experiment, we launch 200 membership attacks on each record in D.
Therefore, the per-target attack accuracy of a record is the number of correct membership

inferences on that record divided by 200.

48

4.3.5 Results

Comparison of Different Attacks. First, we compare the performance of three mem-
bership attacks on neural networks trained on the purchase dataset. We train 200 neural
network models over different training sets sampled from the same candidate set and use
them as the target classifiers for membership attacks. All the target classifiers are overfitted
to their training sets. The average training accuracy of all the target classifiers is 1, and the

average test accuracy of all the target classifiers is 0.6434.

Figures|4.1al [4.1b| and |4.1c| show the per-target accuracy and average PDTP of each target

record under three types membership attacks. Each point represents one target record in the
candidate set. The horizontal axis is the average PDTP measurement of that target over
10 iterations of PDTP measurements. The vertical axis is the per-target accuracy of that
target over 200 repetitions of membership attacks. A point’s position on the horizontal axis
shows its membership privacy risk estimated by PDTP. According to PDTP measurements,
points on the right part of the figures have higher membership privacy risks compared to
points on the left part of the figures. A point’s position on the vertical axis shows its actual
membership privacy risk under a given membership attack. Points on the top part of the
figures are more vulnerable to the attack because the attack has higher accuracy on these
records.

For each attack, we calculate the Pearson correlation coefficient between average PDTP
and the per-target attack accuracy. We also calculate the p-value for testing the hypothesis of
no correlation against the alternative hypothesis that there is a correlation between average
PDTP and per-target attack accuracy. Table shows the performance of each membership
attack and their correlation coefficients with average PDTP. The performance of all three
attacks has statistically significant correlations with the average PDTP. Figure shows the
accuracy of three types of membership attacks and their correlations with PDTP (p). We
observe that attacks with higher accuracy also have higher correlation PDTP measurements.
This correlation demonstrates PDTP’s ability to identify potential membership privacy risks
effectively.

Overall, distance-based targeted attacks have the highest accuracy. They outperform the
untargeted attacks in the previous work [7] by approximately 19%. However, some records
are more vulnerable to some types of membership attacks. For example, one record in
the purchase dataset is immune to distance-based membership attacks which only achieve
baseline accuracy, whereas the untargeted attack achieves accuracy of 0.94. This example
demonstrates the insufficiency of estimating privacy risks based on one type of attack. Even

a strong attack may fail to identify some of the vulnerabilities that can be used by other

49

0.95+

0.9

0.85

0.8

0.75

Correlation Coefficient

0.7

0.65

0.6

0 10 20 30 40 50 60 70 80 90 100
Number of DTP Measurements

Figure 4.2: Correlation between Average PDTP and Membership Attack Accuracy.

Model Accuracy | Precision | Recall | F1 Score | PDTP | Corr. | p-value
NN-Purchase 0.8533 0.8470 0.9087 0.8768 3.4019 | 0.7653 | < 0.01
NB-Purchase 0.5958 0.6945 0.4038 0.5107 0.9027 | 0.9239 | < 0.01
LR-Purchase 0.7888 0.7314 0.9187 0.8144 2.8917 | 0.8138 | < 0.01

NN-Adult 0.5340 0.5311 0.4402 0.4356 0.5847 | 0.4588 | < 0.01
NB-Adult 0.5128 0.5876 0.1027 0.1748 0.0299 | 0.5166 | < 0.01
LR-Adult 0.5134 0.5130 0.3818 0.4378 0.1460 | -0.0008 | 0.9343

Table 4.2: Performance of Distance-Based attack on Different Target Models.

attacks. Figure shows the maximum per-target accuracy among three membership
attacks. The Pearson correlation coefficient between the maximum accuracy and PDTP
measurements is 0.8936. This is very strong correlation. Among all records with PDTP
greater than 1, 84.62% of them have maximum per-target accuracy higher than 0.8, and all
of them have maximum per-target accuracy higher than 0.6. This result supports the DTP-1
hypothesis that classifiers with DTP above 1 should not be published.

Privacy Risks of Different Models and Datasets. To compare the privacy risks of
different datasets and classifiers, we use PDTP measurements on NN, NB, and LR classifiers
learned on the adult and purchase datasets. We use distance-based membership attack
because it has higher overall accuracy. Table shows the performance of each target model,
the per-target accuracy of membership attacks, and its correlation with PDTP measurements.

The results of membership attacks on NB and LR models trained on the purchase dataset
are shown in Figure and Figure [£.3¢ Both of the two classifiers have records with
PDTP higher than 1, and most of these records are vulnerable to distance-based membership
attacks. The accuracy of the attacks is highly correlated with PDTP measurements.

The results of membership attacks on NN, NB, and LR models trained on the adult dataset

50

B Average Accuracy
0.9 [_ICorrelation with PDTP
08+

0.7

o
©
4
©
£
*

06+

o
®
-
o
@
™

Per-Target Accuracy
°
3
- w)
Per-Target Accuracy
°
3

0.5

04r
03+
02r
0.1+F

*
« Attack Accuracy
Baseline Accuracy

)
@
B
@

p=09239 p=08138

T

o
o
o
o
>

Untargeted Frequency-Based Distance-Based

04 04
0

(a) Comparison between Three U mesgerote o C T Newgerotr 0 C
Membership Attacks on (b) Distance-Based Membership (c) Distance-Based Membership
NN-Purchasel0 Attack on NB-Purchase Attack on LR-Purchase

Figure 4.3: Membership Attacks on classifiers learned on purchase dataset

are shown in Figure [{.4a] Figure [£.4b] and Figure [4.4¢ Unlike the purchase dataset, the
adult dataset has fewer classes and features which help improve the generalizability of models
learned on this dataset. The training and test accuracy reflects good generalizability of all
three models learned on the adult dataset. The distance-based membership attacks also have
worse performance on the adult dataset, indicating better membership privacy. However,
even if the average PDTP measurement is relatively low for all three models, the PDTP for
some records is greater than 1 with the neural network model learned on the adult dataset
indicating high membership privacy risk. This risk is also reflected by the high per-target
accuracy of distance-based membership attack on some of the records with high PDTP.
Therefore, good generalizability is not always sufficient for protecting membership privacy. It
is possible that a model is not overfitted on the training set, but still captures some private
information of some records in the training set. However, this privacy risk can be discovered
by measuring PDTP for each record in the training set.

For NB and LR models trained on the adult dataset, we did not find any records with PDTP
greater than 1, and the per-target attack accuracy of the distance-based attack is smaller
than 70% for all target records. This result shows that state-of-art membership inference
attacks do not work well on these models, and the PDTP measurements do not indicate
high privacy risk for any of the records. The correlations between PDTP measurements and

per-target attack accuracy is lower compared to attacks with better performance.

Multiple PDTP Measurements. In the previous experiments, for each target ¢, we use
the average of 10 PDTP measurements on ¢ to estimate the PDTP of ¢ over all the target
classifiers. To study how the number of PDTP measurements influence our estimation of the
membership privacy risk of ¢, we take the Naive Bayes classifier trained on the purchase dataset

as the target model perform a distance-based membership attack. We gradually increase the

o1

+ Attack Accuracy + Attack Accuracy
Baseline Accuracy Baseline Accuracy

o
©
o
©
o
©

+ Attack Acouracy

Baseline Accuracy

> > >
3 3 3
-] g g
5 5 5
3 3 3
8 8 8
< < <
507 - 507 507
=y 2 2
© © ©
s 5 s
5 o} o}
o [\ a

p = 0.5166 p=—0.008

o
@
)
@
o
@

p=0.4588

o
E)
=)
Y
o
)

05pmi ‘;;} I3 053 o.ssé}:%f%: :*
o 015 * 1Averag;‘esF’DTP2 2:5 ° ’ 0‘2 »&)\i‘;rage P[;)TGF’ o8 k o 012) »&‘:rage PDO‘IFGP O.‘E 1
(a) Distance-Based Membership (b) Distance-Based Membership (c) Distance-Based Membership
Attack on NN-Adult. Attack on NB-Adult Attack on LR-Adult.

Figure 4.4: Membership Attacks on classifiers learned on adult dataset.

number of PDTP measurements from 1 to 100 and calculate the average PDTP’s correlation
with the accuracy of membership attacks. Figure shows that the correlation between
average PDTP and accuracy of membership attacks increases as we increase the number of

PDTP measurements. The correlation coefficient stabilizes after around 10 measurements.

4.4 PROTECTIONS AGAINST INDIRECT MEMBERSHIP ATTACKS

In this section, we investigate the risk of indirect membership attacks where the adversary

queries the classifier for features other than the target record.

4.4.1 Risk

In the previous experiments, we assume that the best way of doing a membership attack
is to launch a direct attack by querying the target record. However, is it possible that, for
some classifier ¢, there exists a query x # x) so that ¢(x) leaks more private information
than c¢(x®)? That is, can an indirect membership attack outperform any direct membership
attacks? Although it is hard to design a good indirect membership attack for classifiers
discussed in Section [.3] this risk of indirect membership attacks can be demonstrated with a
carefully designed classifier that encodes membership information of one specific record.

Let ¢ = A(T) be a classifier learned on a training set 7" with machine learning algorithm

A. Instead of releasing ¢, we construct a classifier ¢* as follows:

c(x) if x#0
c(x) =11 it x=0 and teT (4.11)
0 if x=0 and t¢T.

52

Assume x® #£ 0, apparently, an indirect membership attack with query x = 0 gives more
information about the target ¢t compared to a direct membership attack with query x®. This
example shows that for some classifiers, indirect attacks can outperform direct attacks for
some records. Therefore, a record can have high membership privacy risk even if its PDTP
measurement is low.

Clearly, c¢* is not representative of a real-life machine learning model, especially when the
model is trained by the data owner who wants to protect against privacy leakage. However,
to achieve a stronger privacy guarantee, we need to study the potential risk of indirect
membership attacks and prevent models from leaking “side channel” information about

records in their training sets.

4.4.2 Training Stability

To protect against indirect membership attacks, we need a way of calculating DTP 4 1(t)
without the need of brute forcing the whole feature space X™. Since we can already efficiently
calculate PDTP 4 1 (t), a natural approach is to bound DTP 4 r(¢) based on PDTP 4 r(t). We
call this property training stability.

Definition 4.5. (Training Stability) A classification algorithm A is 0-training stable on
dataset T if there exists a constant ¢ > 1, so that for all ¢ € T with pa) (y® | xP) > 0
and pacry(y® | x®) >0, for all x € X™, for all y € Y, let

paryW [xD) paup® | x0)

7Y: = max(d, : , 4.12
! (pA(T\{t})<y(t) |X(t)) PA(T) (y(t) | X(t))) ()
we have

par) (Y | X) < vpaoan (¥ | X), (4.13)
and

par(y | x) > paovpp (v | %) (4.14)

Given an algorithm that is d-training stable on 7', for all t € T', the ratio between the
predictions of two classifiers A(T") and A(T \ {t}) is bounded either by the ratio between
their predictions on the query (x*,y®) or by a parameter §.

If an algorithm A is é-training stable on 7', DTP 4 r(t) can be calculated by measuring
PDTP 4 r(t), which is much more efficient.

Theorem 4.1. If a record t € T is e-PDTP with classification algorithm A and dataset T,
and A is d-training stable on T', we have t is € -DTP with A and T, where € = max(e,1nd).

53

On the one hand, §-training stability is a desirable property from a privacy perspective
because it reduces the computational cost of estimating the influence of an individual record
on the learned classifier. On the other hand, d-training stability is also a metaphor of learning
in real life. For example, If a professor explains an example question in class, he expects the
students to do well on similar questions in the exam. If the exam contains a question that is
the same as the example question explained in class, most students are expected to answer it
correctly. Similarly, suppose we have a classifier A(T"\ {t}) and an additional record t. By
adding t into the training dataset, we expect the classifier to have better performance on ¢ or

records similar to ¢. This can be viewed as a metaphor of learning in real life.

4.4.3 Training Stability of Classifiers

With the aforementioned intuitions in mind, we study the training stability of some
commonly used classifiers. However, due to the complexity and variability of different
machine learning algorithms, we cannot cover all well-known classifiers in this section.

Table shows the training stability of some commonly used classifiers.

Bayes Inference Classifiers. For a Bayes inference classifier A(T'), the prediction
par)(y | x) is given by the conditional probability of class label y given feature vector x in

the training dataset T

Proposition 4.2. Bayes inference algorithm is d-training stable for 6 = % on any training

dataset.

Naive Bayes Classifiers. Naive Bayes classifiers make predictions using Bayes theorem

and assume conditional independence [91].

Proposition 4.3. Let T be a training dataset with m features and n examples. Let ym;, be
the least supported class label in T'. Let n,, . be the number of examples with class label Ymin.

Naive Bayes algorithm is 0-training stable for

m—1
5:(—”ymm) " (4.15)

nymin_l n_l

If T is a large training dataset, there would be a large number of training examples with
class label yu,;,. Therefore, 6 would be close to 1 for a large dataset 7', and the maximum
ratio between predictions of A(T) and A(T \ {t}) is determined by the ratio between their
predictions on the query (x®,3®).

o4

Naive Bayes classification is often used with Laplace smoothing [95]. When conditional
probabilities are estimated from the training dataset, a small constant is added to both the
numerator and denominator to get a "smoothed" version of the prediction. The constant is
determined by the number of possible values for each attribute. Suppose each attribute in x
has at most v possible values. When calculating the conditional probability of an attribute
given the class label, the numerator is increased by 1, and the denominator is increased by v.
Therefore, naive Bayes classification algorithm with Laplace smoothing is /-training stable

with a slightly different 6 compared to the original naive Bayes classification.

Proposition 4.4. Let T be a training dataset with m features and n examples. Suppose each
element in the feature vector has at most v possible values. Let yuni, be the least supported
class label in T'. Let n,, . be the number of examples with class label Ymin. Naive Bayes with

Laplace smoothing is d-training stable on T' for

m—1
5= (M) . (4.16)

nymin n— 1

Linear Statistical Queries Classifiers. Linear statistical queries (LSQ) classifiers are
proposed as a generalization framework for naive Bayes, Bayesian network, and Markov
models [96].

Let x : X™ — {0,1} be a feature function that maps a feature vector into a binary value.
This representation is useful for features depending on more than one element in x (for
example, x(x) =1 iff zy =1 and 25 = 1). A statistical query Pg;y] gives the probability of
all the examples with feature x(x) = 1 and class label y in the training dataset.

A linear statistical queries (LSQ) classifier is a linear discriminator over the feature space,
with coefficients calculated by statistical queries. For the convenience of discussion, we review

the following definition of LSQ classifier for binary classification:

Definition 4.6 (Linear Statistical Queries classifier [96]). Let X be a class of features. Let
Jixy be a function that depends only on the values ﬁ’[z;y] for x € X. A linear statistical
queries (LSQ) hypothesis predicts y € {0,1} given x € X™ when

Yy = arg max Z f[Xy](]s&y])X(x). (4.17)

ye{ozl} Xe_){

We define a family of log coefficient functions Fiog that contains all the functions fj, 4
that calculate the log of a probability or conditional probability in the training dataset. For

example, suppose A is a naive Bayes classification algorithm with m feature attributes. A

95

can be written as an LSQ) classification algorithm with m features: x, = 1, and x; = z; for
1 <5 <m, where
A -
Sivow) (Po)) = 108 Py (4.18)

and for 1 < j <m,
A~ f)T
f[Xj7y](P[§j7y}) =log ¥/ pr . (4.19)

Ly)
Jixow 18 @ log function of the prior probability of y, and f,, is a log function of the
conditional probability of z; given y. Therefore, the coefficient functions for naive Bayes
belong to the family of log coefficient functions. Similarly, log coefficient functions are also
used in Bayes network and Markov model.

When f,] € Flog, the sum of f}, , is equivalent to the product of the corresponding
probabilities. Therefore, in addition to returning the most likely label, an LSQ classifier A(T)
is also a probabilistic classifier that returns the following predicted probability:

par(y | x) = exgxf["’y]({ls&’y]})X(x)
_ H el (AP D)
XEX

(4.20)

Each term e/t oa XG0 Equation (4.20)) is equivalent to calculating a probability or a

conditional probability in the training dataset T" using Bayes inference, therefore is %—training
stable according to proposition Consequently, we have the following proposition for LSQ

probabilistic classification algorithms:

Proposition 4.5. If A is an LSQ probabilistic classification algorithm with f, , € Fiog for
all xy e X,y €Y, A is d-training stable on any training dataset with § = (%)m.

For naive Bayes classification algorithm, since each attribute is an independent feature, with
M —1 feature attributes, | X| equals M . Compared to proposition[4.3] proposition [.5 provides
a looser but more generalized bound on ¢-training stability for naive Bayes classification
algorithm. This bound does not depend on the records in the training dataset T'. For
Bayesian network and Markov models, |X'| equals to the layer of dependencies in the network.

|X'| gets larger when the network structure gets more complicated.

Decision Trees. Some decision trees, such as ID3 and C4.5, construct the structure of
the tree by calculating information gain of each potential partition of attributes[97]. This
approach makes achieving d-training stability difficult because when an example is removed
from the training dataset, it is hard to predict its influence on the structure of the tree. For

example, removing one example may change the splitting point with the highest information

56

Training Stable Classifiers | Training Stability Unknown | Non-Training Stable Classifiers

Bayes Inference Classifiers, Support Vector Machines k-Nearest Neighbors
Linear Statistical Queries Neural Networks
Naive Bayes Classifiers Logistic Regressions

Random Decision Trees

Table 4.3: Training Stability of Different Classifiers.

gain, so that the structure of A(7T) and A(T" \ {t}) are completely different.

However, when the structure of a decision tree is independent of its training dataset,
its prediction is equivalent to the conditional probability of y given a subset of attributes
determined by the leaves of the tree. Therefore, a single decision tree with structure
independent of its training dataset is %—training stable.

A random decision tree classifier is a classifier constructed by aggregating K randomly
generated decision trees with structures independent of the training dataset[98]. Random
decision trees have better privacy properties because the structure of the trees do not leak
private information about the training set. Previous work has shown that a large amount
of noise is needed to make ID3 differentially private while it is more practical to achieve
differential privacy for a random decision tree [99).

If the predictions of the random decision tree classifier is aggregated in a way that preserves

the training stability, the random decision tree classifier is also training stable.

Proposition 4.6. Let Ax be a random decision tree classification algorithm with K randomly
generated decision trees. Given a query (x,y), let p;(y | x),po(y | X), ..., p(y | X) be the
predictions given by each random decision tree. Ag is (%) -training stable, if it computes the

prediction as follows:
Pacry(y | X) = ex Zom loele (), (4.21)

k-Nearest Neighbors. k-nearest neighbors (k-NN) classification [100] is an instance-based
learning algorithm. Instead of constructing a model from the training dataset, all examples
in the training dataset are saved and all computations are deferred until classification. When
responding to a query (x,y), predictions are made by approximating locally from a few
examples close to the query. Unlike the aforementioned classifiers, k-NN is not training stable
for any 4.

For simplification, suppose A is a 1-nearest neighbor classification algorithm. Let (x®,3®),
(x1,71) and (x2,y2) be three examples in a training dataset. (x;,¥;) is the nearest neighbor
of (x),y®) when ¢ itself is not in the training dataset. Let (x’,%') be a point whose nearest
neighbor in the training dataset is (x(*, ®) and second nearest neighbor is (X, 12). Suppose
Yy =y, =y # yp. When t € T, the classifier A(T) will predict the class label as y® for both

o7

features x* and x’. When ¢ is removed from the training dataset, the classifier A(T \ {t})
will still predict the class label as y® for feature x() because of point (x;,y;). However,
A(T \ {t}) will predict the class label for X" as y, since it is closest to (X, y2) when (x(*),y®)
is removed. Consequently, when ¢ is removed from the training dataset, the prediction for ¢
remains unchanged, but the prediction for a neighboring point (x’,y’) is greatly influenced.

If we calculate the probability given by the classifier, we have

pA(T) (y, | X/> = 1 and pA(T\{t})(y, | X,) = 0, (4.22)

while
PAT) (y(t) | X(t))

pa\iey (WO | x®)

As k increases, the probability of the aforementioned case drops. However, there is always a

=1. (4.23)

possibility that, when an exampled t is removed from the training dataset T', for some queries
(x,y), the prediction pai(y | x) drops from 1 to 0, while the prediction pai(y® | x®)
remains unchanged. Therefore, k-nearest neighbors classification algorithm is not training
stable.s

4.4.4 An Upper Bound on DTP

For non-training stable classifiers or classifiers with unknown training stability, the DTP
metric cannot be directly calculated based on PDTP measurements. However, it is still
possible to estimate an upper bound for DTP based on Lipschitz conditions.

Given a classification algorithm A, the set of possible classifiers learned by A can be
abstracted as a class of functions {C,,u € U}, where v € U is a d-dimensional vector that
specifies the trainable parameters in the classifier and &/ C R¢. Without loss of generality, we
assume that C;, maps a feature vector x to a vector of predicted log probabilities of each class
labels y € Y. That is, Cu(x) = (log par)(y1 | X),10g pacr)(y2 | X), - -, 10g pacry (yr | x)).

We assume that for all x € X™ C,(x) is L-Lipschitz bounded under infinity norm with
respect to w. That is, |Cy(x) — Cy(x)|,, < L|u— /|, . Based on Lipschitz condition, to
calculate DTP(A,T), it is enough to measure the change of model parameters when one
training example is removed.

Let uz be the model parameters learned on dataset 7" and up\ ;13 be the parameters learned
on T\ {t}. The following theorem gives an upper bound of DTP (A, T):

Theorem 4.7. If A(T) is an L-Lipschitz bounded classifier, then DTP () is upper bounded

by L - maxser ‘UT - uT\{t}{oo'

58

4.5 REDUCING DTP

According to the DTP-1 hypothesis, it is unsafe to release a classifier if any record in
its training set has DTP greater than 1. However, what should the data owner do if only
a small number of records in the training dataset violate this hypothesis? It is unsafe to
release the classifier since it contains records vulnerable to membership inference attacks
using techniques like those in Section [£.3] But it is natural to ask: Can removing high-risk
records from the training set mitigate the membership privacy risk? The interesting answer is
sometimes yes and sometimes no!

Let us consider a specific example of how removing high-risk records can influence DTP.
The examples in Section are not ideal because the classifiers trained on the adult dataset
already have low privacy risks, while the classifiers trained on the purchased dataset are so
risky that they are unlikely to be mitigated by simple mechanisms. We therefore consider a
fresh example that fails to satisfy DTP-1, but not by much. To do this we train a naive Bayes
classifier on the 2013 American Community Survey (ACS) dataset. This dataset has similar
attributes as the adult dataset since the adult dataset was sampled and cleaned from the
1994 Census dataset. We restrict to four attributes: Age (AGEP), Marital Status (MAR),
Race (RAC1P), and Gender (SEX). As we did with the adult dataset, we use the salary class
(> 50K or < 50K) as the class attribute. We use all 1.6 million records as our training set.
The DTP of the full dataset is 3.09, indicating vulnerability to membership inference attacks.

To reduce the DTP in the dataset, we perform the following simple experiment: First, we
measure DTP of each record in the training set and sort all the records in the decreasing
order of their DTP measurements. Intuitively, the records are sorted in the decreasing order
of their (initial) privacy risks. Next, we remove these high-risk records from the training
set one at a time. After each record is removed, we re-calculate the DTP of all records
remaining in the training set and estimate the resulting privacy risk as the highest DTP in
this reduced training set. Figure shows the change of maximum DTP in the training
set when these high-risk records are removed. Removing the record with the highest risk
reduces the highest DTP in training set from 3.09 to 0.65, greatly reducing the classifier’s
vulnerability to membership attacks and achieving DTP-1. However, one must not get greedy
and think that removing the next individual will reduce the risk even further. Doing this takes
the DTP back to around 3. Why? Because, unlike the first individual removed, this second
record apparently is needed to decrease another record’s influence on the target classifier.
Indeed, removing further individuals appears to lead to collections of individuals that rely on
each other to keep DTP down. Their successive removal creates the sawtooth pattern seen in

Figure [4.5] Based on this observation, we recommend removing high-risk examples as a way

99

o

et

-

e

Maximum DTP of the Dataset
o (&} - (6] n 2 w [6;] r -3 (6] (6]

2 4 6 8 10 12 14 16 18 20
Number of Removed Examples

o

Figure 4.5: Effects of Removing High-Risk Records.

of reducing DTP and mitigating against membership attacks when only a few examples in
the training set have high privacy risks. Better understanding of how to reduce DTP is a

promising target for future research.

4.6 DISCUSSION

In this section, we discuss a few interesting points related to DTP.

Difference between DTP and DP. When feasible, using differential privacy during
training is a good strategy to mitigate the risk of publishing the model. However, there are
cases when differential privacy cannot be used; either because there is no appropriate training
mechanism or because the data owner cannot afford to add noise to their models (e.g., in the
medical domain). Therefore, we need a strategy to estimate the privacy risk of the model
when no privacy protections are added. Note that even when differential privacy is used,
DTP can still be used to estimate the privacy risks before applying differential privacy. With
the DTP measurements, the data owner can understand how much he benefits from using
differential private mechanisms. This information helps balance the trade-off between utility
and privacy.

Unlike DP, DTP is a privacy metric instead of a privacy protection mechanism. When a
machine learning model does not satisfy differential privacy for any e, little is known about
its privacy risk. However, the metric DTP 41 (¢) outputs a value of € for any target record ¢

and any any classifier A(T).
Difference between DTP and Membership Attacks. In Section [1.3] we show that

DTP measurements correlate with the accuracy of different membership attacks. However,

60

the measurement of DTP cannot be replaced by running a series of membership attacks. First,
it is computationally inefficient to simulate all possible membership attacks. Moreover, no
matter how much computational power a data owner has, there may always exist an adversary
with superior computational capability. Second, we cannot rule out the possibility that the
adversary knows a stronger a membership attack than the data owner. As demonstrated in
section [4.3] a record immune to the distance-based membership attack can be vulnerable to
another attack—even a weaker one, overall. Therefore, using a general privacy metric like

DTP to estimate membership privacy is preferable.

Privacy Risks of Non-Training Stable Classifiers. In Section [4.4] we prove that
naive Bayes, random decision trees, and linear statistical queries satisfy training stability
but k-NN provably does not. However, we do not know whether classifiers such as neural
networks and SVMs are training stable. We leave the task of investigating this question for
future work.

Remark that although measuring DTP is computationally infeasible for non-training stable
models, this does not mean that DTP metrics are useless for these models. Indeed, as shown
in Section PDTP measurements have high correlations with direct membership attacks.
The drawback for non-training stable algorithms is their potential vulnerability to indirect
membership attacks. As future work, we plan to study indirect membership attacks and
ways to mitigate them.

Although DTP doesn’t provide a theoretical privacy guarantee like DP, we find that it is
highly correlated with the performance of state-of-the-art membership inference techniques.
Unlike DP, which bounds the change in the probability of observing an output when a record
is removed, DTP bounds the magnitude of the difference caused by removal of a record. In
practice, if the magnitude of this difference is small, it is indistinguishable from the difference
caused by other uncertain factors from the adversary’s perspective. When attacking machine
learning models, these are at least two sources of uncertainty.

First, in models like neural networks, some parameters such as weights are initialized
randomly. Different initialization states may cause the model to be converged to different
local optimals, so models trained on the same dataset can give slightly different predictions
on the same record. If a record’s DTP is small enough to be indistinguishable from the
difference caused by random initialization, the record has little privacy risk. Figure shows
the variation in model prediction caused by random initialization. In the experiment, we train
100 neural network models on the same training set with 10000 records uniformly sampled
from the UCI Adult dataset. We calculate each model’s prediction on two individuals and

plot the histogram of the predicted probability that the individual has annual salary greater

61

60 20
50
k%) 0 15¢
S 40 3
o o
= =
B 30 B 10
@ @
Ke) o)
€20 [S
b= =5
< Z 5t
10
0 s ‘ ‘ ‘ 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Probability of Salaray Class >50K Probability of Salaray Class >50K

(a) Prediction on an individual in low salary (b) Prediction on an individual in high salary
class class

Figure 4.6: Prediction variation caused by random initialization

70 30

60 25+
(2} (72}
Dgl 1)
3 820
o o
=40+ =
© B 15
g% 3
g £ 10,
] 20 P

10 5

0 L L L L o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Probability of Salaray Class >50K Probability of Salaray Class >50K
(a) Prediction on an individual in low salary (b) Prediction on an individual in high salary
class class

Figure 4.7: Prediction variation caused by random sampling

than 50K.
Second, besides the target record, the adversary is also uncertain about what other records

are included in the training dataset. The occurrence of unexpected training records can
introduce small variations in the model’s predcitions. If a record’s DTP is small enough to be
indistinguishable from the variation caused by random sampling, the target has little privacy
risk. Figure [4.7] shows the variation in model prediction caused by random sampling. In the
experiment, we train 100 classifiers on 100 different training datasets uniformly sampled from
the same population. We calculate each model’s prediction on two individuals and plot the

histogram of the predicted probability that the individual has annual salary greater than
50K.

62

4.7 OPEN QUESTIONS

Experimental results suggest that DTP is a good predictor of the performance of state-of-art
membership inference attacks. However, it remains an open question if records with low DTP
are always safe from membership inference attacks. In this section, we discuss two potential

privacy risks for low-DTP records.

DTP-1 Hypothesis. In this chapter, we use the DTP-1 hypothesis as guidance to identify
records and classifiers with high privacy risk. By experimenting with state-of-art membership
inference attacks on machine learning models, we find that when a training record only
has a very small influence on the prediction of a classifier, this small influence is likely
to be indistinguishable from the variation in prediction due to random sampling of the
training records or random initialization of the weight vectors before training. We use DTP-1
hypothesis as a rule-of-thumb for determining whether the influence of a training record is
smaller than the influence of other factors unknown to the adversary, such as randomization
in the training algorithm and existence of unexpected records in the training set. However,
in practice, even when DTP is smaller than 1, the influence of these uncertain factors can be
smaller than the influence of the training record. Therefore, satisfying the DTP-1 hypothesis
cannot guarantee that records with DTP smaller than 1 have no privacy risks. With a better
understanding on the adversary’s background knowledge and the influence of randomness

in machine learning algorithms, it may be possible to determine a finer threshold for a safe
DTP.

Risk of Indirect Attacks and Multiple Queries. PDTP measures the privacy risk of
directly querying the target record. Based on experimental validations, we find that training
records with low PDTP are less likely to be vulnerable to direct attacks. However, models
that are not training stable have a potential of leaking the record’s membership information
through other queries, and an adversary may use this information to perform an indirect
attack. Although we do not know of any practical indirect attacks, it remains an open
question to analyze the training stability of some machine learning models and to design
indirect attacks for models that are not training stable.

Another challenge is to analyze the risk of allowing an adversary to get predictions of
multiple queries from the same machine leanrning model. DTP measures the privacy risk for
a single query. However, if an adversary is allowed to query the target model multiple times,
he may accumulate more information about the target record t. We leave for future work the
study of how this accumulation of information can be used to design stronger membership
inference attacks. Specifically, there are two open questions: (1) How do we select multiple

queries whose results indicate the membership of a target record? (2) How do we estimate an

63

upper bound on the accuracy of membership inference when an adversary can submit unlimited

number of queries to the model?

4.8 CONCLUSIONS

In this work, we propose differential training privacy (DTP) as an empirical metric to
estimate the privacy risk of publishing a classifier. DTP estimates the privacy risk of a
training record by measuring its influence on the predictions of machine learning models. A
large DTP indicates that the record’s influence is strong enough to indicate its presence in
the training dataset. We measure DTP of popular machine learning models including neural
networks, Naive Bayes, and logistic regressions. We compare these measurements with the
accuracy of different types of membership inference attacks, including the most effective one
in prior works. Experimental results demontrate that DTP is both efficient and effective in
estimating privacy risks. Specifically, our attacks have at most 66.5% accuracy (baseline:
50%) on classifiers with DTP-values under 0.5 and almost always over 90% accuracy on
classifiers with DTP larger than 4. Based on these results, we propose DTP-1 hypothesis as
a rule-of-thumb criterion for publishing a classifier: if a classifier has a DTP value above 1,
1t should not be published.

Although DTP has a high correlation with the accuracy of a membership attack, it
provides no guarantee about a record’s privacy protection. Specifically, we propose two
potential privacy leakages for records with low DTP. First, a low-DTP record is vulnerable
to membership inferences when the model’s predictions on it are unlikely to be influenced by
other records or random initializations. Second, the membership of a low-DTP record might
be leaked by indirect queries or the combination of multiple queries. This observation can

serve as a new direction for designing stronger membership inference attacks and defenses.

64

CHAPTER 5: BLACK-BOX PROPERTY INFERENCE ATTACKS ON
MACHINE LEARNING MODELS

Black-Box Property Inference Attack In this chapter, we propose a novel black-box property
inference attack and relax the key assumptions in prior work. QOur prediction normalization
technique allows an adversary to perform property inference attacks without knowledge on
the target model structure or the training data distribution. In addition, we propose query
generation methods that greatly reduce the number of queries required to perform the attack.
Our attack achieves over 90% accuracy on three multi-modal datasets and demonstrate the
broad risk of property inferences on machine learning models. This chapter is based on joint
work with Chenzing Wang, Rui Ye, Carl A. Gunter, Xiaofeng Wang, Michael Backes, and
Yang Zhang.

Machine learning (ML) has become increasingly important for a wide range of scientific and
industrial applications, such as autonomous driving, face recognition, and natural language
processing. However, with the rapid growth of ML technologies, security and privacy issues
have emerged. Various attacks have been identified to reveal information about the training
data and model structures of a machine learning model. For example, membership inference
attacks [101} 102] predict whether an example is in the training dataset of the model, while
parameter stealing attacks [I7, 03] infer the parameters or hyper-parameters of a model
from its predictions.

Recently, a number of studies [14, [§] have demonstrated the substantial risk of property
inference attacks. Unlike membership inference attacks, which focus on individual privacy,
property inference attacks target the sensitive global properties of the training data. Prior
studies suggest that property inference attacks could cause severe problems by extracting
properties that the model producer do not intend to share. For example, by inferring the
hidden distribution of the training data, a competitor may build a more effective model
for the same task and get commercial advantage in the business [14]. Moreover, a classifier
trained on a log dataset may leak information about security settings of the machines that
generated the log [§] and allow the adversary to evade detection or identify vulnerabilities.

Additionally, property inference can also serve good purposes like fairness auditing. Recent
research has identified problems caused by under-representation of minority groups in the
training dataset [104) 105]. With property inference, a third-party may check whether
certain minority group is included in the training dataset or whether the model has biased
performance on certain population groups.

Ganju et al. [8] have proposed a white-box property inference attack on Fully-Connected

65

Neural Networks (FNN). Specifically, they assume the adversary to have access to the model
parameters, model structures, and a dataset that shares the same underlying distribution as
the training dataset of the model. First, they train some shadow models that share the same
model structure as the target model. Then, they view each layer of the shadow model as a
set and leverage the DeepSet [106] architecture to train a meta-classifier. The meta-classifier
uses the weights of an FNN as features and predicts the property of the FNN. Finally, they
use the meta-classifier to infer the target model’s property.

However, the attack relies on some assumptions that limit the scope of scenarios on which
the attack can be performed.

First, the attack requires white-box access to the model. Yet, with the increasing com-
petition in the machine learning business, enterprises are less likely to share their model
parameters because doing so will allow their competitors to gain commercial advantages in
the business. Instead, machine learning models are more likely to be deployed with publicly
accessible query interfaces. For example, the Google Vision AI[[]service allows users to query
pre-trained image recognition models by uploading images. Meanwhile, the parameters of
these models are considered as business secrets and are not shared to public. Although it’s
possible to reverse-engineer these parameters through the prediction APT [17], these attacks
often require submitting a large number of queries to the models.

Second, the attack assumes the adversary to know the exact structure of the target model.
Similar to model parameters, the structures of industrial machine learning models are often
considered as business secrets and rarely shared publicly. Although it might be possible
to guess the type of model being deployed, knowing the ezact model structure is almost
impossible for a large range ML applications. In addition, limited by the node permutation
technique, the attack only works on FNN and is not applicable to other model structures.

Third, to ensure that the shadow models have similar performance as the target model,
the prior attack assumes the adversary to have access to a dataset that come from the same
distribution as the target model’s training dataset. This is a rather strong assumption because
because datasets collected from different sources often have slightly different distributions.
For example, suppose the target model is trained on a face-image dataset. Although there
are several publicly available face-image datasets, they usually contain images of different
individuals and therefore do not share the same distribution. Yet, it remains unclear
whether the attack could still succeed if the shadow models are trained on different datasets.
Additionally, sharing of sensitive data such as medical records are strictly regulated, so it is

challenging to obtain any real data that share the same format as the target training data.

thttps://cloud.google.com /vision /

66

In such cases, the prior attack would no longer work.

Our Contributions. In this chapter, we propose novel black-box property inference attacks
that broaden the scope of property inference attacks by relaxing the key assumptions relied
by the prior attack. Specifically, we address three technical challenges that limit the scope of
the prior attack: (C1) we need to generate a small number of queries on which the target
model’s predictions are sufficient to reveal the sensitive property; (C2) the meta-classifier
should have good transferability between the shadow models and the target model, even
when the models have different structures and training distributions; (C3) when real data is
not accessible, synthetic data should be generated with only limited knowledge about the
target model’s training distribution.

First, we perform property inference attacks under the assumption that the adversary
can only interact with the target model by submitting a limited number of queries to the
model’s prediction API (named a black-box adversary). Since there is a cost associated with
querying a ML application, the number of queries should be relatively small. This limitation
reduces the amount of information that could be extracted from the target model. To address
the challenge (C1), we design three novel strategies to generate queries: random sampling,
query selection, and query crafting. We compare the performance of the three strategies
with varying number of queries and demonstrate that all three techniques are effective for
property inference. Specifically, using the query crafting technique, we achieve 93% accuracy
in inferring the survey year of the Census dataset with a single query to the target model.
This result implies that property inference attacks have low cost and impose a much broader
threat on real-world ML applications.

Second, we evaluate property inference attacks under an adversary with no background
knowledge on the target model (named a model-agnostic adversary). To improve the
transferabiliy of the meta classifier (addressing C2), we design a prediction normalization
technique that effectively reduces the difference in predictions between models of varying
structures. We demonstrate that the target property of an FNN could be inferred with 98%
accuracy using simple logistic regression shadow models on the Insta dataset.

Third, we evaluate property inference attacks under an adversary with no background
knowledge on the training distribution (named a data-agnostic adversary). Using our
prediction normalization technique, we train meta-classifiers that are transferable across
models trained on datasets from different distributions. When real data is not accessible, we
generate synthetic data based on summary statistics of the training distribution (addressing
C3). We demonstrate that property inference attacks could achieve high accuracy even with

poor quality synthetic data. Specifically, on the Census dataset, when the shadow models

67

Model Type | Parameters | Structure | Distribution
White-Box [§] FNN v v v
Black-Box Any - v v
Model-Agnostic | Any - - v
Data-Agnostic | Any - v -

Table 5.1: Comparison between different threat models.

trained on the synthetic data have only 68.3% accuracy (while the target models have more
than 80% accuracy), the attack still achieves 99.4% accuracy. Therefore, protections on the
training data do not help prevent property inference attacks.

We evaluate our attacks on three multi-modal datasets: a census dataset (Census [107]),
an image dataset (CelebA [I08]), and a location dataset (Insta). Our attacks achieve
high accuracy on all three datasets under three different adversarial setups (i.e. black-box
adversaries, model-agnostic adversaries, and data-agnostic adversaries).

Our contributions can be summarized as follows:

1. We substantially relax the adversarial assumptions of property inference attacks, in-
cluding the assumption of white-box access, knowledge on the target model structure,

and knowledge on the training data distribution.

2. We broaden the scope of property inference attacks by designing attacks that work for
more than just FNN models.

3. We design prediction normalization technique that considerably improves the transfer-

ability of meta-classifiers.

4. We reduce the cost of black-box property inference attacks with novel query selection

and query crafting algorithms.

5. We evaluate property inference attacks under three different adversarial setups and on
three multi-modal datasets. Our evaluation results demonstrate the broad threat of

property inference on different real-life applications.

Organization. The chapter is organized into |5.4|sections. In Section [5.1.1] we formalize the
problem and introduce the threat models. In Section [5.2] we present the attack methodology.
In Section [5.3] evaluate our attacks on three different datasets. We end with sections on

related work and conclusions.

68

5.1 PROBLEM STATEMENT

5.1.1 Property Inference on ML Models

Suppose D is a dataset of labeled records. We assume that a machine learning algorithm
A : D — fy trains a classification model f that predicts the label of each record in D.
Specifically,

fo:xm—y, (5.1)

where 6 represents the model’s parameters, x € X< represents a record of d dimensions, and

y = (y1, Y2, ---, Yr) is a vector of predicted probability for each class labels. Hence, for each

class label i € Z* and i < k, we have 0 < y; < 1, where k is the number of class labels.
The property of fy could refer to any sensitive global information related to the training

dataset D. Specifically, we define the following property function
P:fgrsp (peZt,p<m), (5.2)

which maps a machine learning model to a positive integer representing its property. m is the
number of possible properties. For example, suppose D is a census dataset, and the property
is the education level of individuals in D, which takes one of the following three values: high

school, undergraduate, and graduate. We can define the following property function P:

1. If individuals in D have high school education level, P(fy) = 0;
2. If individuals in D have undergraduate education level, P(fy) = 1;

3. If individuals in D have graduate education level, P(fy) = 2.

In a property inference attack, the goal of the adversary is to infer a property p = P(fp) of
a classification model fy. We call fy the target model and p the target property.

5.1.2 Threat Models

Karan et al [8] has demonstrated the possibility of property inference attacks under the
white-box setting. However, the white-box attack relies on some strong assumptions which
reduce the scope of the attack. In this chapter, we study property inference attacks under
three more practical threat models. By relaxing the key assumptions made in the prior
attack, we show that property inference attacks can be performed under a broader range of

scenarios.

69

Black-Box Adversary. The prior attack relies on the assumption that the adversary has
white-box access to the target model. Specifically, given a target model fy, the adversary can
directly access the model parameters . However, in practice, instead of sharing the model
parameters, the model owner is more likely to allow users to interact with the model through
a prediction APIL.

We assume that a black-boz adversary can only interact with the target model fy through
its prediction API. Specifically, the adversary can submit a set of unlabeled records {x; |
x; € X4 i € Z* i < n} to the target model, which returns a prediction vector fy(x;) for each
record x;. We call x; a query to the target model.

Ideally, a black-box adversary should be allowed to submit unlimited number of queries.
However, in practice, each query incurs some time and financial cost on the adversary.

Therefore, we assume that the adversary can submit at most n queries.

Model-Agnostic Adversary. Although a black-box adversary does not have access to the
model parameters, she may have some background knowledge about the target model, such
as the training algorithm A and the model structure [I0I]. On the contrary, a model-agnostic
adversary has no background knowledge on the target model, except for its input and output
format. For example, suppose the target model is a classifier that predicts the salary class
(e.g. > 50K or < 50K) of an individual based on his/her demographic information. A
model-agnostic adversary only knows the model’s input features (i.e. a vector of demographic
information) and the classification task (i.e. predicting the salary class of an individual).

However, she has no knowledge about the training algorithm or the model structure.

Data-Agnostic Adversary. Another important assumption relied by the prior attack is
that the adversary has access to a dataset D’ which is sampled from the same distribution
as the target model’s training dataset D. To relax this assumption, we assume that a
data-agnostic adversary has no knowledge about the distribution from which the training
dataset D is sampled. Instead, she may have access to a dataset D', which is sampled from a
different data distribution. For example, if D is a face-image dataset, D’ could be a dataset
containing faces of a different group of individuals; if D is a dataset of checkin locations for
users in New York, D’ could be a dataset of checkin locations for users in a different city. If
data from a different distribution is not available, the adversary may have access to some
summary statistics about the training data, such as the marginal distribution of features
in each class. Compared to real data, this information is much easier to obtain because it
brings less privacy concern. For example, sharing aggregate statistics is not covered by the

HIPPA privacy rule [109], which regulates the sharing of medical data.

70

5.2 METHODOLOGY

In this section, we introduce our attack methodologies under three different adversarial
models: the black-box adversary, the model-agnostic adversary, and the data-agnostic

adversary.

5.2.1 Black-Box Adversary

Our black-box attack consists of four major steps: training shadow models, generating
queries, training the meta-classifier, and attacking the target model. Below, we briefly

introduce each steps of the attack.

Training Shadow Models. Shadow models have been widely used in different attacks on
machine learning models [I0T] 110, §]. They are models that share similar structures and
training data distributions as the target model. Therefore, an adversary can use shadow
models to imitate the performance of the target model and generate training data for the
attack.

Assume that the adversary has access to the training algorithm A and a shadow dataset
Dygpadow that comes from the same data distribution as the training dataset D of the target
model. Suppose the target models have m possible properties pi, po, ..., pn. By sampling
from the shadow dataset Dgpaqow, for each property p;, we obtain s subsets that follow the

(4,9)

ows Where j € ZT and j < s.For each subset, we train a shadow

property p;, denoted as D
model

F) :A(D“”') > (5.3)

shadow shadow

According the definition of the property function P (Section [5.1.1)), we have P(f, (6:3)) = pi-

shadow

We use Fyhadow t0 denote the set of shadow models

Fanadow = {finadons | 15 € 1 <, j < 5. (5.4)
Generating Queries. In a black-box attack, the adversary does not have access to the
target model’s parameters §. However, she could submit a query (i.e. an unlabeled record) x
and obtain the model’s prediction y = fp(x), which is a vector of predicted probabilities for
all the classes. If two classification models share the same property, their predictions on x
should be similar. Therefore, the prediction vectors could be used as features for black-box

property inferences.

71

To extract more information from the target model, an adversary could generate a set of n

queries:

Q = {x1,Xg, ..., X} (5.5)

Then, the property inference feature of a model f could be represented as a concatenation of

the prediction vectors:

0= (f(x1), f(x2), -, f(%n)). (5.6)

o serves as the feature vector for the meta-classifier. Increasing the number of queries
n would allow the adversary to extract more information from the target model. However,
each query may lead to additional cost for the adversary. On the one hand, there is a cost
associated with submitting queries to ML applications. On the other hand, with more features,
the adversary needs to train more shadow models and build more complex meta-classifiers.
Therefore, to reduce attack cost, we perform property inference with a small number of
queries. Specifically, we design three methods for query generation: random sampling, query

selection, and query crafting. These methods are introduced in Section [5.2.4]

Training the Meta-Classifier. Given a set of queries () and a set of shadow models
Fesnadow, We train a meta-classifier g to predict the sensitive property. For each shadow model

fs(é’jgow € Fihadow With property p;, we obtain a property inference feature

olid) — (f(i’j)(Xl), f(i’j)(X2), o ,f(i’j)(Xn)) . (5.7)

The pair (07, p;) forms a training record for the meta-classifier. The meta-classifier g is
trained to predict the sensitive property p; based on the property inference feature o™/ by

minimizing its classification loss over all the shadow models.

Attacking the Target Model With the meta-classifier g, an adversary could infer the
sensitive property of any target model based on its prediction on the query set (). Suppose
Otarget 18 the property inference feature generated by querying the target model fiarget, the

prediction g(O¢arget) reveals the sensitive property of fiarget-

5.2.2 Model-Agnostic Adversary

A model-agnostic adversary has no background knowledge on the target model, except for
its input and output format. Therefore, the shadow models Fynaq0w do not share the same

structure as the target model fiapget. This difference may lead to the discrepancy between the

72

predictions of the shadow models and the target model. Consequently, a meta-classifier that
is trained on the predictions of shadow models could have poor performance on the target

model.

Prediction Normalization. The key to address the challenge of a model-agnostic attack
is to reduce the difference between the property inference features of shadow models and
target models.

We observe that, although models with different structures often give distinct predicted
probabilities on the same query, the relationship between the predictions on different queries
remain the same. Therefore, we apply prediction normalization technique to reduce the
difference in the mean and the variance of of the predictions. Specifically, given a property
inference feature o of length n, let o; represent the i-th element of o. First, we calculate the

average prediction:

0= — 0Oy, (58)

and the standard deviation:

i % (01 — B)2. (5.9)

Then, we obtain the normalized property inference feature

OoO—o0

(5.10)

o=
Oo

Although prediction normalization is similar to feature normalization in machine learning,
the dimension on which the normalization is performed is different. In machine learning,
normalization is often performed across all the records to ensure that the features share the
same mean and variance. On the contrary, in prediction normalization, the normalization is
performed across all the property inference features (i.e. a model’s predictions on different
queries) to ensure that all the records have the same feature mean and feature variance. This
normalization process reduces the difference between the training records, generated by the
shadow models, and the testing records, generated by the target models. Consequently, the

meta-classifier has better transferability between the shadow models and the target models.

5.2.3 Data-Agnostic Adversary

We assume that a data-agnostic adversary has no access to data that come from the same

distribution as the target training data. Specifically, we consider two possible scenarios: (1)

73

the adversary has access to the same type of data coming from a different distribution; (2)
the adversary do not have access to any real data, but may know some summary statistics of
the training data.

First, we consider an adversary with access to data from a different distribution. For
example, if the target training set contains images of faces, the adversary may have access
to face images of different individuals, which is much easier to obtain in practice. Another
example is that an adversary could use location data of city A to attack models trained on
location data of city B, if collecting data from the same city as the target model is impractical.

We observe that training shadow models on data from a different distribution has a similar
effect as training shadow models with a different model structure—the predictions may differ
between shadow models and target models, yet the relationship between the predictions on
different queries are often similar. Therefore, we apply prediction normalization to reduce
the difference between predictions of shadow models and target models.

Second, when no real data is available, synthetic data need to be generated based on the
limited knowledge about the target model’s training data. It is noteworthy that, under this
assumption, it is not feasible to generate high-quality synthetic data that share the same
distribution as the target training data. Instead, we design a simple synthetic data generation
method and demonstrate that high-accuracy property inference attacks are possible even
with shadow models trained on low-quality synthetic data.

Specifically, we assume that the adversary has access to the marginal distribution of each
feature given the class label and sensitive property, and the synthetic data are generated by
randomly sampling based on the marginal distribution. We first generate a class label and
then independently generate each feature based on its conditional probability given the class
label.

5.2.4 Query Generation

The key to query generation is to find out queries on which the model’s prediction has
high correlation with the sensitive property. In this section, we introduce three methods for

query generation: random sampling, query selection, and query crafting.

Random Sampling. Random sampling is the process of random choosing queries from
a set of real or synthetic data available to the adversary. Since each query extracts some
different information about the target model, with sufficiently large number of queries, the
adversary could gather enough information to infer the sensitive property.

However, the performance of this approach is limited by the number of queries an adversary

could submit to the target model. When an adversary is only allowed to query the model

74

a few times, the randomly sampled queries may not extract enough information from the

target model and the attack accuracy would drop.

Query Selection. To reduce attack cost, we need to select queries that are highly correlated
to the sensitive property we want to predict. This correlation could be measured by the
mutual information between the the sensitive property and the shadow models’ predictions
on the query.

Suppose X; is the set of predictions on query x;, and Y is the set of sensitive properties.

Then X; is continuous and Y is discrete. The mutual information between X; and Y is

defined as
MI(X;Y) =) /

yey

px.y)(,y) log (M> dx, (5.11)

ex px(z)py (y)

where &X',) is the range of X; and Y respectively, while px, py, and p(x,y) are the probability
density functions. We use the MI estimator based on k-nearest neighbor [I11] implemented
in sklearn] to calculate MI(X;;Y).

The query selection process contains two steps. First, an adversary estimates the mutual
information between each query and the sensitive property using the shadow models. Then,
she select the top n queries with the highest mutual information and submit them to the
target model. Since the first step is performed locally it incurs no extra cost to the adversary,

and the attack cost is determined by the number of selected queries.

Query Crafting. Although query selection allows an adversary to pick the most correlated
queries, it only selects from data accessible by the adversary. However, in practice, a query
could be any vector feature space. Therefore, we design query crafting method to generate
queries that maximize the performance of a property inference attack. .

We use gy to represent the meta-classifier with parameters 6 and q to represent the query.
Suppose L(6,q) is the meta-classifier’s loss on the shadow models. We adapt the algorithm
in [103] to minimize L.

First, we update the parameters 6 of the shadow models by descending the gradients of £
on 6:

0 + arg ngnﬁ(e,q). (5.12)

Then, we modify the query q by descending the gradients of £ on q:

q « argmin £(6, q). (5.13)
q

?scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_
classif.html

75

scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html

Dataset ’Il;alrget ProI;eQrty Classification Task
Census | Year 94 Year 95 Salary Class
CelebA | Smiling | Non-Smiling Gender

Insta Male Female Location Category

Table 5.2: Target properties and classification tasks.

Shadow Shadow

Dataset Target | Shadow (Different Structure) | (Different Data)
Census 0.801 0.791 0.762 0.683
CelebA 0.814 0.812 0.799 0.844
Insta-London | 0.756 0.761 0.687 0.742

Table 5.3: Average test accuracy of target models and shadow models on their classification
tasks.
Attack Method | Random Sampling | Query Selection | Query Crafting
of Queries 100 10 1

Census 0.951 0.975 0.930
CelebA 1.000 0.982 0.943
Insta-London 0.993 0.995 1.000

Table 5.4: Comparison between different query generation methods in black-box attacks.

We repeat steps (5.12) and ((5.13]) until convergence. Then, we use the meta-classifier gy
and the crafted query q to infer the sensitive property of the target model.

5.3 EVALUATION

In this section, we evaluate our attacks on three multi-modal datasets.

5.3.1 Experiment Setup

We first introduce the datasets and models used in our experiments and define the target
properties in each dataset. Table presents the target properties and classification tasks
of each dataset. In each attack, we repeated the attack 10 times and reported the average

attack accuracy on the target models among 10 repetitions.

US Census Income Data (Census) The U.S. census income dataset [L07] contains 299285
weighted census data extracted from 1994 and 1995 population surveys conducted by U.S.

Census Bureau. It contains 40 different attributes related to demographic and employment

76

information. The classification task for this dataset is to determine the income level for each
record. Incomes have been binned at the 50K level, which makes this problem a binary
classification problem.

Among the 40 attributes, 7 of them are continuous and 33 of them are nominal. In the
prepossessing step, continuous attributes are normalized to [0, 1] and hot-encoding is applied
on the nominal attributes. After prepossessing step, we got 410 attributes in our dataset.
We constructed an FNN with 3 hidden layers of size 32, 16, 8 respectively. We used ReLU
activation function in each layer. In the output layer, we used Softmax function to map the
outcome into [0, 1]

The target property we tried to infer is the year in which the population survey. It has
two possible values "1994" and "1995". We trained 100 different target models on records
with attribute "1994" and 100 different target models on records with attribute "1995".

CelebFaces Attributes (CelebA) . The CelebA dataset [10§] is a large-scale face attributes
dataset with more than 200K celebrity images belonging to about 10K identities. Each image
is of size 218 x 178 and has 40 binary attributes, such as gender, smiling or not, wearing hat
or not. Our classification task is to detect the gender of people in the image.

In the prepossessing step, we reshaped each image as a vector and normalized it in to [0, 1].
Then we trained an FNN with 3 hidden layers of size 640, 32, 8 respectively. We used ReLLU
activation function in each layer. In the output layer, we used Softmax function to map the
outcome into [0, 1]

The target property we tried to infer is whether individuals in the images are smiling or not.
We first separated all the images into two image sets based on the target property. Then, we
trained 100 target models with "smiling" images and 100 target models with "non-smiling"

images. Each target model was trained on 2000 randomly selected images.

Insta dataset . The Insta dataset contains check-in information of over 300K locations in
London and Los Angeles (LA). Each check-in record contains check-in time and check-in
user information (including gender, age, and user id). The locations are classified into 9
different categories such as park, restaurant, and hotel. We selected all the locations from the
restaurant category and the park category to set up a binary classification task. We deleted
all the locations with smaller than 5 check-in records. We constructed training features based
on check-in time. Each feature vector has 24 values, and each value represents the percentage
of check-in records in the corresponding hour. We built an FNN with 2 hidden layers of size
30 and 10 respectively. We used ReLLU activation function in each layer. In the output layer,
we used Softmax function to map the outcome into [0, 1]. The model predicts the location

category based on check-in time.

77

Attack Method

Random Sampling

Query Selection

Query Selection
w/ Normalization

7# of Queries 100 10 10
Census 0.500 0.500 0.834
CelebA 0.970 0.990 0.990

Insta-London 0.595 0.968 0.980

Table 5.5: Performance of model-agnostic attacks (best results are bolded).

We used check-in records in London to build the target model. The target property is
the gender of check-in users in the training dataset. We separated our check-in records into
two sets, one of them includes all the check-ins of male users and the other includes all the
check-ins of female user. Then, we trained 100 target models with check-ins of male users

and 100 target models with check-ins of female users.

5.3.2 Black-Box Adversary

In black-box attacks, we trained shadow models with the same structure and training
data distribution as the target models. Table presents the average test accuracy of
target models and shadow models on their classification tasks. The models have similar
test accuracy, which allows the meta-classifier to easily transfer between shadow models and
target models.

We performed black-box property inference attacks with three different query generation
methods: random sampling, query selection, and query crafting. Table [5.4] presents the
performance of the attacks. All three methods achieve over 90% attack accuracy. Additionally,
query selection and query crafting substantially reduce the number of queries to the target
model. Specifically, query selection with 10 queries achieve the same level of performance as
random sampling with 100 queries. What stand out the most is the performance of query
crafting, which only requires a single query to the target model. This result indicates that
property inference attacks have low attack cost and are hard to detect. It is challenging
to prevent the attack based on query monitoring since it only takes one query to infer the

sensitive property.
5.3.3 Model-Agnostic Adversary

In model-agnostic attacks, the adversary do not know the structure of the target model.

Therefore, we trained shadows models that have different structures as the target model.

78

. . uery Selection
Attack Method | Random Sampling | Query Selection WQ/ No};malization
7# of Queries 100 10 10
Census 0.897 0.500 0.994
CelebA 0.923 0.944 0.982
Insta-London 0.556 0.840 0.905

Table 5.6: Performance of data-agnostic attacks (best results are bolded).

We used logistic regression on Census and Insta-London datasets. For the CelebA dataset,
we trained FNNs with different structures because logistic regression is not commonly used
on image data. Specifically, we trained FNNs with 4 hidden layers of size 640, 128, 16, 4
respectively, while target models have 3 hidden layers with size 640, 32, 8 respectively.

As shown in Table [5.3] when shadow models and target models have different structures,
there is a gap in their average test accuracy. This gap is determined by how much the
structure of the shadow models is different from the structures of the target models. For
example, on the Insta-London dataset, the test accuracy of shadow models are around 10%
lower than the accuracy of target models, while on the CelebA dataset the difference is
much smaller. This difference makes property inference attacks more challenging because the
patterns in the predictions of shadow models may not transfer to the predictions of target
models.

Indeed, Table [5.5] shows that. when there is a significant difference between the accuracy
of target models and shadow models, the model agnostic performance of property inference
attacks drop significantly when prediction normalization is not used. Specifically, on the
Census dataset, the attack performance are equivalent to random guessing without prediction
normalization.

Table [5.5] also highlights the effectiveness of prediction normalization in maintaining a high
accuracy in model-agnostic attacks. Attacks with prediction normalization achieve over 80%

accuracy on all three datasets. Particularly, the performance gain on the Census dataset is

over 30%.

5.3.4 Data-Agnostic Adversary

To evaluate the performance of data agnostic attacks, we considered three different assump-
tions about the adversary knowledge shown in Table For attacks on the Census dataset,
we assumed that the adversary does not have access to any real data and trained shadow

models on synthetic data generated from the marginal distributions of features. For attacks

79

Dataset Adversary Knowledge

Census Marginal distribution of features
CelebA Image of different individuals
Insta-London | Data from a different city (Insta-LA)

Table 5.7: Knowledge of data-agnostic adversaries.

on the CelebA dataset, we assumed the adversary to have access to face images of a different
group of individuals not included in the training dataset of the target model. For attacks on
the Insta-London dataset, we assumed the adversary to have access to the Insta-LA dataset,
which is collected from check-in records in a different city.

Table presents the test accuracy of target models and shadow models. To present a
fair comparison between the two groups of models, we evaluated the test accuracy on real
test data sampled from the same distribution the training data of the target models. It is
noteworthy that this information was used only for the comparison and was not used when
performing property inference attacks. In practice, the adversary does not need to know the
test accuracy of shadow models on real data.

It is apparent from Table that, on the Census dataset, shadow models in data-agnostic
attacks have a much lower testing accuracy compared to target models. Specifically, shadow
models trained on synthetic census data have an average test accuracy of 68.3%, which is
0.118 lower than the average test accuracy of target models. This difference indicates the
challenge in performing data-agnostic property inference attacks.

However, despite of the difficulty in obtaining high-quality shadow models, data-agnostic
property inference attacks still have a high success rate. As shown in Table[5.6], with prediction
normalization, the attack accuracy reaches 99.4% on Census dataset, which demonstrates
that there is a severe risk in property inference even when the adversary does not have access

to any real data.

5.3.5 Results Analysis

Effectiveness of Prediction Normalization and Query Selection. To further un-
derstand the effectiveness of prediction normalization and query selection, we compared
the attack performance with 10 queries to the target model. Figure shows the attack
performance under different attack strategies (i.e., random sampling, query selection, and
query selection with prediction normalization). In almost all the settings, attacks with query
selection and prediction normalization achieve the highest accuracy, and the attack accuracy

is always higher than 80%. Interestingly, the effectiveness of query selection varies among

80

Attack Accuracy
e 2 2 =
=T} o

=]
[

0.0
Census CelebA Insta-London

= Random Sampling == Query Selection = Prediction Normalization

(a) Model Agnostic Attacks.

1.0

Attack Accuracy
s 2 =
1 El

=
L]

0.0

Census CelebA Insta-London
= Random Sampling == Query Selection = Prediction Normalization

(b) Data Agnostic Attacks.

Figure 5.1: Attack performance with 10 queries. The y-axis shows the attack accuracy,
while the x-axis shows the dataset on which the attack is performed. We compared the
attack performance under three strategies: query generation using random sampling , query
selection, and query selection with prediction normalization. Attacks with prediction
normalization have the highest accuracy for both model-agnostic adversary and
data-agnostic adversary.

datasets. On the Census dataset, query selection brings little performance gain compared to
using random sampling. However, on the Insta dataset, query selection increases the attack
accuracy by more than 0.3. One possible explanation for this scenario is that, there is a
larger variation among records in the Insta dataset (i.e. locations) compared to records in
the Census dataset (i.e. individuals). Therefore, selecting the right records to query is more

important when attacking the Insta dataset.

Difference between Shadow Models and Target Models. Figure [5.2] presents the
average test accuracy of target models and shadow models on their classification tasks.
Theoretically, when there is a larger difference between the test accuracy of shadow models
and target models, it is more challenging to achieve high accuracy in property inference attacks.
Our attack results with random sampled queries confirm with this hypothesis. However,
attack results with prediction normalization demonstrate that property inference attacks
can achieve high accuracy even with shadow models whose performances are significantly

different from the target models. This result demonstrates a broader and more severe risk of

81

1.0
0.9
g
2 0.8
g
o
A
E 0.7
=
0.6
0.5
Census CelebA Insta-London
Target Model
Shadow Model

Shadow Model (Different Structure)

|
[
|
mm Shadow Model (Different Data Distribution)

Figure 5.2: Average test accuracy of target models and shadow models on their

classification tasks. We compared the test accuracy between shadow models and target

models in different attacks. The x-axis represents the datasets, and the y-axis shows the test
accuracy of models on their classification tasks.

property inferences on machine learning models.

5.4 CONCLUSION

In this chapter, we proposed a novel black-box property inference attack against machine
learning models. Specifically, we designed three query generation methods to extract in-
formation for property inference. Our query selection and query crafting technique could
greatly reduce the number of queries required for the attack. Additionally, we developed
prediction normalization technique that allows an adversary to perform property inference
attacks without knowledge on the target model structure or the training data distribution.
We showed that our attacks are effective at inferring various data properties on multiple

real-world datasets.

82

CHAPTER 6: A HYPOTHESIS TESTING APPROACH TO SHARING
LOGS WITH CONFIDENCE

In this chapter, we introduce a game-based definition of the risk of exposing sensitive
information through released logs. We propose log indistinguishability, a property that is
met only when the logs leak little information about the protected sensitive attributes. We
design an end-to-end framework that allows a user to identify risk of information leakage
in logs, to protect the exposure with log redaction and obfuscation, and to release the logs
with a much lower risk of exposing the sensitive attribute. Our framework contains a set of
statistical tests to identify violations of the log indistinguishability property and a variety of
obfuscation methods to prevent the leakage of sensitive information. The framework views the
log-generating process as a black-box and can therefore be applied to different systems and
processes. We perform case studies on two different types of log datasets: Spark event log and
hardware counters. We show that our framework is effective in preventing the leakage of the
sensitive attribute with a reasonable testing time and an acceptable utility loss in logs. This
chapter is based on joint work with Le Xu and Carl A. Gunter [112].

Logs generated by systems and applications contain a wide variety of information such
as timestamps, the size of input and output files, and CPU utilization. This information
plays an important role in scientific research and analysis of production systems in industry.
Although some of these analyses can be done internally, there has been a growing need
to share logs with external analysts. For example, researchers rely on logs from real-life
production systems to understand the workload and performance of these systems, and large
companies hope to share this information so that they can guide academic work to be more
relevant to their technical challenges [9]. On the other hand, small companies often outsource
their log analysis process to third-party service providers such as Anomaly (anomaly.io) and
Anodot (anodot.com) to benefit from a larger log-database and cutting-edge technologies.

Despite the increasing need for log sharing, companies are often unwilling to share their
logs due to concerns about information exposure. Indeed, logs have the potential of revealing
sensitive information about the system or program that generated it, ranging from applications,
algorithms, to software and hardware configurations. For example, releasing traces of real-life
production workloads may result in the leakage of information about new products if the
prototypes of these products are using the same infrastructure [9].

Some sensitive information is directly saved into logs and can be protected by sanitization
or anonymization. For example, several attempts have been made to anonymize IP addresses

in network traces [43] 44]. However, log anonymization and sanitization is not enough to

83

anomaly.io
anodot.com

prevent the leakage of all the sensitive information. Since the metrics stored in logs are
highly correlated with various properties of the system and hardware, seemingly nonsensitive
metrics may reveal sensitive information. For instance, it is possible to infer information
about a physical machine (e.g. the amount of RAM, the number of cores) if both workload
information and performance metrics are released.

Differential privacy [6] has been shown to be effective in preventing side-channel leakages
from timing and message sizes [113], but these studies only cover a portion of the information
that is included in a log file. Meanwhile, achieving differential privacy on high-dimensional
complex data with a reasonable amount of noise remains an open research problem [114].

In contrast to the extensive research on log anonymization, there is a lack of a systematic
understanding of the sensitive information that can be indirectly inferred from a log file.
Yet, this indirect leakage has been a great concern of companies in terms of releasing
production logs. To address this concern, researchers at Google proposed several obfuscation
techniques [9], including sampling, scaling, and aggregation, to prevent the information
leakage. However, there are two key limitations in these techniques. First, the obfuscation
techniques are designed specifically to protect the traces from Google production clusters.
The effectiveness of these techniques need to be generalized to different protection criterion,
different systems, and different types of log files. Second, due to the lack of a clear protection
criterion, there is no quantitative analysis of the effectiveness of the obfuscation techniques.
Consequently, it is challenging for a user to understand the goal of each obfuscation techniques

and to adapt them for their own systems.

Our Contributions. This chapter aims to provide a framework that enables general-
purpose log sharing under user-specified protection requirements. This framework consists
of three major components: protection specification, indistinguishability tests, and log
obfuscation.

First, we formalize the risk of revealing sensitive information during log sharing under
the definition of log indistinguishability. We then enable users (log producers) to specify
some sensitive attributes to be protected. We model the process of inferring the sensitive
attributes from logs as a distinguishing game between the adversary and the user. The log
indistinguishability property is met only if the adversary gets little or no advantage over
random guessing in the distinguishing game. Log indistinguishability provides a formal
protection criterion for our log-sharing framework. The remainder of the framework is
designed around checking and ensuring this criterion in shared logs.

Second, we propose a set of indistinguishability tests to check whether a log file satisfies log

indistinguishability. Similar to the randomness tests for Psuedo-Random Number Generators

84

(PRNG), we use hypothesis tests to identify statistical patterns that may leak the sensitive
information in a log file. We design a variety of tests to cover different data types.

Third, we propose log obfuscation techniques to help mitigate the information leakage
identified by the indistinguishability tests. We design an iterative process between testing
and obfuscation to help users strike a balance between protection of the sensitive information
and the information loss incurred by obfuscation.

Finally, we evaluate our log-sharing framework under two case studies on different types
of log datasets: Spark event logs and hardware performance counters. We show that our
framework is effective in preventing the leakage of the sensitive attribute with a reasonable
testing time and an acceptable information loss in logs.

Our contributions can be summarized as follows:

e We introduce a game-based definition of the risk for exposing sensitive information

through log sharing.

e We design an end-to-end framework that allows users to identify risk of information
leakage in logs, to protect the exposure with log obfuscation, and to release the logs

with a much lower risk.

e With two case studies, we show that our framework is effective in preventing the leakage

of the sensitive attribute with a reasonable testing time and an acceptable utility loss.

6.1 LOG INDISTINGUISHABILITY

In this section, we formalize the risk of leaking sensitive information through shared
logs. First, we introduce the log sharing problem and the adversary model used in this
chapter. Then, we propose a game-based definition to describe the risk of leaking the sensitive

information. Finally, we provide an overview for our testing-based log obfuscation framework.

6.1.1 Problem Statement

Problem Setup. Suppose P is a log-generating process, and [is the log file produced by
P. We study what information can be inferred about P by observing [. We assume [is
parsed into a multidimensional time sequence vector consisting of numerical and categorical
data. There have been extensive prior studies on parsing unstructured logs into structured
sequential data [I15] 116].

85

The sensitive information of P can refer to any information that is related to the computa-
tion process and not directly stored in the log file. This information may include software
and hardware configurations, information about the physical machines (e.g. number of cores,
the amount of RAM), and workload information such as algorithms and hyperparameters. In
practice, the information that needs to be protected varies among applications. Therefore, we
allow the users to specify the sensitive information that needs to be protected. The remaining
information about P is considered to be nonsensitive and safe to release. The sensitive
information can be a combination of different attributes of P. However, for simplicity, we
view all the sensitive information as a single sensitive attribute, denoted by X, and X can be
a vector of different configurations. Let C' = {x; | i € Z",i < M} be a set of potential values
for X known by the adversary. We call C' the candidate set of X.

Adversary Model. We consider an external adversary that does not collocate with the
target program P and has no control over P. The adversary can only infer information by
analyzing the log files shared by the users, and users can sanitize or remove any sensitive
information before sharing the log files. We also assume that the adversary has access to all
the nonsensitive information about P and can reproduce the experiment on similar hardware

and software environments.

An Example. Suppose P is the process of training a deep learning model on a Spark [117]
system, and [is a parsed log file produced during the training process. The owner wants
to share the log file but is concerned that it may reveal the number of cores of the physical
machines used to train the models. In this case, the number of cores is the sensitive attribute
X while other information, such as the training algorithm and software configurations, is
nonsensitive.

We assume that the adversary knows a set of possible values for the number of cores (e.g.
C =1{1,2,4,8}). In addition, the adversary has access to a variety of machines with different
number of cores, the same system environment as the user (i.e. the Spark system), and the
training algorithm used by the user (program P). The goal of the adversary is to infer the
number of cores of the machines. To gather information for the inference, the adversary can
generate multiple log files (/) by running the process P on machines with different number of
cores. This strong adversary model allows us to provide protection against adversaries with

different background knowledge in practice.

86

6.1.2 Log Indistinguishability

In this section, we propose a game-based definition to formalize the inference process.
Based on this definition, we discuss the requirements for preventing the leakage of the sensitive

information.

The Distinguishing Game. Given a process P and a candidate set C', we model the
problem of inferring the sensitive attribute as the following distinguishing game between the

user and the adversary:

1. The user picks a value x € C' uniformly at random and generates a log file [.
2. The user invokes the adversary to obtain a guess =’ = A(l, C).

3. The attack succeeds if ' = x. Otherwise, the attack fails.

In the distinguishing game, the adversary aims to infer the sensitive attribute that is used
to produce the log file [. She has access to the candidate set C', which contains a set of
potential values for the sensitive attribute. The adversary obtains a guess ' € C' based on

some inference strategy A. The attack succeeds only if 2’ = x.

Log Indistinguishability. A program P is «y-log indistinguishable on C'if, for all Cpaiy € C
with |Chair| = 2, no adversary can succeed the above distinguishing game with probability
greater than (1 +7)/2 on Cpaj-

Log indistinguishability guarantees that no adversary can get a significant advantage over a
random guess in inferring the sensitive attribute among any pair of possible values. Therefore,
the protection holds even when the adversary is able to eliminate some possible values in C'.
Specifically, when v = 0, no inference strategy outperforms random guessing in winning the
distinguishing game, indicating that the log file [leaks no information about the sensitive
attribute.

6.1.3 Framework Overview

Figure (a) presents an overview of the log-sharing process, which is inspired by software
testing process. In software testing, a set of test modules are designed to identify violations of
user-specified requirements. Developers use the test modules to identify bugs in the software.
The software is ready to be deployed only if all tests are passed. This process may involve

several iterations between implementation and testing. Although software testing cannot

87

Parsed Log / @ I Protection
Specification

Too Much
Information Loss
Acceptable

Information Loss

Log Obfuscation | Indistinguishability
- Testing
Tests Failed

Tests

[Log Sharing] Passed

Figure 6.1: Framework Overview

guarantee the software to be bug-free, it is the major approach to detect implementation
errors and software defects.

Similarly, our testing-based framework aims to provide users an efficient and effective
approach to the identification and protection of information leakage in log files. The framework
checks an input log file against a protection criterion specified by the user. If the log file fails to
meet the criterion, the framework would provide the user with a set of applicable obfuscation
methods. The user decides whether the obfuscated log incurs too much information loss and
updates the protection specification accordingly. The log can be confidently shared when it
passes all the tests. Similar to software testing, indistinguishability testing cannot guarantee
that shared log leaks no information. However, it is a practical method to provide confidence
that sharing the log has low risk. Moreover, the framework views the log-generating process
as a black-box and can therefore be applied to different systems and processes. Below, we

briefly introduce each stage in the log-sharing framework:

1. Protection Specification. A user specifies the sensitive attribute X and the candidate
set C for a log-generating process P. The goal of the protection is to have P achieve

~-log indistinguishability on C' given a small constant ~.

2. Indistinguishability Testing (Section [6.2)). A set of indistinguishability tests are

performed to identify violations of the protection criterion.

3. Log Obfuscation (Section |6.3)). The log needs to be obfuscated if it fails any of
the indistinguishability tests. We study a range of existing obfuscation methods and

propose novel methods to protect the sensitive attribute.

88

4. Log Sharing. When all the indistinguishability tests are passed, the user can share

the log under a much lower risk of exposing the sensitive attribute.

6.2 INDISTINGUISHABILITY TESTS

In this section, we introduce a set of indistinguishability tests to identify potential violations
of v-indistinguishability. First, we introduce some general principals for designing indistin-
guishability tests. Then, we propose four types of tests that cover different information in

logs. Finally, we introduce methods to interpret and combine the results from different tests.

6.2.1 A Testing-Based Approach

Challenges in Obtaining Theoretical Guarantee. To obtain the theoretical guarantee
of v-log indistinguishability, one could either (i) prove that all the metrics influenced by the
sensitive attribute are removed or (ii) show that the obfuscation methods have effectively
hidden all the influence of the sensitive attribute. However, both approaches are challenging
in practice.

For the first approach, it is difficult to identify all metrics that are influenced by the sensitive
attribute. Moreover, there are complex correlations between the capacity of physical machines,
software and hardware configurations, and performance metrics. Therefore, obtaining a
theoretical proof on the influence of a software or hardware setting is generally impractical.
Theoretical analysis of a system usually relies on the assumptions that the data obtained
from the system follow a known distribution (e.g. Gaussian distribution) [118]. However,
many studies suggest that these assumptions do not hold in practice [119] 120].

For the second approach, most obfuscation methods suffer from the lack of certainty—one
cannot prove the effectiveness of commonly used obfuscation mechanisms [9]. Meanwhile,
obfuscation methods that do provide certainty for protection, such as differential privacy,

often reduces the accuracy in log analysis by adding too much noise.

A Testing-Based Approach. Although obtaining theoretical guarantee is challenging,
it is feasible to identify patterns in a log file that violate v-log indistinguishability. In
this section, we take a hypothesis testing approach to understand the risk of inadvertently
revealing the sensitive attribute by sharing log files. We design a set of indistinguishability
tests that provide a user with an empirical understanding on the risk of leaking the sensitive
attribute by sharing the log files. The tests do not modify the log files. Based on the test

89

results, a user can decide whether it is necessary to redact or obfuscate any metrics before
releasing the logs.

This testing-based approach is similar to running a randomness test for a Pseudo-Random
Number Generator (PRNG). The randomness test consists of a set of hypothesis tests that
identify non-random patterns in psuedo-random sequences. If the randomness test fails,
there is likely to be flaw in the design or implementation of the PRNG. Meanwhile, passing
the randomness test only gives a user higher confidence in the quality of a PRNG. There
is no guarantee for randomness even if the sequences pass all randomness tests. Similarly,
passing the indistinguishability tests do not theoretically guarantee v-log indistinguishability.
However, it gives the user a higher confidence (quantified by «) that the sensitive attribute is

unlikely to be leaked through the released log files.

6.2.2 Steps of Indistinguishability Testing

The goal of indistinguishability testing is to identify violations of y-log indistinguishability.
Therefore, the null hypothesis (#y) under test is that P is 7-log indistinguishable on a
candidate set C'. Associated with this null hypothesis is the alternative hypothesis () that
P is not 7-log indistinguishble. The testing process consists of three steps: (i) generation of

test logs, (ii) selection of mapping functions, and (iii) performing hypothesis tests.

Step 1: Generate Test Logs. The first step is to obtain a set of logs to perform the tests
on. For each sensitive attribute x; € C, a set of n parsed log files £; = {lz(k)) keZt k< N}

are generated by running the process for N times.

Step 2: Select Mapping Functions. Due to the high dimensionality of each parsed log
file [, directly performing hypothesis tests on [requires an impractically large number of
samples. Therefore, a mapping function f : 1+ wu is used to map [to a lower-dimensional
vector v on which hypothesis tests can be efficiently performed. For example, the mapping
function fiengtn returns the length of a log file (i.e. number of measurements over time). To
improve test coverage, one should select a variety of mapping functions that cover different

aspects of the log.

Step 3: Perform Hypothesis Tests. Finally, for each pair of z;,,z;, € C, the user

obtains two groups of outputs:

U

)

Wec,} v ={r (i)

1M ¢ E} . (6.1)

90

A hypothesis test T is performed on U;, and U, to determine whether the output of the

mapping function f is sufficient to distinguish between x;, and z;,.

Each indistinguishability test is a combination of a mapping function f and a hypothesis
test T'. In the following subsections, we propose a test suite consisting of different pairs of
(f,T) that cover various aspects of a log file. The test suite can be used similarly to the
randomness test suite [121]. Each test returns an independent result on whether there is a
risk of information leakage. In Section we propose an analytical approach that combines

the test results and leads to a conclusion on the risk of revealing the sensitive attribute.

6.2.3 Designing Indistinguishability Tests

An indistinguishability test consists of two parts: a mapping function f that extracts
information from an parsed log file [and a hypothesis test T" that checks whether the
extracted information leaks the sensitive attribute. In the following subsections, we propose
four different types of mapping functions f and associate them with different hypothesis tests
T. Specifically, when v = 0, we perform kernel tests [122] and x? tests [123] on the outputs
of f. When v > 0, we connect y-indistinguishability with e-differential privacy and perform
differential privacy tests [124].

Mapping Functions

There are infinite number of functions that could extract useful information from a parsed
log file, and it is impractical to design a “complete” set of mapping functions to cover all
possible information leakage. Therefore, to strike a balance between the efficiency and
completeness, we propose a set of mapping functions F that meets two criteria: (i) each
mapping function f € F returns a low-dimensional numerical/categorical vector; (ii) different
mapping functions cover different aspects of [. The first criterion ensures that hypothesis
tests can be efficiently performed on the output of f, while the second criterion reduces
test redundancy and improves test completeness. This idea is similar to performing a set of

randomness tests, where each test checks a different statistical pattern in a random sequence.
Length. The length of a parsed log file [refers to the number of measurements that have

been recorded in the log. To extract this information for testing, we define a length mapping

function fiengtn that returns the length of an input log file [.

91

Frequency (Categorical) Since there are few hypothesis tests that support comparison
between multi-dimensional categorical vectors, we independently compare each categorical
metric in [. A frequency mapping function freq ;i returns the count of each value for the
j-th categorical metric in the time window [¢,t + w). We use a set of frequency mapping
functions to extract the information from a sequence of non-overlapping time windows:
Fireqjmw = Lftreqjtaw | t = kw,k € Nk < L/w}, where L is the length of the log file. The
output of each mapping function f € Fpeq jw is a frequency vector containing the count for
each value of the categorical metric. The window size w can be adjusted to balance between
testing time and testing strength. A smaller w allows the user to identify minor differences
between two sets of logs, but requires more tests to be performed. When w = 1, we perform

one test on each measurement in /.

Moving Average (Numerical). When analyzing numerical metrics, we combine them into
a multi-dimensional time series, and apply time series analysis techniques. The mowving average
technique replaces each element in a time series with the average of surrounding elements to
eliminate local variations. Similarly, given a series of numerical metrics, we propose a moving
average mapping function fave+ . that calculates each metric’s average value in the time window
[t,t +w). We use a set of moving average mapping functions to extract the information from
a sequence of non-overlapping time windows: Faygw = { faverw |t = kw,k € Nk < L/w}.
The output of each mapping function f € F,, . is a multi-dimensional numerical vector

whose dimension equals to the number of numerical metrics in the log.

Moving Difference (Numerical). Local variations in a time series could also leak sen-
sitive information. A common technique to study the local variation is to calculate the
difference between consecutive measurements. Therefore, we propose a moving difference
mapping function faig, that returns the difference between a measurement at time ¢ + 1
and a measurement at time ¢ for all the numerical metrics. We use a set of moving differ-
ence mapping functions to extract the difference between each consecutive measurements:
Fait = {faigs | t € N,t < L — 1} . Similar to the moving average function, the output of each
mapping function f € Fgg is a multi-dimensional numerical vector whose dimension equals
to the number of numerical metrics in the log. When L is large, performing tests on the
output of each function in Fgig; can be time-consuming. Therefore, we pick s mapping

functions from Fgig uniformly at random, and obtain Fuigs C Fai

92

Considerations for Choosing Hypothesis Tests

For each mapping function f, we obtain two sets of outputs U;, and U;, (E.q. that
are associated with sensitive attributes x;, and x;, respectively. The next step is to select a
two-sample hypothesis test T that takes U;,, U;, as inputs and identifies violations of vy-log
indistinguishability. The hypothesis test T" should meet two criteria:

1. Correctness: If the log-generating process P is vy-log indistinguishable, the probability

of rejecting the null hypothesis under significance level a should be no greater than «.

2. Power: Among all known tests that satisfy the correctness criterion, the test with the

strongest power should be selected.

The correctness criterion minimizes the type I error—the probability of rejecting log files
that satisfy y-indistinguishability. This criterion guarantees usability of the test. In software
testing, if a unit test often fails on correct code, its result will be ignored by developers.
Similarly, if a hypothesis test has a large type I error, the test result becomes unaccountable.
To guarantee the correctness criterion, the null hypothesis of 7' (H) needs to be a necessary
condition for ~-log indistinguishability (i.e. Ho should always hold when P satisfies 7-log
indistinguishability).

The power criterion minimizes the probability of accepting log files that violate -
indistinguishability. If the process P passes a test with stronger power, the sensitive attribute

is less likely to be leaked.

Tests of 0-Log Indistinguishability

When P is 0-log indistinguishable on {x;,, x;,}, the outputs U;,, Uy, of any mapping function
should have the same distribution. Otherwise, the difference between U;, and U;, would not
allow the adversary to gain advantage in distinguishing between z;, and z;,. Therefore, given

two samples U;,, U;,, the null hypothesis under test is
Ho : U, U, have the same distribution.

There are several hypothesis tests that can check whether two samples have the same
distribution, such as the t-test [125], the KS test [126], x* test [123], and kernel two-sample
test [122]. Some of these tests, such as t-test, assume that the two samples come from a
known distribution (e.g. normal distribution). Since these assumptions do not always hold in

practice [120], we choose among non-parametric tests that do not rely on any assumptions

93

F Size of 7 | Output Format | Test
Length 1 Integer Kernel Test
Frequency [L/w] Count x> Test
Moving Average [L/w] Numerical vector | Kernel Test
Moving Difference | s Numerical vector | Kernel Test

Table 6.1: Mapping Functions in Indistinguishability Tests.

about the underlying distribution of the samples. Specifically, we use x? tests for categorical
metrics and kernel two-sample tests for numerical metrics because they are shown to be
more powerful than other tests that serve the same purpose [122]. Additionally, since kernel
two-sample tests support comparisons between multi-dimensional numerical vectors, the
outputs from multiple numerical metrics can be tested together. This approach could identify
potential information leakage from the correlation between different metrics.

Table [6.1] shows the association between different mapping functions and the hypothesis
tests to be performed on the outputs of these functions. Based on the types of mapping
functions, we name the indistinguishability tests length test, frequency test, moving

average test, and moving difference test.

DP Test

If the user is willing to tolerate a small amount of information loss when releasing the
log, he could adjust the risk of revealing the sensitive attribute by setting the constant .
However, when v > 0, the tests in Section are no longer applicable because U;, and
Ui, could come from slightly different distributions. Hence, we use DP tests [124] to check
7-log indistinguishability with v > 0. Consider a mechanism Mp; : — u consisting of two
steps: (i) generate a parsed log file [by running P with sensitive attribute x; (ii) compute the

output u = f(I). The following theorem shows the connection between ~-indistinguishability
and DP.

Theorem 6.1. If P is y-indistinguishable on C, for all mapping function f, Mpy is e-
differentially private on any pair of x;,,x;, € C, where ¢ =log ((1+7)/(1 —7)).

Therefore, the indistinguishability test fails if the DP test fails on any pair of U;,, U,,
generated by the mapping functions in Section [6.2.3] DP tests are applicable to both
categorical and numerical data and can be performed on the outputs of all mapping functions.

However, since the DP test is an adapted form of binomial tests [124], it is not as powerful

as the tests listed in Section [6.2.3] Consequently, there is a higher risk that the tests could

94

incorrectly accept log files that are not y-indistinguishable. Adapting more powerful statistical

tests for DP and v-log indistinguishability is nontrivial and retained for future work.

6.2.4 Interpretation of Test Results

Similar to a randomness test suite [121], an indistinguishability test suite consists of
multiple tests that cover different aspects of a log file. Each test has a unique mapping
function f that extracts some particular information from the log. Specifically, the mapping
functions either (i) belong to different mapping function sets F (Table [6.1]); or (ii) extract
information from different sub-sequences in [(e.g., mapping functions in F,y,,, calculate the
moving average in different time windows). Based on these two differences, we introduce two

methods to combine multiple test results.

Combining Test Results over Different Sub-Sequences Suppose (p1,p2,...,pr) iS a
sequence of p-values returned by performing the same type of indistinguishability test on
different sub-sequences of the logs. Under the null hypothesis (i.e., the log-generating process
is v-log indistinguishable), the p-values should be uniformly distributed [127]. We use the
Fisher’s method [128§] to test the uniformity of the p-values.

Combining Test Results over Different Mapping Function Sets. By combining
the results of tests performed on different sub-sequences, we obtain one p-value associated
with each mapping function set. Since different mapping function sets focus on different
metrics/statistics in the logs, each set represents a unique attack surface for the adversary.
For example, if the test associated with the length mapping function fails, it is likely that the
adversary could infer the sensitive attribute based on the length of the log. Therefore, the
p-value associated with different mapping function sets should be interpreted independently.
If any of the p-value is smaller than the significance level «, there is a risk of revealing the
sensitive attribute. Additionally, failed tests also indicate the statistics associated with the
information leakage. In Section we introduce obfuscation methods to mitigate the risk
identified by each test.

6.3 PROTECTIONS WITH LOG OBFUSCATION

In practice, companies often apply obfuscation techniques to hide sensitive information
in log. For example, Reiss et al. [9] proposed log-obfuscation techniques for releasing the

Google’s cluster traces. However, their approach is limited by the lack of understanding on

95

% Parsed Log /

|
Failed

Passed Je |

Frequency Failed | Generalization
Test | Suppression

Passed y¢ |

Moving Failed Scaling /
Average Tes Probability Integral
Transformation /
Passed Noise Addition
Failed I
Moving ailel .
Aggregation

Release obfuscated log /I’

Figure 6.2: Testing-Based Log Obfuscation Framework

the protection goal of each obfuscation technique. Therefore, it is unclear whether these
techniques are effective in hiding the sensitive information and whether it is necessary to
apply them under a different system or a different protection goal.

In this section, we combine the indistinguishability tests proposed in Section with
different obfuscation techniques. The results of the tests suggest whether a specific obfuscation
technique would be helpful in protecting the user-specified sensitive attributes. Additionally,
we find out that existing obfuscation techniques are not sufficient to hide all the information
identified by our indistinguishability tests and propose two novel obfuscation techniques:
probability integral transformation and noise addition. By combining these techniques, we
propose an end-to-end framework (Figure to help users identify sources of potential
information leakage and mitigate it. Specifically, we use sampling to mitigate leakage identified
by length tests, generalization and suppression to mitigate leakage identified by frequency
tests, and aggregation to mitigate leakage identified by moving difference tests. Meanwhile, a
moving average test could identify leakage from three possible sources: (i) the magnitude of
a numerical metric; (ii) the distribution (e.g. variation and skewness) of a numerical metric;
(iii) the correlations between different numerical metrics. Therefore, we use three different
obfuscation methods to mitigate the leakage associated with each source: (i) sampling, (ii)

probability integral transformation; (iii) noise addition.

Sampling. Sampling refers to the process of selecting a subset of measurements in a log file.
For example, the user could release a set of measurements uniformly sampled from the whole

log file.

96

Generalization and Suppression. Generalization and suppression are often used to hide
sensitive information in categorical attributes [5]. They can be applied to categorical metrics

when information leakage is identified by a frequency test.

Scaling. Scaling could mitigate the information leakage from the magnitude of a numerical
metric. For example, in the released Google cluster trace dataset, Reiss et al. [9] re-scaled

the machine capacity data to guarantee that the maximum observed value is 1.

Probability Integral Transformation. Suppose X is a random variable with cumulative
distribution function (cdf) Fx. Probability integral transformation (PIT) converts X to
a different random variable Y with cdf Fy. It relies on the property that Z = Fx(X)
follows a uniform distribution. Therefore, the random variable Y = Fy,'(Fx (X)) follows the
distribution defined by Fy.

Suppose Si, 59,53 are three sets of measurements obtained under sensitive attributes
T1, X9, xr3 respectively. To perform the obfuscation, one needs to first estimates the empirical
cdf Finix of S; U Sy U Ss. Then, for each set S; (i € {1,2,3}), by applying PIT on each value
in S;, one obtains obfuscated measurements that follow the new distribution defined by cdf
FlLix. PIT mitigates the information leakage from the distribution of a numerical metric by
ensuring that the measurement taken under different sensitive attributes share the same

distribution.

Noise Addition. The key limitation of PIT is that it needs to be independently applied
to each numerical metrics. Hence, PIT could not prevent information leakage from the
correlation between different attributes. For example, suppose two numerical metrics m; and
ms have a positive correlation. This correlation would be retained after PI'T. Therefore, if
this correlation leaks the sensitive attribute, one needs to add noise to both m; and ms to
hide it. We add Gaussian noise that follows the distribution N(0,0?), and determined o

based on the result of the moving average test.

Aggregation. Failing of the moving difference test indicates that the local variations in the
numerical metrics might reveal the sensitive attribute. Hence, one could use aggregation
techniques to prevent the leakage. For example, instead of revealing all the measurements,
one could calculate the average of a measurement over a fixed-length time window. The

aggregation technique eliminates local variations, but preserves the trend of the metrics.

6.4 CASE STUDIES

In this section, we performed case studies on two log datasets: a Spark [117] event log dataset

and a hardware performance counter (HPC) dataset collected by Ganju et al. [129]. Similar

97

Tests Length Frequency Moving Average Moving Diff.
0 0 0.2 0 0.2 0 0.2 0 0.2

p-values 081 0.75 089 1.00 0.64 1.00 0.62 1.00
Testing Time (s) <0.01 0.22 0.03 13.05 5.14 52.32 4.74 66.60

Table 6.2: Test Correctness and Performance Analysis on Spark Event Logs.

Tests Length Test Frequency Test

0 0 0.2 0.4 0 0.2 0.4

No Obfuscation <0.01 <0.01 <0.01 - - -
Sampling 099 0.77 0.90 0.93 1.00 1.00
Sampling + Scaling 0.99 0.78 0.91 0.93 1.00 1.00
Sampling + Scaling + PIT 0.99 0.79 0.93 0.93 1.00 1.00

Tests Moving Average Test Moving Difference Test

y 0 0.2 0.4 0 0.2 0.4

Sampling <0.01 <0.01 <0.01 - - -
Sampling + Scaling <0.01 <0.01 0.17 - - 0.69
Sampling + Scaling + PIT 0.27 1.00 1.00 1.00 1.00 1.00

Table 6.3: Effectiveness of Different Obfuscation Techniques on Spark Event Logs.

to Google cluster traces [9, [130], Spark event logs provides a variety of performance counters
and workload traces. These traces are extensively used to perform performance analysis
and modeling [I31), 132] for different purposes such as performance prediction, diagnosis
and configuration selection[133] [134] [I35]. The HPC dataset contains measurements about
hardware events on a computer system. These measurements have been demonstrated to be
useful in detecting malware [136], side-channel attacks [I37], and cryptomining behavior [138§].
These two case studies cover different data types and different correlations between the
sensitive information and the logged metrics.

We evaluated our framework from four aspects: the correctness of the tests, the effectiveness
of obfuscation, the risk under attacks, and the utility of the obfuscated logs. Specifically, our
evaluations on the obfuscation techniques focused on the two novel techniques proposed in
this chapter: probability integral transformation (PIT) and noise addition. We also used
sampling and scaling to mitigate the information leakage. Our case studies did not cover

generalization, suppression, and aggregation.

98

6.4.1 Spark Event Log Dataset

Experimental Setup Spark is an open-source distributed system for large data analysis. A
Spark application is automatically divided into several stages, each consisting of multiple tasks
that can be executed in parallel. A Spark event log records information about each individual
task in a Spark application. We adapted Spark trace analysis tool [I31] to parse the event
logs into structured multidimensional sequential vectors, where each data point represents a
different task. Each parsed log file contains 15 numerical metrics and 4 categorical metrics [1]
The log-generating process P was a Spark application for training a multi-layer perceptron
(MLP) model using the SparkML library. The training data were randomly generated using
the sklearn library. The training dataset contained 10,000 records with 100 features and 2
classes. We considered hardware information as the sensitive attribute. Specifically, we ran

the same process P on two clusters of machines provided by Emulab (emulab.net):

e Cluster 1: 10 Dell Poweredge R430 1U servers each with two 2.4 GHz 64-bit 8-Core
processors and 64GB RAM;

e Cluster 2: 10 Dell PowerEdge 2850s each with a single 3GHz processor and 2GB
RAM.

The protection goal was to prevent the adversary from correctly guessing the cluster on which
P was running.

On each cluster, we obtained 100 log files by repeatedly running P under the same settings.
L, denotes the set of logs obtained on Cluster 1, and £, denotes the set of logs obtained
on Cluster 2. Since parallel tasks of the same job often share similar system metrics (e.g.
running time, 1/0 size), we randomly sampled 1 task per stage when performing the moving
average tests and the moving difference tests to prevent test redundancy. The sampled time
sequences have a maximum length of 48. We set the window size w = 1 for frequency tests
and moving average tests. All the tests were performed locally on a laptop with single 2.7

GHz Intel Core i5 processor.

Correctness and Performance We performed experiments to demonstrate that the
indistinguishability tests have low testing overhead, and the tests could stably accept the null
hypothesis H, (i.e., P is v-log indistingsuihable) when H, holds. An indistingusihability test
is correct only if it rejects the null hypothesis with a low probability (Pr[p < a | Ho] <)
when P satisfies v-log indistinguishability. To check the correctness of the tests, we performed

the tests on two groups of logs generated on the same cluster. Specifically, we randomly

LA complete metric list is available on spark.apache.org/docs/latest/monitoring.html

99

emulab.net
spark.apache.org/docs/latest/monitoring.html

BN Cluster 1 EN Cluster 1 B Cluster 1
Cluster 2 Cluster 2 Cluster 2

Frequency

g & B 8
Frequency

<] -]
Frequency

B 3

1
=
-
)
=

=]

=

-=r T T T T o o
4000 G000 BOOO 10000 12000 14000 4000 OO0 8000 10000 4000 G000 BODO 10000 12000 14000
executor run time (ms) exacutor run time (ms) executor run time (ms)

(a) Original (b) Scaled (c) Scaled + PIT

Figure 6.3: Analysis on Probability Integral Transformation (PIT).

divided £; into two groups G; and G5, each containing 50 parsed log files. We performed
indistinguishability tests on (G; and G5 with the null hypothesis that G; and G4 are y-log
indistinguishable. We repeated the testing process for 10 times with o = 0.01. In all the
10 repetitions, the log files passed the indistinguishability tests for both v = 0 and v = 0.2.
Table presents the average p-values for each test.

Additionally, we evaluated the average testing time for each test (Table . The total
test time is around 10 seconds when v = 0 and around 2 minutes when v > 0. When v = 0,
the tests took less time because x? tests and kernel tests are more efficient than DP tests on

multi-dimensional data.

Testing-Based Obfuscation We performed different obfuscation techniques based on
the test results and demonstrated that these techniques could effectively reduce the risk of
information leakage. We evaluated the log-sharing framework on the two sets of logs £, and
L obtained on different clusters. We followed the iterative process shown in Figure[6.2} when
the logs failed an indistinguishability test, we applied obfuscation techniques and repeated
the failed tests; when the logs passed a test, we moved to the next test. The logs could be
shared after all tests are passed.

We applied three different obfuscation techniques. When the length test failed, we sampled
3 parallel tasks per stage and discarded measurements of remaining tasks in the log file.
When the moving average test failed, we scaled the numerical metrics based on the following

strategy: (i) we calculated the medians m; and ms in £1 and £, for each numerical metric;

mi+mo

(ii) we scaled each numerical metric in log £; by multiplying it with a constant ¢; = ™1t

This scaling strategy ensures that numerical metrics in £; and £, share the same median
(%) while preserving the relative magnitudes of these metrics. If the scaled logs still
failed the moving average tests, we further applied PIT to ensure that the metrics in £, and
L5 share the same distribution (Section [6.3).

100

We performed indistinguishability tests with o = 0.01 under three different settings: (i)
v =0, (i) v = 0.2, and (iii) v = 0.4. Based on the definition of v-log indistinguishability, the
settings could be translated into three levels of protection objectives against an adversary
trying to infer the sensitive attribute: (i) the adversary’s performance should be equivalent to
random guessing; (ii) the attack accuracy should be lower than 0.6; (iii) the attack accuracy
should be lower than 0.8.

Table presents the p-value of each test under different v and obfuscation techniques.
The values in bold indicate that the obfuscated logs passed all tests (i.e., p > 0.01) and could
be shared. When v = 0 and v = 0.2, sampling, scaling, and PIT were required to achieve the
protection criteria. Meanwhile, when v = 0.6, PI'T was not needed to ensure the protection
criterion.

When no obfuscation was applied, logs generated on Cluster 1 and Cluster 2 had different
length. Since machines in Cluster 1 have more processors compared to machines in Cluster 2,
they could support more parallel tasks, which resulted in a larger log file. This leakage was
mitigated by sampling a subset of tasks per stage.

However, after sampling, the logs still leaked sensitive information through the magnitude
of numerical metrics. Since the same job was divided into more parallel tasks on Cluster
1, tasks running on Cluster 1 had shorter duration and smaller I/O size. An adversary
could use this information to infer the cluster on which the logs were generated. Scaling was
not sufficient to prevent the leakage because the task metrics on Cluster 1 and Cluster 2
were different not only in their magnitudes but also in the variation and skewness of their
distributions.

Figure [6.3[shows the distributions of executor run time (ms) of Task 0 in Stage 0. Prior
to the obfuscation (Figure [6.34), the distributions were different in two aspects: (i) tasks
on Cluster 1 had shorter runtime than tasks on Cluster 2; (ii) runtime on Cluster 2 had a
right-skewed distribution, indicating that there were more stragglers (i.e., tasks with runtime
larger than 1.5x the median runtime). The scaled metrics (Figure shared similar
magnitudes, but did not eliminate the stragglers on Cluster 2. Therefore, an adversary could
infer the sensitive information by identifying the stragglers in the log file. After applying
PIT (Figure [6.3d), the number of stragglers increased on Cluster 1 and decreased on Cluster
2. Since the two sets of obfuscated logs shared the same distribution, an adversary could no

longer infer the cluster on which the logs were generated.

Risk under Different Attacks We designed three different attacks to verify the test
results. We showed that an adversary could correctly infer the sensitive attribute when

the tests failed. Moreover, when the logs were obfuscated and passed the tests, the attack

101

Attack Acc. # of Correct Ans.
MLP NN Length <10 10-15 16

No Obfuscation 1.00 1.00 1.00 0 0 100%
Sampling 0.95 1.00 0.55 0 27% 73%
Sampling + Scaling 0.58 0.65 0.55 0 27.5% 72.5%

Sampling +
Scaling - PIT 043 055 055 0.5% 30.5% 69%

Table 6.4: Attack and Utility Analysis on Spark Logs.

accuracy dropped to around 0.5.

Specifically, we modeled an attack as a classification problem with the parsed log files as
input features and the cluster information as class labels. We randomly divided £ U L5
into equal-sized datasets Ly and L. each containing 50 parsed logs from Cluster 1 and
50 parsed logs from Cluster 2. We assumed that an adversary had access to the labels (i.e.
cluster information) for logs in Ly, and wanted to predict the labels of logs in Lies. In
practice, an adversary could obtain £;,.;, and their labels by running P on her own machines,
and L. represents the logs shared by the users.

We trained three different attack classifiers: (i) a multi-layer perceptron (MLP) model
with 100 hidden units; (ii) a nearest neighbor (NN) classifier; and (iii) a length classifier
that predicts the cluster label based on the length of a parsed log file. Table shows the
attack accuracy on L. of the three attacks. Without obfuscation, all attacks achieved high
accuracy. Sampling could only protect against the length attack, and scaling could reduce the
attack accuracy to below 0.7. This result complies with our previous test results for v = 0.4.
After PIT, all attack accuracy dropped to around 0.5, indicating that the obfuscated logs
were likely to satisfy 0-indistinguishability.

Utility of Obfuscated Logs We demonstrated that the obfuscated logs were still useful
in helping users identify bottlenecks of the system. We performed the analysis proposed
by Ousterhout et al [I3T] to study the utility of obfuscated logs. The goal of the analysis
is to identify performance bottlenecks in a system. It estimates how long the application
is blocked on a certain aspect of the system (e.g. network, computation, 1/O). To get a
quantitative understanding of the analysis results, we designed 16 questions that could be

answered based on the analysis results:
(1) What is the bottleneck of the system?

(2-4) Is blocked time on computation greater than 20%/50%/80%7?

102

(5-7) Is blocked time on disk greater than 20% /50% /80%7
(8-10) Is blocked time on GC greater than 20%/50%/80%?
(11-13) Is blocked time on network greater than 20%/50%/80%?

(13-15) Is blocked time on stragglers (i.e., tasks with runtime larger than 1.5x the median
runtime) greater than 20%/50% /80%?

(16) What is the number of stragglers?

We performed the analysis for each [€ £, U L5, and compared the answers obtained from
original logs and obfuscated logs. Table presents the number of questions that could be
correctly answered on the obfuscated logs. After obfuscation, the analysis process could still
correctly answer all the questions on around 70% of the obfuscated log files. Among the 16
questions, the questions about stragglers (Q13-Q16) were most likely to be influenced by
the obfuscation techniques. Since tasks on Cluster 2 had more stragglers compared to tasks
on Cluster 1, giving out accurate information about the stragglers would inevitably leak
information about the clusters. Therefore, there is a trade-off between hiding the sensitive
information and retaining useful information in obfuscated logs. Our testing-based framework
provides a better understanding on this trade-off by helping users intuitively understand the

effectiveness of different obfuscation techniques.

6.4.2 Hardware Performance Counter Dataset

Experimental Setup In this case study, we studied the risk associated with sharing HPC
datasets. For example, suppose a small company wants to detect whether its employees have
been using the company resources for covert cryptomining. The company could outsource
this detection to a third-party service by sharing its HPCs. However, the company might be
concerned about leaking information about the security vulnerabilities of its machines. In
this case, the sensitive attribute to be protected is whether the machines are patched against
Spectre [139] and Meltdown [140] attacks.

Our dataset [129] includes 22 different hardware counters (i.e., numerical metrics) for a
variety of cryptomining and non-mining applications. Each record in the dataset contains
3-5 measurements taken at an interval of 2 seconds. The dataset contains two parts: the
unpatched subset was generated by running applications on a machine vulnerable to Spectre
and Meltdown attacks; the patched subset was generated by running the same applications

on the same machine after the patches have been installed. We generated £, and L,

103

Tests Length Moving Average Moving Difference

5 0 02 0 0.2 0 0.2
p-values 1.00 1.00 0.71 0.99 0.67 0.98
Time (s) <0.01 0.04 0.66 15.01 0.53 12.31

Table 6.5: Correctness and Performance on HPCs.

Tests Length Moving Moving
Average Difference

y 0 0.2 0 0.2 0 0.2

No Obfuscation 0.89 1.00 <0.01 <0.01 - -

Scaling 0.89 1.00 <0.01 <0.01 - -
PIT 0.89 1.00 <0.01 0.99 - 0.72
Scaling + PIT 089 1.00 <0.01 0.99 - 0.81

PIT + Noise 0.89 1.00 0.02 092 0.48 0.86

Table 6.6: Effectiveness of Different Obfuscation on HPCs

by randomly sampling from the patched and unpatched subsets respectively. £, and L,
both contain 50 records from cryptomining applications and 50 records from non-mining

applications. The sampled time sequences have a maximum length of 48.

Correctness and Performance We demonstrated that the tests were correct and they
incurred little testing overhead on the HPC dataset. We randomly divided £, into two
groups GG; and G5. We performed indistinguishability tests on G; and Gy with the null
hypothesis that they are y-log indistinguishable with v = 0 and v = 0.2. We repeated the
testing process for 10 times with o = 0.01. In all the 10 repetitions, the indistinguishability
tests were passed for both v =0 and v = 0.2. Table presents the average p-values and

running time for each test.

Testing-Based Obfuscation We showed that the obfuscation techniques that were effec-
tive on the Spark event logs could not protect the HPC dataset, but the sensitive information
could be effectively hidden by the noise addition technique we proposed.

We applied three obfuscation techniques to protect the HPC dataset: scaling, PIT, and
noise addition. Table shows the testing results after each obfuscation technique was
applied. We performed indistinguishability tests with e = 0.01. The values in bold indicate
that the obfuscated logs passed all tests and could be shared. Unlike the Spark event log

dataset, the HPC dataset could not be protected by scaling because the main source of

104

MLP Attack NN Attack Utility

No Obfuscation 0.60 0.80 0.96
Scaling 0.95 0.93 0.97
Scaling + PIT 0.60 0.58 0.91
PIT + Noise 0.47 0.57 0.90

Table 6.7: Attack and Utility Analysis on Obfuscated HPCs.

information leakage is the distribution, rather than magnitude of the performance counters.
For example, compared to unpatched machines, patched machines have a larger variation in
the number of executed instructions per second. Moreover, the sensitive attribute in the HPC
dataset could be inferred through the correlations between different performance counters, so
PIT is not sufficient to protect the information leakage.

To hide the correlations that could leak the sensitive attribute, we added Gaussian noise
N(0,0?) to each measurements in the HPC dataset. To ensure that the noise we added have
relatively same magnitude as the original value, we normalized the metrics prior to noise
addition and scaled them back after noise was added. We gradually increased o until the
moving average test was passed. With ¢ = 0.09, the moving average test was passed with
p = 0.02. To reduce false negatives (i.e., incorrectly accept the null hypothesis), we repeated

the testing process for 10 times and ensured that the test was passed in all the repetitions.

Risk and Utility of Obfuscated Logs We showed that the noise addition technique was
effective in protecting against the attacks and incurred little utility loss on the HPC dataset.

Using the techniques in Section [6.3] we trained two attack classifiers to predict whether
the machines were patched: (i) a multi-layer perceptron (MLP) model with 100 hidden units
and (ii) a nearest neighbor (NN) classifier. We did not evaluate the length attack because all
the records in the HPC datasets have similar length.

We evaluated the utility of the obfuscated dataset using an MLP model with 100 hidden
units. The model was trained to predict whether a record was generated by a cryptomining
or non-mining application. Table presents the attack accuracy and utility under different
obfuscation techniques. The attack accuracy conforms with the test results presented in
Table [6.6] the obfuscation techniques reduced the maximum attack accuracy from 80% to

57% but still preserved a 90% accuracy in classifying mining and non-mining applications.

Analysis on Noise Addition We showed that PIT could effectively reduce the amount
of noise required for protecting the sensitive information. Noise addition could mitigate any

information leakage if the standard deviation of the noise (o) is large enough. However,

105

No Obfuscation Scaling PIT

Omin 0.86 0.89 0.09
Utility 0.62 0.54 0.90

Table 6.8: Obfuscation Prior to Noise Addition.

adding noise with large ¢ would incur huge utility loss on the logs. To minimize the utility
loss, we applied other obfuscation techniques such as scaling and PIT prior to noise addition.
Table presents the effectiveness of these techniques in reducing the amount of required
noise to pass the moving average test. By applying PIT prior to noise addition, we increased

the utility accuracy by around 30%.

6.5 CONCLUSION

We have proposed a test-based framework to identify and mitigate the risk of information
leakage in general-purpose log sharing. Our framework contains a set of statistical tests
to identify violations of the log indistinguishability property and a variety of obfuscation
methods such as probability integral transformation and noise addition. We tested our
framework on Spark event logs and logs generated by a hardware performance counter. The
framework effectively identified risks in information leakage and mitigated the risks with two

obfuscation techniques.

106

CHAPTER 7: SCALABLE DP GENERATIVE MODEL VIA PATE

In this chapter, we present a novel approach G-PATE for training a scalable differentially
private data generator, which can be used to produce synthetic datasets with strong privacy
gquarantee while preserving high data utility. Our approach leverages generative adversarial
nets to generate data and exploits the PATE (Private Aggregation of Teacher Ensembles)
framework to protect data privacy. Compared to existing methods, our approach significantly
improves the use of privacy budget. This is possible since we only need to ensure differential
privacy for the generator, which is the part of the model that actually needs to be published
for private data generation. In particular, we connect a student generator with an ensemble
of teacher discriminators and propose a private gradient aggregation mechanism to ensure
differential privacy on all the information that flows from the teacher discriminators to the
student generator. Theoretically, we prove that G-PATE ensures differential privacy for the
data generator. Empirically, we provide thorough experiments to demonstrate the superiority
of our method over prior work on both image and non-image datasets. This chapter is based on
joint work with Boxin Wang, Zhuolin Yang, Kaizhao Liang, Shuang Yang, Bhavya Kailkhura,
Carl Gunter, and Bo Li [141).

Machine learning has been applied to a wide range of applications such as face recognition [1],
autonomous driving [2], and medical diagnoses [3] 4]. However, most learning methods rely
on the availability of large-scale training datasets containing sensitive information such as
personal photos or medical records. Therefore, such sensitive datasets are often hard to be
shared due to privacy concerns. To handle this challenge, data providers sometimes release
synthetic datasets produced by generative models learned on the original data. Though recent
studies show that generative models such as generative adversarial networks (GAN) [142]
can generate synthetic records that are indistinguishable from the original data distribution,
there is no theoretical guarantee on the privacy protection. While privacy definitions such
as differential privacy [143] and Rényi differential privacy [144] provide rigorous privacy
guarantee, applying them to synthetic data generation is nontrivial.

Recently, two approaches have been proposed to combine differential privacy with synthetic
data generation: DP-GAN [36] and PATE-GAN [37]. DP-GAN modifies GAN by training
the discriminator using differentially private stochastic gradient descent. Though it achieves
privacy guarantee due to the post processing property [38] of differential privacy, DP-GAN
incurs significant utility loss on the synthetic data, especially when the privacy budget is low.
In contrast, PATE-GAN trains differentially private GAN using the PATE mechanism [145].

107

Specifically, it first trains a set of teacher discriminators and then train a student discriminator
based on the trained ensemble of teacher discriminators. To ensure differential privacy, the
student discriminator is only trained on records that are produced by the generator and
labeled by the teacher discriminators. The key limitation of this approach is that it relies on
the assumption that the generator would be able to generate the entire “real” records space
to bootstrap the training process. If most of the synthetic records are labeled as fake by
the teacher discriminators, the student discriminator would be trained on a biased dataset
and fail to learn the true data distribution. Consequently, this trained generator would not
be able to produce high-quality synthetic data. This problem does not exist for traditional
GAN, where the discriminator is always able to provide useful information to the generator
since they can access the real data records rather than the synthetic data only. In addition,
the two stage training process of PATE-GAN makes it less scalable or flexible in terms of
varying the number of teacher discriminators.

The main contribution of this chapter is a new approach named G-PATE for training a
differentially private data generator by combining the generative model with PATE mechanism.
Our approach is based on the key observation that: It is not necessary to ensure differential
privacy for the discriminator in order to train a differentially private generator. As long as
we ensure differential privacy on the information flow from the discriminator to the generator,
it is sufficient to guarantee the privacy property for the generator. To achieve this, we
propose a private gradient aggregation mechanism to ensure differential privacy on all the
information that flows from the teacher discriminators to the student generator. Compared
to PATE-GAN, our approach has three advantages. First, it improves the use of privacy
budget by only applying it to the part of the model that actually needs to be released for
data generation. Second, our discriminator can be trained on original data records since it
does not need to satisfy differential privacy. Finally, G-PATE is much more scalable given its
simple architecture.

Theoretically, we show that our algorithm ensures differential privacy for the generator.
Empirically, we conduct extensive experiments on the standard Kaggle credit card fraud
detection dataset, as well as two image datasets MNIST and Fashion-MNIST. To the best
of our knowledge, this is the first work that is able to scale to high-dimensional face image
dataset such as CelebA [I08] while still preserve high data utility. The results show that our
method significantly outperforms all baselines including DP-GAN and PATE-GAN.

108

Synthetic Samples

.................................... >
Teacher
I Discriminators
) I Teacher 1 [+ — Data 1
Adversarial Differentially
Perturbati
Sggrelgﬁal?:rta erurbations Private Gradient
| Aggregator Teacher2 |«+ - Data2 “‘_
1 . N
Teacher3 &+ — Data3 [«-3 Sensitive Data
I .
|
I |
Accesible by Adversary INot Accesible by Adversary | Teachern [« — Datan
< 4. -—— —
Data Flow Training Gradient

Figure 7.1: Model Overview of G-PATE. The model contains three parts: a student
data generator, a differentially private gradient aggregator, and an ensemble of teacher
discriminators.

7.1 THE G-PATE METHOD

In this section, we present our method named G-PATE. An overview of the method is
shown in Figure Unlike PATE-GAN and DP-GAN, G-PATE ensures differential privacy
for the information flow from the discriminator to the generator. This improvement incurs
less utility loss on the synthetic samples, so it can generate synthetic samples for higher
dimensional and more complex datasets.

G-PATE makes two major modifications on the training process of GAN. First, we replace
the discriminator in GAN with an ensemble of teacher discriminators trained on disjoint
subsets of the sensitive data. The teacher discriminators do not need to be published, thus
can be trained using non-private algorithms. In addition, we design a gradient aggregator to
collect information from teacher discriminators and combine them in a differentially private
fashion. The output of the aggregator is a gradient vector that guides the student generator
to improve its synthetic samples.

Unlike PATE-GAN, G-PATE does not require any student discriminator. The teacher
discriminators are directly connected to the student generator. The gradient aggregator
sanitizes the information flow from the teacher discriminators to the student generator to
ensure differential privacy. This way, G-PATE uses privacy budget more efficiently and better

approximates the real data distribution to ensure high data utility.

109

7.1.1 Training the Student Generator

To achieve better privacy budget efficiency, G-PATE only ensures differential privacy for the
generator and allows the discriminators to learn private information. The privacy property is
achieved by sanitizing all information propagated from the discriminators to the generator.
To ease privacy analysis, we decompose G-PATE into three parts: the teacher discriminators,
the student generator, and the gradient aggregator. To prevent the propagation of private
information, the student generator does not have direct access to any information in any of
the teacher discriminators. Consequently, we cannot train the student generator by ascending
its gradient based on loss of the discriminators. To solve this problem, we propose the use of
adversarial perturbation, which is a small manipulation on the fake record x that causes the
discriminator’s loss on x to increase. The adversarial perturbation is calculated by ascending
x’s gradients on the loss of the discriminator. It teaches the student generator how to improve
its fake records. In each training iteration, the student generator is updated in three steps:
(1) A teacher discriminator generates adversarial perturbations for each record produced by
the student generator. (2) The gradient aggregator takes the adversarial perturbations from
all teacher models and generates a differentially private aggregation of them. (3) The student
generator updates its weights based on the privately aggregated adversarial perturbation.
The process is formally presented in Algorithm [7.1]

Generating Adversarial Perturbations. Let D be a teacher discriminator. Given a
fake record x, we use Lp(x) to represent D’s loss on x. In each training iteration, the weights
of D are updated by descending their stochastic gradients on Lp.

For each input fake record z, we generate an adversarial perturbation Ax that guides the
student generator on improving its output. By applying the perturbation on its output, the
student generator would get an improved fake record £ = x + Az on which D has a higher

loss. Therefore, Ax is calculated as z’s gradients on Lp:

_ (9£D(a)

A
v Oa

(7.1)
With the adversarial perturbation Az, the student generator can be trained without direct
access to the discriminator’s loss.

Updating the Student Generator. A student generator GG learns to map a random
input z to a fake record x = G(z) so that x is indistinguishable from a real record by D.
Given an adversarial perturbation Az, the teacher discriminators have higher loss on the
perturbed fake record £ = x + Az compared to the original fake record x. Therefore, the

student generator learns to improve its fake records by minimizing the mean squared error

110

Algorithm 7.1 - Training the Student Generator.

Require: batch size m, number of teacher models n, gradient aggregator Agg, disjoint
subsets of sensitive data dy,d»,...,d,

1: for number of training iterations do

2: Sample m noise samples {z1, 2, ..., 2}

3: Generate fake samples {G(z1),G(22),...,G(zm)}
4: forie{l,...,n} do
5
6

Sample m data samples {x1, s, ...,z } from d;
Update the teacher discriminator D; by descending its stochastic gradient on Lp,
on both fake samples and real samples

7 for je{l,...,m} do
8: Calculate the adversarial perturbation Ax;.l) as x;’s gradients on Lp,(z;)
9: end for

10: end for

11: for je€{l,...,m} do

12: Az DPGradAgg(Aacg-l), Axgg), e Axg-"))

13: T; < G(2;) + Ax;

14: end for

15: Update the student generator GG by descending its stochastic gradient on Ls on
{Z1,Z9,...,Tm}

16: end for

(MSE) between its output G(z) and the perturbed fake record z.

£G<27£) -

| =

>_(Gl) = &), (7.2)

where k is the number of synthetic records generated per training iteration. To ensure
differential privacy, instead of receiving the adversarial perturbation from a single discrimi-
nator, we train the student generator using a differentially private gradient aggregator that

combines adversarial perturbations from multiple teacher discriminators. Details are provided

in Section [.1.2

7.1.2 Differentially Private Gradient Aggregation for G-PATE

G-PATE consists of a student generator and an ensemble of teacher discriminators trained
on disjoint subsets of the sensitive data. In each training iteration, each teacher discriminator
generates an adversarial perturbation Az that guides the student generator on improving
its output records. Different from traditional GAN, in G-PATE, the student generator does

not have access to the loss of any teacher discriminators, and the adversarial perturbation is

111

the only information propagated from the teacher discriminators to the student generator.
Therefore, to achieve differential privacy, it suffices to add noise during the aggregation of
the adversarial perturbations.

However, the aggregators used in PATE and PATE-GAN are not suitable for aggregating
gradient vectors because they are only applicable to categorical data. Therefore, we propose
a differentially private gradient aggregator (DPGradAgg) based on PATE. With gradient
discretization, we convert gradient aggregation into a voting problem and get the noisy
aggregation of teachers’ votes using PATE. Additionally, we use random projection to reduce
the dimension of vectors on which the aggregation is performed. The combination of these
two approaches allows G-PATE to generate synthetic samples with higher data utility, even
for large scale image datasets, which is hard to be achieved by PATE-GAN. The procedure is
formally presented in Algorithm [7.2]

Gradient Discretization. Since PATE is originally designed for aggregating the teacher
models’ votes on the correct class label of an example, the aggregation mechanism in PATE
only applies to categorical data. Therefore, we design a three-step algorithm to apply PATE
on continuous gradient vectors. First, we discretize the gradient vector by creating a histogram
and mapping each element to the midpoint of the bin it belongs to. Then, instead of voting
for the class labels as in PATE, a teacher discriminator votes for k bins associated with &
elements in its gradient vector. Finally, for each dimension, we calculate the bin with most
votes using the Confident-GNMax aggregator [146]. The aggregated gradient vector consists
of the midpoints of the selected bins.

With gradient discretization, the teacher discriminators can directly communicate with
the student generator using the PATE mechanism. Since these teacher discriminators are
trained on real data, they can provide much better guidance to the generator compared to the
student discriminator in PATE-GAN, which is only trained on synthetic samples. Moreover,
the Confident-GNMax aggregator ensures that the student generator would only improve its
output in the direction agreed by most of the teacher discriminators.

Random Projection. Aggregation of high dimensional vectors is expensive in terms of
privacy budget because private voting needs to be performed on each dimension of the vectors.
To save privacy budget, we use random projection [147] to reduce the dimensionality of
gradient vectors. Before the aggregation, we generate a random projection matrix with each
component randomly drawn from a Gaussian distribution. We then project the gradient vector
into a lower dimensional space using the random projection matrix. After the aggregation, the
aggregated gradient vector is projected back to its original dimensions. Since the generation
of random projection matrix is data-independent. It does not consume any privacy budgets.

Random projection is shown to be especially effective on image datasets. Since different pix-

112

Algorithm 7.2 - Differentially Private Gradient Aggregator (DPGradAgg).

Require: gradient vectors {Ax®, Az® ... Az}, gradient clipping constant ¢, number
of bins B, projected dimension k ,noise parameters o; and oy, threshold T’
1: ko + the dimension of Az™
2: R + a random projection matrix of size (ko, k) with each component randomly drawn
from N(0,)
(AU Au? A} {AzDR, AzPR, ... Az R}
Au < empty list
for j€1,2,... k do
v < a vector containing the jth element of all gradients in {Au™, Au®, ... Au™}
Clip v to (—¢,c)
h < the histogram of v with B bins of width %
j < Confident-GNMax(h, oy, 09, T)
10: Append the midpoint of the j-th bin to Au
11: end for
12: Az — AuRT
13: return Ax

els of an image are often highly correlated, the intrinsic dimension of an image is usually much
lower than the number of pixels [148]. Therefore, random projection maximizes the amount of
information a student generator can get from a single query to the Confident-GNMax aggre-
gator, and makes it possible for G-PATE to retain reasonable utility even on high dimensional
data. Moreover, random projection preserves similar squared Euclidean distance between
high-dimensional vectors, therefore is beneficial to privacy protection both theoretically and

empirically [149].

7.2 THEORETICAL GUARANTEES

In this section, we provide theoretical guarantees on the privacy properties for G-PATE.
To start with, we propose the following definition for a differentially private data generative

model.

Definition 7.1 (Differentially Private Generative Model). Let G be a generative model
that maps a set of points Z in the noise space Z to a set of records X in the data space
X. Let D be the training dataset of G and A : D + G be the training algorithm. We say
that G is a (g, §)-differentially private data generative model if the training algorithm A is
(¢, 0)-differentially private.

Definition relaxes the definition of a DP-GAN by focusing the protection only on

the generative model in a GAN. This relaxation saves privacy budget during training and

113

improves the utility of the model. Moreover, the relaxation does not compromise the privacy
guarantee for the synthetic data.

Theorem shows that a differentially private generative model is able to support infinite
number of queries to the data generator and can be used to generate multiple synthetic

datasets.

Theorem 7.1. Let G be an (g,6)-differentially private data generative model trained on a
private dataset D. For any Z € Z, the synthetic dataset X = G(Z) is (e, d)-differentially

private.

Theorem is a consequence of the post-processing property of differential privacy. First,
the random points Z are independent of the private dataset D. Second, one does not need to
query the discriminator during the data generation process. Therefore, the synthetic dataset
is generated by post-processing G and is guaranteed to be (e, §)-differentially private.

Next, we justify the privacy guarantee of the G-PATE method. The following lemma
justifies RDP of the gradient aggregator (Algorithm [7.2]).

Lemma 7.2 (Rényi Differential Privacy of DPGradAgg). The output of the gradient aggregator
(DPGradAgg) proposed in Algorithm satisfies ()\, Z1§jgk Ej)—RDP, where A > 1 and ¢
is the data-dependent RDP budget with order X for the Confident-GNMax aggregator on the

j-th projected dimension.

Lemma can be proved by combining the RDP guarantee of the Confident-GNMax
aggregator and the post-processing property of RDP. We first divide the input of DPGradAgg
into two categories. The first category contains data independent parameters, including
the gradient clipping constant ¢, the number of bins B, the projected dimension k, the
noise parameters o, and oy, and the threshold 7. These parameters do not contain private
information. The second category contains the gradient vectors AX = (Ax™, ... Ax®),
which are data-dependent and sensitive. Our privacy analysis focuses on the computation on
AX. With random projection and gradient discretization, we convert AX into k£ histograms
and pass the histograms into the Confident-GNMax aggregator. Since Confident-GNMax
satisfies data-dependent RDP [146], the privacy guarantee nicely propagates to the output of
DPGradAgg.

We analyze the RDP guarantee of DPGradAgg by composing the privacy budget consumed
by the Confident-GNMax aggregator on each projection dimension. Therefore, the Rényi
differential privacy budget of the training algorithm is a composition of the data-dependent
Rényi differential privacy budget of the Confident-GNMax aggregator over k& dimensions. The
data-dependent privacy budget for each Confident-GNMax aggregation is dependent on oy,

114

09, and threshold 7. The remaining parameters (e.g. gradient clipping constant ¢, number of
bins B) do not influence the privacy guarantee.
The next theorem justifies RDP of the G-PATE training process.

Theorem 7.3 (Rényi Differential Privacy of G-PATE). Let A be the training algorithm
for the student generator (Algorithm with N training iterations and k projected di-
mensions. The data-dependent Rényi differential privacy for A with order A > 1 is
€ = Zlgig]\f (Zlgjgk 61"]') , where g; j s the data-dependent Rényi differential privacy for
the Confident-GNMaxz aggregator in the i-th iteration on the j-th projected dimension.

For the convenience of privacy analysis, we divide the each iteration in Algorithm [7.1] into
three phases: pre-processing, private computation and aggregation, and post-processing. In
the pre-processing phase, the generator produces fake samples without accessing the private
data. In the private computation and aggregation phase, the teacher discriminators are
updated based on private data. Each teacher discriminator also generates a gradient vector.
These vectors are aggregated using the DPGradAgg algorithm. Based on Lemma [7.2] the
data-dependent RDP for this phase is), <j<k Eig- 1N the post-processing phase, the student
generator is updated using the privately-aggregated gradient vector Ax;P"V. It satisfies RDP
because of the post-processing property. Finally, the RDP of Algorithm is composed over
N training iterations.

The next theorem provides a theoretical guarantee on the differential privacy of the G-PATE
method.

Theorem 7.4 (Differential Privacy of G-PATE). Given a sensitive dataset D and parameters
0 <6 <1, let G be the student generator trained by Algorithm[7.1. There exists € > 0 and

A > 1 so that G is a (e + 10,\g_1{6

,0)-differentially private data generative model.

Theorem is the consequence of converting the Rényi differential privacy guarantee in
Theorem to differential privacy (Theorem [2.1]).

7.3 EXPERIMENTAL EVALUATION

We evaluate G-PATE against two state-of-the-art benchmarks: DP-GAN and PATE-GAN.
To compare the performance of different data generators, we train a classifier on the synthetic
data and test it on the original data to benchmark the quality of the synthetic data.

We first perform comparative analysis with PATE-GAN and DP-GAN on the datasets used
in the corresponding works (i.e., Kaggle credit dataset and MNIST dataset). In addition,

we evaluate G-PATE on Fashion-MNIST and more privacy sensitive large scale face dataset
CelebA.

115

ol /[zIsaTgTIml]
ZABENGHEAL
EOQDERADIADN

Figure 7.2: Visualization of generated instances by G-PATE. Row 1 (real image),
row 2 (e = 10,0 = 107°) and row 3 (¢ = 1,§ = 107°) each presents one image from each class
(the left 5 columns are MNIST images, and the right 5 columns are Fashion-MNIST images).
When € = 1, G-PATE does not generate high-quality images. However, it preserves partial

features in the training images, so the synthetic images are useful to preserve data utility

which can be seen from our quantitative results.

7.3.1 Experimental Setup

To compare with PATE-GAN, we use the same Kaggle credit card fraud detection
dataset [I50] (Kaggle Credit) as in [37]. The dataset contains 284,807 samples representing
transactions made by European cardholders’ credit cards in September 2013, and 492 (0.2%)
of these samples are fraudulent transactions. Each sample consists of 29 continuous features
which are the results of a PCA transformation from the original features.

To demonstrate the superiority of G-PATE to PATE-GAN on high dimensional image
datasets, we train G-PATE on MNIST, Fashion-MNIST [I51], and the celebrity face datasets
CelebA [108]. MNIST and Fashion-MNIST consist of 60,000 training examples and 10,000
testing examples. Each example is a 28 x 28 grayscale image, associated with a label from 10
classes. The CelebA dataset contains 202,599 images aligned and cropped based on the human
face. We create three datasets: CelebA-Gender(S) is a binary classification dataset that uses
the gender attributes as the labels and resizes the images to 32x32x3; to demonstrate the
scalability of G-PATE we also create CelebA-Gender(L) with the same label while resizing the
images to 64x64x3; CelebA-Hair contains images as 64x64x3 with three hair color attributes
(black /blonde/brown). We follow the official training and testing partition as [108].

For the Kaggle Credit dataset, both the generator and discriminator networks of G-PATE
are fully connected neural network with the same architecture as PATE-GAN [37]. We use
random projection with 5 projected dimensions during gradient aggregation. We use the
DCGAN [152] structure on the image datasets. We use random projection with 10 projected

dimensions during gradient aggregation.

116

DC- | PATE- DP-

GAN | GAN GAN G-PATE
LR 0.9430 | 0.8728 0.8720 0.9251
AdaBoost | 0.9416 | 0.8959 0.8809 0.8981
Bagging 0.9379 | 0.8877 0.8657 0.8964
MLP 0.9444 | 0.8925 0.8787 0.9093

Average | 0.9417 | 0.8872 0.8743 0.9072

Table 7.1: Performance Comparison on Kaggle Credit Dataset. The table presents
AUROC of the classifier trained on synthetic data and tested on real data. The performance is
evaluated over 4 different classifiers: logistic regression (LR), AdaBoost, bagging, and multi-layer
perceptron (MLP). PATE-GAN, DP-GAN, and G-PATE all satisfy (1,10~°)-differential privacy.
Vanilla DC-GAN has no privacy protection. The best results out of different models are highlighted

in bold.
‘ Projection Dimensions ‘ # of Teachers
‘ 5 10 20 No Projection ‘ 2000 3000 4000
MNIST ‘ 0.4638 0.5810 0.5604 0.1141 ‘0.4240 0.5218 0.5810

Fashion | 0.5129 0.5567 0.5172 0.1268 | 0.3997 0.4874 0.5567

Table 7.2: Analysis on the Number of Teachers and the Projection Dimensions.
We performed comprehensive studies on the number of teachers and the the projection
dimensions on MNIST with ¢ = 1 and § = 107°. The model has the best performance with
4000 teacher models and projection dimension equals to 10.

7.3.2 Comparison with DP-GAN and PATE-GAN

Kaggle Credit. The Kaggle Credit dataset is highly unbalanced. In PATE-GAN, the ratio
between positive and negative classes in the sensitive training set is assumed to be public
information. In contrast, the G-PATE method does not rely on any public information about
the sensitive training dataset. It calculates the ratio between positive and negative classes
using Laplacian mechanism [38] with € = 0.01. We then train a (0.99, 107°)-differentially
private data generator and sample the synthetic records according to the noisy class ratios.
By the composition theorem of differential privacy [38|, the data generation mechanism is
(1,10°)-differentially private.

To compare with PATE-GAN, we select 4 commonly used classifiers evaluated in [37]. The
performance of a generator is measured by the AUROC of the 4 classifiers trained on the

corresponding synthetic data. We evaluate G-PATE under the same experimental setups as
PATE-GAN for € = 1. The results for PATE-GAN and DP-GAN are from [37], and we get a

117

Dataset DC-GAN | DP-GAN G-PATE
MNIST (g'fﬁ) | e=1 0.4036 0.5810

|e=10 08011 0.8092
Fashion- 08032 | e=1 0.1053 0.5567
MNIST (e =)

|

|

|

|

| | e=10 0.6098 0.6934
CelebA- | 08002 | e=1 0.5201 0.7016

|

|

|

|

|

Gender(S) | (£=00) "0 0su00 07072
CelebA- 08149 | e=1 0.5330 0.6702

Gender(L) | (£=00) "0 0sa11 o.6807

CelebA- 0.7678 | e=1 0.3447 0.4985
Hair (e = 00)

le=10 0.3920 0.6217

Table 7.3: Performance on Image Datasets. We compare G-PATE with DP-GAN and

vanilla DC-GAN. The table presents the classification accuracy of a model trained on the

generated data and tested on real data. DP-GAN and G-PATE are both evaluated under
two private settings: € = 1,5 = 107° and € = 10,6 = 107°.

higher baseline performance from DC-GAN compared to the baseline performance reported
in [37].

Table presents the comparative analysis between G-PATE and PATE-GAN on Kaggle
Credit dataset. G-PATE outperforms both PATE-GAN and DP-GAN and is close to the
vanilla DC-GAN which has no privacy protection. The good performance of G-PATE is partly
due to the relatively low dimensionality of the Kaggle Credit dataset and the abundance of

training examples.

MNIST and Fashion-MNIST. To understand G-PATE’s performance on image datasets,
we perform comparative analysis between G-PATE and DP-GAN on the MNIST and Fashion-
MNIST datasets. We evaluate the generator by the 10-class classification accuracy of models
trained on synthetic data and tested on real data (Table . The analysis is performed
under two performance settings: € = 1,6 = 107° and € = 10,6 = 1075. G-PATE outperforms
DP-GAN under both settings, and there is a more significant improvement for the setting
with stronger privacy guarantee (i.e., ¢ = 1). Specifically, we observe that DP-GAN fails to
converge on the Fashion-MNIST dataset with ¢ = 1. The synthetic records generated by
DP-GAN under this setting are close to random noise while the model trained on G-PATE
generated data retains an accuracy of 55.67%.

CelebA. To demonstrate the scalability of our algorithm, we evaluate G-PATE and DP-
GAN to compare the data utility. As shown in Table[7.3] the synthetic data generated by

118

MNIST Fashion-MNIST
DP-GAN | G-PATE | DP-GAN | G-PATE

0.2] 0.1104 0.2230 0.1021 0.1874
04| 0.1524 0.2478 0.1302 0.3020
0.6 | 0.1022 0.4184 0.0998 0.4283
0.8 0.3732 0.5377 0.1210 0.5258
1.0 | 0.4046 0.5801 0.1053 0.5567

€

Table 7.4: Performance Comparison on Image Datasets given small privacy budgets.
DP-GAN and G-PATE are both evaluated in the same way as Table given § = 107> and low
e <1.0.

G-PATE is highly utility-preserving, while DP-GAN can barely converge given the high-
dimensionality of the data. In particular, even with the rigorous privacy budget ¢ = 1, the
accuracy of the generated data by G-PATE on CelebA-Gender(S) is only around 10% lower
than the vanilla DC-GAN. It is also worth noticing that although the dimensionality of
CelebA-Gender(L) is 4x larger than CelebA-Gender(S), the utility of both datasets are very
close, which again demonstrates the scalability of G-PATE.

Analysis on the Number of Teachers and the Projection Dimensions. We perform
comprehensive ablation studies on the number of teachers and the the projection dimensions
to gain better understanding about G-PATE. As shown in Table [7.2] G-PATE benefits from
having more teacher discriminators. Under the same privacy guarantee, the number of noisy
votes (07 and oy) remains the same, so the output of the noisy voting algorithm is more likely
to be correct, and the model would get better performance. However, this benefit diminishes
as the training set for each teacher model gets smaller with the increasing number of teachers,
and 4000 teachers have already achieved satisfiable results. Table also demonstrates the
effectiveness of the random projection method, which improves the classification accuracy by
around 0.45.

Analysis under Limited Privacy Budgets. We conduct another set of ablation studies
given limited privacy budgets. From Table [7.4] we can observe that our algorithm starts to
converge even under small € on both MNIST and Fashion-MNIST datasets. The utility stably
increases when the privacy budgets increase. Among different small £, G-PATE achieves
significantly higher accuracy than DP-GAN. In particular, the accuracy of G-PATE under
€ = 0.6 is four times higher than DP-GAN, which indicates that G-PATE is able to generate
differentially private data with high utility even under low privacy budgets.

119

7.4 CONCLUSION
This chapter proposes G-PATE, a novel approach for training a differentially private

data generator by ensuring differential privacy property on the information flow from the
discriminator to generator in GAN. G-PATE is enabled by a novel differentially private
gradient aggregation mechanism combined with random projection. It significantly outper-
forms prior work on both image and non-image datasets in terms of preserving data utility
for generated datasets. Moreover, G-PATE is able to preserve reasonable data utility on
complex high-dimensional image dataset for which DP-GAN can hardly converge. Beyond
the high utility compared with the state-of-the-art differentially private data generative
models (DP-GAN), G-PATE is shown to be able to preserve high data utility even under
small privacy budgets.

120

CHAPTER 8: DIFFERENTIALLY PRIVATE GRAPH CONVOLUTIONAL
NEURAL NETWORKS

In this chapter, we propose the first differentially private GCN (DP-GCN) based on
node clustering. We show that directly adding Laplacian noise in the adjacency matrix is
isufficient in preserving model utility because the sparse signals in an adjacency matrix
are highly vulnerable to noise injection. Motivated by this, we design a noise-resilient GCN
structure via node clustering. Our DP-GCN relies on aggregated node-to-cluster connections
that are less sensitive to the fine-grained noise. We prove that DP-GCN guarantees edge
differential privacy and empirically show that it preserves much higher data accuracy compared
to different baselines on several large graph datasets. In addition, we gain insights about
factors that affect edge privacy on graph data by analyzing the tradeoff between data utility
and node degree distribution as well as the number of node clusters. This chapter is based on

joint work with Fan Wu, Bhavya Kailkhura, Qian Chen, and Bo Li.

Graphical neural networks (GCNs) have been widely applied to different applications based
on structured graph datasets [I53] [154]. However, machine learning models including GCNs
today are mostly a privilege of large datasets with rich statistics, which would potentially
contain privacy sensitive information. For instance, a social network graph is important for
analyzing and discovering various social issues, including disease transmission, emotional
contagion, and occupational mobility. However, the edges in social networks may reflect the
communication, the price of commercial trade, or the intimacy of relationship. As a result,
protecting the privacy on such graph data is very of great importance.

Existing work has provided different privacy mechanisms to protect edge privacy in
traditional graph analysis [I55] 156], 157]. However, so far there is no work on successfully
protecting the edge privacy in the context of GCNs despite their wide applications. Driven by
this, in this chapter we mainly want to understand two questions: (1) Is standard Laplacian
notse mechanism enough to protect the edge privacy as well as retain reasonable data utility
for GCNs? (2) What could be done to improve the data utility without breaking the edge
privacy promise?

In particular, we conduct a series of experiments and draw the observation that only adding
standard Laplacian noise to the adjacency matrix of graphs for GCNs will largely affect
the data utility and almost renders it to be useless. To address this concern, we propose
to leverage the node information such as node labels and node features to perform node
clustering, aiming to identify less important edges and eliminate them within the finite

privacy budget. We then perform edge reconstruction on the node cluster level, indicating

121

the graph connectivity between nodes and node clusters. Together with our theoretic analysis
for node clustering and differential privacy, we prove that our proposed DP-GCN is able to
guarantee differential privacy for edges, and we further provide intuition on its implications.
Besides, we look into different node clustering strategies to evaluate their impacts on data
utility for DP-GCN, including random, hierarchy, and only node-label or node-feature based
approaches.

Empirically, we conduct extensive experiments on graphs including Cora, Citeseer [158],
and the Facebook Large Page-Page Network [159]. We show that the proposed DP-GCN is
able to largely protect the data utility and outperforms other baselines significantly. A range
of ablation studies are also evaluated and draw interesting conclusions which would shed
light on future research for protecting graph privacy for GCNs. For example, we observe
that DP-GCN has relatively better performance on high-degree nodes because they are more
robust to noise injection on edges.

Technical Contributions In this chapter, we take the first step towards protecting edge

privacy by training differentially private GCNs and leveraging different graph clustering
strategies. We make contributions in both the theoretical and empirical aspects.

e To our best knowledge, we propose the first differentially private graphical neural

networks (DP-GCN) based on a simple yet effective hierarchical node clustering strategy

with corresponding theoretic analysis.

e We show that directly adding Laplacian noise to the adjacency matrix is insufficient
in training a differentially private GCN with high utility, which provides interesting

insights into the preservation of edge privacy in GCNs.

e We prove that the trained DP-GCN model is edge differentially private, and we analyze

the effects that different node clustering approaches have on data utility.

e We conduct extensive experiments on large scale graph datasets including Cora, Cite-
seer [158], and the Facebook Large Page-Page Network [159]. We show that the
proposed DP-GCN outperforms other baselines in terms of the graph data utility.
Even with small privacy budget ¢ = 0.1, the proposed DP-GCN is able to achieve
performance close to the non-private vanilla GCN. For instance, on the Facebook
dataset, the accuracy of DP-GCN only about 6.35% lower than that of vanilla GCN.

8.1 DIFFERENTIALLY PRIVATE GCN

We first discuss the limitations of directly applying the Laplace mechanism to motivate

the proposed approach. Specifically, we show that, due to the sparsity of the adjacency

122

matrix, directly adding Laplacian noise would greatly distort the structural information in
the original graph.

Suppose A is the adjacency matrix of a graph. Because A is symmetric, adding/dropping
an edge in the graph would result in two entries in A to change by 1. Therefore, the ¢,
sensitivity of A equals to 2. To ensure e-edge differential privacy, we need to add independent
Laplacian noise with A = 2/¢ on each entry in A.

For example, when € = 1, we sample a random variable Z ~ Laplace(0, 2), compute A + Z,
and clip the output to [0, 1] to get a legitimate noisy adjacency matrix. Based on the c.d.f. of
the Laplace distribution, Pr[Z < —1] = Pr[Z > 1] = 0.3. Consequently, after noise injection,
each non-zero entry in A has at least 30% chance of becoming 0, and each zero entry in A
has at least 30% chance of becoming 1. The noise injection process is equivalent to randomly
dropping edges with probability of 0.3 and adding edges with probability of 0.3 between all

the disconnected node pairs. This process is a huge distortion of the original graph structure.

8.1.1 Graph Aggregation via Node Clustering

The poor performance of directly injecting Laplacian noise can mainly be attributed to
the sparsity of A and the small value of each entry in A. To solve this problem, we need to
aggregate the graph structural information to construct a denser matrix with higher values.
Moreover, the aggregation method should maintain a low sensitivity so that adding/dropping
a single edge has little effect on the aggregation results. In this section, we design a cluster

adjacency matrix to aggregate high-level structural information of a graph.

Definition 8.1 (Cluster Adjacency Matrix A.). Given an undirected graph with N nodes
and M non-overlapping node clusters, the cluster adjacency matrix A. is an N x M matrix

where each element a;; equals to the number of edges between node ¢ and cluster j.

The cluster adjacency matrix aggregates node-to-node connection information to the
node-to-cluster level. Empirically, this aggregation provides better edge privacy protection
because each single edge plays a less important role in the aggregation results. Theoretically,
we prove that the cluster adjacency matrix has the same L, sensitivity as the node adjacency
matrix, therefore the amount of injected noise to achieve differential privacy is the same
between the two matrices. However, since the cluster adjacency matrix has higher values and
lower dimensions, it is more robust to the injection of the same level of noise.

The following theorem calculates the ¢; sensitivity of a cluster adjacency matrix.

Theorem 8.1. The {1 sensitivity of a cluster adjacency matrix A, is 2.

123

8.1.2 Noise-Resilient GCN Structure

To take advantage of the noise-resilient property of the cluster adjacency matrix, we
redesign the structure of a deep convolutional layer by replacing the node adjacency matrix
A with the cluster adjacency matrix A.. Specifically, given a cluster adjacency matrix of size

N x M, we design the following projection matrix P of size M x N:

P = 1/|1Cy], if v; € C}, 8.1)
0, otherwise,
where C; represents cluster j and v; represents node i (1 <i < N,1 < j < M).

The projection matrix P maps the node-to-cluster connection back to node-to-node
connection by equally dividing the number of edges among all the nodes within the same
cluster. For example, suppose node v has 10 edges connected to a cluster C' with 100 nodes
(i.e., |C| = 100). After the projection, v is connected to all the nodes in C' with edge weight
equals to 0.1.

By combining the cluster adjacency matrix A, and the projection matrix P, we modify

each graph convolutional layer as follows:
H"Y =6 ((D7'AP + In)HOW) | (8.2)

where A. is the cluster adjacency matrix, D is the degree matrix based on Ac, P is the
projection matrix, H® is the output of the previous layer, W is the trainable weight matrix,
and o is the activation function. We use the identity matrix Iy to add self-connections on
each node.

The noise-resilient GCN structure introduces two adaptations to improve privacy protection
and enhance model robustness against noise injection. First, instead of using the fine-grained
node-to-node connection information, the model takes advantage of the graph connectivity
between a node and a node cluster. This aggregation prevents the model from learning
information about individual edges, therefore provides better privacy protection. Second, we
add an additional identity matrix I to ensure that the self-connection is not lost during the
aggregation. Unlike a traditional GCN, in our proposed structure, Iy is not normalized by
node degree. This modification improves the importance of self-connections enhances the

model’s robustness against noise injection on edges.

124

8.1.3 Differentially Private GCN

Algorithm represents the training process of a DP-GCN. The algorithm uses the GCN
structure in E.q.(8.2)) and ensures edge differential privacy by adding Laplacian noise to the

cluster adjacency matrix A..

Algorithm 8.1 Training process of DPGCN.

Require: Cluster adjacency matrix A., projection matrix P, node feature matrix X, training
labels Yiraim, privacy budget e
Ensure: The DP-GCN model
1: Sample laplacian noise Z ~ Laplace(0,2/¢) with the same size as A.
2: Add noise to the cluster adjacency matrix A, < A. + Z
3: Train a DP-GCN using A, P, X, Yirain

The following theorem shows DP guarantee of Algorithm [8.1]

Theorem 8.2. The DP-GCN model trained by Algorithm 1s e-edge differentially private.

Algorithm 8.2 Hierarchical Node Clustering.

Require: Features and labels of training nodes X ain, Yirain; features of unlabeled nodes
Xiest; number of classes K;

Ensure: Node clusters {C1,Cy,...,Cy}

1: for X; in X nlabelea dO

2 Find the k instances in the training set that are closest to X; in the feature space

3: y; < the majority voting result of the labels of the k instances

4: end for{Label Bootstrapping}

5: for ¢ from 1 to K do

6

7

8

9

: C’Z < the set of instances that have label 7
: end for{Label-Based Clustering}
. Cluster size s < min; |C}|
: for ¢ from 1 to K do
10: Number of sub-clusters m; « |C;|/s
11: centers < K-Means(C;, m;)
12: Assign a nearly equal number of instances to each centers based on the distance in
the feature space
13: for each node c in centers do
14: Group nodes assigned to ¢ as a new cluster
15: end for
16: end for{Feature-Based Sub-Clustering}

125

'® '@ @ @
! . O Label 1 .1 @ Label-Based . @ Feature-Based . @

Bootstrapping Clusterlng . Sub-Clustering ~ ™._____.

O .2 2 @ 2 @ . ' '

Figure 8.1: Overview of the Hierarchical Clustering Algorithm. (1) Label
Bootstrapping: assign labels to test nodes based on their neighbors in the feature space; (2)
Label-Based Clustering: group nodes into high-level clusters using labels; (3) Feature-Based

Sub-Clustering: divide the high-level clusters into sub-clusters using node features.

8.1.4 Hierarchical Node Clustering

While the cluster adjacency matrix improves privacy protection by aggregating the edges,
it brings a trade-off in the performance of DP-GCN due to the loss of fine-grained edge
information. Therefore, choosing an appropriate clustering algorithm is an important factor
in striking a balance between privacy protection and model performance.

In DP-GCN;, the number of edges connected to a cluster is evenly divided among the nodes
in that cluster. Consequently, for each deep convolutional layer, the output H*" would be
a good approximation of the output of an original deep convolutional layer, only if nodes in
the same cluster share similar embedding in the prior layer output H". However, clustering
via node embedding is not plausible because the embedding is only accessible after training
the model.

In this section, we introduce a hierarchical node clustering algorithm to divide nodes into
non-overlappig clusters so that nodes in the same cluster are likely to have similar node
embedding in a GCN. This clustering problem is essentially different from traditional graph
clustering problems because the embedding produced by a graph convolutional layer is a
combination of graph structure, node features, and training labels. Hence, node clustering
algorithms that solely rely on the graph structures, such as Metis [160], are not suitable.

Besides combining different signals in the clustering algorithm, we also need to take
consideration of the privacy cost of accessing the graph structure. On the one hand, clustering
based on the graph structures without privacy protection may leak the exact sensitive
information we aim to protect with edge differential privacy. On the other hand, extracting
useful graph statistics with edge differential privacy can consume the precious privacy budget

that is crucial to training an accurate DP-GCN model. Therefore, we design a graph-agnostic

126

node clustering algorithm to approximate the GCN node embedding based on node features
and labels. We show that the algorithm improves the performance of DP-GCN with no extra
privacy cost.

The key of the clustering algorithm is a hierarchical approach combining node features
and labels. Although both features and labels provide valuable information to a GCN, they
play different roles in the training process. Ideally, the embedding produced by a graph
convolutional layer should separate nodes with different labels to make node classification
easier. To preserve this trend in our clustering algorithm, in the highest clustering hierarchy,
we use label-based clustering method to ensure that training nodes with different labels do
not belong to the same cluster. In addition, we utilize node features to further divide the
huge label clusters into smaller sub-clusters with approximately the same size. Specifically,
the clustering algorithm contains three steps: label bootstrapping, label-based clustering,
and feature-based sub-clustering. Algorithm presents the pseudo-code for the clustering

process.

Label Bootstrapping. In the semi-supervised node classification setting, the training
graph consists of both labeled training nodes and unlabeled testing nodes. To start with, we
need to assign a bootstrap label to the testing nodes in preparation of label-based clustering.
Since, in most cases, training nodes only consist of a small portion of the graph, We use &
nearest neighbor classification algorithm to assign a bootstrap label for each testing nodes. To
avoid accessing the sensitive graph structure, the neighbors are selected using the Euclidean

distance of the feature vectors.

Label-Based Clustering. Once we obtain the bootstrapping labels, we run a label-based
clustering algorithm to group nodes with the same label into the same cluster. This process

results in K node clusters, where K is the number of node classes.

Feature-Based Sub-Clustering. However, when the node labels are unbalanced, the
label-based clustering method results in clusters with unequal sizes, which can make pre-
dictions biased towards the majority class. To solve this problem, we further divide the
large label clusters into smaller ones using the k-means algorithm method based on node
features. Fach label cluster is divided into different number of sub-clusters to ensure that all

sub-clusters have approximately the same size.

127

Cora Citeseer Facebook

0.8 075
070 0.85
07
0.65 0.80
.06 > 0.60 z
g g £ 075
3 3 3
E 05 E 055 §
050 070
04 i vanilla
) 045 —&— hierarchical 065
-8 kmeans
03 0.40 =k random 060
00z 004 006 0.08 010 002 0.04 006 0.08 0.10 0.0z 004 0.06 0.08 010

ratio of labeled nodes ratio of labeled nodes ratio of labeled nodes

Figure 8.2: Comparison of Node Clustering Algorithms on Clean Graphs. We
compare the performance of our hierarchical clustering algorithm against three baselines: no
clustering (vanilla), k-means clustering, and random clustering. The hierarchical approach

consistently outperforms k-means clustering and random clustering.

Dataset ‘#Nodes #Edges #Classes Density

Cora 2,708 5,429 7 0.0015
Citeseer 3,327 4,732 6 0.0009
Facebook | 22,470 171,002 4 0.0007

Table 8.1: Statistics of Graph Datasets

8.2 EXPERIMENTS

In this section, we evaluate the performance of the proposed hierarchical node clustering

algorithm and DP-GCN on three real-life datasets under different privacy settings.

8.2.1 Datasets

The statistics of the datasets are summarized in Table 8.1 We use two citation networks,
Cora and Citeseer [I58] to evaluate the performance of our approach. In addition, we
experiment on a social network dataset Facebook Large Page-Page Network [159], where the
nodes are official Facebook pages of four categories (politicians, governmental organizations,
television shows and companies) defined by Facebook, and the edges are the mutual likes
between the official Facebook pages. With the natural realization that the relationship
between these identities concerns privacy, here we use DP-GCN to provide our own solution

to this problem.

128

Cora Citeseer Facebook

=] =
n =3
= =
n =
s 2 =
[
(=R

- - -
] 8 8
eps=0.1 £ o4 S 04 g 0es
&]]
0.60
03 03
055
02
02 050
vanilla T T T T T T T T T T T T T T T T T T
—4— rierarchical 002 0.04 006 0.08 0.10 002 0.04 006 0.08 0.10 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
—#~ kmeans ratio of labeled nodes ratio of labeled nodes ratio of labeled nodes
—— random
0.a0
06 06
0.75
05 05

acy

eps=1 5 o4

accuracy

ac
accuracy
=
-
(=]

03 065

02 0.60

0.0z 0.04 0.06 0.08 0.10 0.0z 0.04 0.06 0.08 0.10 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
ratio of labeled nodes ratio of labeled nodes ratio of labeled nodes

Figure 8.3: Performance of DP-GCN under Different Clustering Algorithms. We
compare the performance of DP-GCN under different clustering algorithms. We omitted the
accuracy of the vanilla approach on the Facebook dataset (0.2924) for better presentation.
The cluster-based DP-GCN structure consistently outperforms the vanilla approach, and the
hierarchical clustering algorithm preserves the highest utility under different privacy budget.

8.2.2 Experimental Setup

To demonstrate the generalizability of our approach, we do evaluation on a multitude of
scenarios that only differ in the ratio of training instances, i.e., labeled nodes in the graph.
For Cora and Citeseer, in the selection of test instances, we follow the experiment setups
in [I6I] and use the hold-out test set of 1000 instances; we use a fixed set of size 20% of
the remaining instances as the validation set, and take another subset of size from 1% to
10% as the labeled training set and use a step size of 1%. For the Facebook dataset, we set
aside 10% of all instances for testing and 10% for validation. Since it is a large-scale dataset
containing tremendous nodes, we limit the ratio of the labeled nodes to 0.4% 4% with step
size equal to 0.4%.

For both vanilla GCN [162] and DP-GCN, we use a two layer network with the hidden layer
size 16 and dropout rate 0.5. In all the experiments, we train the GCN using Adam [163]
with learning rate 0.01 and weight decay 5e-4 for 500 epochs, and all experiments achieve
convergence within the range. We use the same set of hyperparameters as [162] except for
the number of epochs — directly adding Laplacian noise to the adjacency matrix in a vanilla
GAN requires more epochs to converge. The results on the noisy graph are averaged over

runs with three random seeds for noise generation.

129

8.2.3 Evaluation of Node Clustering.

In the first set of experiments, we aim to understand the influence of node clustering on
the performance of GCNs. Specifically, we measure the performance of GCNs trained under
different clustering algorithm without adding Laplacian noise to guarantee differential privacy.
We compare our hierarchical node clustering with three other approaches. The vanilla GCN
[162] is chosen as an ideal upper-bound, given that the information utilized by it is complete
and exact. The other two baselines are designed to also suit in the same node clustering
framework, but are rather “flat” without exploiting a hierarchical structure.

One baseline adopts purely random clustering, where each node is randomly assigned
an initial label which denotes the cluster it belongs to. The other baseline applies the
classical centroid-based clustering algorithm—k-means [164] to the new feature space to
group the nodes into clusters. The new feature is designed to have a fair comparison with our
hierarchical approach. In detail, for each node in the graph, its new feature is a concatenation
of the original node feature with the one-hot representation of the initial label. The initial
label of a labeled instance is the groundtruth label; for those unlabeled instances, the initial
label is the bootstrap label derived in the same way as the label-bootstrapping process
introduced previously.

Setting aside the vanilla approach, we can see in Figure that hierarchical node clustering
is the best among all the clustering-based approaches. The advantage of the vanilla approach is
pronounced, which is plainly understandable given the amount of information it utilizes. The
random clustering goes to another extreme as to retaining little graph structural information.
Notice that the k-means clustering on the new feature space in essence utilizes the same
amount of information as the hierarchical approach which sequentially exploits features and
labels, whereas it fails to achieve the same good result as the hierarchical approach. This

convinces us of the effectiveness of the hierarchical clustering algorithm we design.

8.2.4 FEvaluation of DP-GCN

Having studied the performance of different approaches on the clean graph, we now turn
to the evaluation of DP-GCN. Since DP-GCN is trained on a noisy graph, there is a risk that
the model might be overfitted to the injected noise and have good performance only on the
input noisy graph. Therefore, to have a fair understanding on the performance on DP-GCNs;,
our experiment strictly follows the procedure below. First, we inject different levels of noise
(e € {0.1,1}) to the clean graph according to the privacy requirement. Next, we train a

differentially private GCN on the noisy graph using the same set of approaches explained in

130

the previous section. Finally, we test the model on the clean graph to understand the utility
of the model.

The evaluation results are reported in Figure[8.3] A straightforward observation is that, with
different clustering algorithms (i.e., hierarchical, k-means, and random), the new clustering-
based DP-GCN structure consistently outperforms the approach of naively adding Laplacian
noise on the input adjacency matrix. The score of the vanilla approach is particularly low
(0.2924) on the Facebook dataset and remains the same for all € and ratio of labeled nodes we
experimented with. Therefore, we omit it in Figure for better presentation. The detailed
figures can be referred to in the supplementary materials.

Among the three clustering-based approaches, it is noticeable that hierarchical node
clustering is the invariable winner, which is also consistent with the results on clean graph in
Figure B.2] Specifically, when ¢ = 0.1, DP-GCN with hierarchical node clustering achieves an
accuracy of 81.72% on Facebook dataset when 4% of the nodes are labeled, which is only

6.35% lower than the performance of vanilla non-private GCON.

8.2.5 Ablation Studies on DP-GCN

In this section, we perform ablation studies to further understand how different factors

influence the performance of DP-GCN.

Privacy Budgets. The privacy budget € controls the scale of the injected Laplacian noise.
Generally, smaller € provides a better privacy protection at the expense of incurring higher
utility loss. We explore the utility of DP-GCN with ¢ = 0.1, 1, and 10, and compare the
result with that of vanilla GCN on the clean graph where no noise is injected. As shown in
Figure [8.4a], the utility drops with the decrease of privacy budget. The result is reported on
Cora dataset because the performance gap between vanilla GCN on the clean graph and our
DP-GCN on the noisy graph on this dataset is the largest among all three datasets we use.
Even so, the model still retains an accuracy of 66.40% when ¢ = 0.1 with the gap equal to
12.5% at the point of 10% labeled nodes. On Citeseer dataset and Facebook dataset, the gap
is 7.63% and 6.35% respectively when 10% and 4% of the nodes are labeled.

Node-Degree Distribution. We observe that the performance of DP-GCN varies on
nodes with different degrees—the model has higher accuracy on high-degree nodes because
these nodes are more robust to adding/dropping a few neighboring edges. In particular, we
perform the ablation study on the Facebook dataset, which has the highest variation in node

degree. Figure [8.4b| shows DP-GCN’s average accuracy on nodes with different degrees when

131

0.8

0.7 0.8 4

e
o
=4
o
L

accuracy
accuracy

=
v
L
o
S

0.4 clean 02

—# eps=0.1
—— eps=1
031 —— eps=10 o
D.(I)Z 0.64 0.;)6 D.(I)B O.iD ’ l—‘S 6-‘10 11—‘15 16-‘20 21-‘2525-‘3(} 31-‘35 35-‘40 41-‘45 45-‘5(} >50
ratio of labeled nodes node degree interval
(a) Privacy Budgets. (b) Node-Degree Distribution.
all 1433 features a subset of 30 features
0.74 1 0260 4
072 4 0.255 4
o o
g 070 g 0.250 1
L= L=
d B 0245 |
0.68 1
0.240 1
066 1
0.235 1
o 500 1000 1500 2000 2500 500 1000 1500 2000 2500
total number of clusters total number of clusters

(¢) Number of Node Clusters.

Figure 8.4: Ablation Studies on DP-GCN. We study the performance of DP-GCN
under different privacy budget, node-degree distribution, and number of clusters.

g = 0.1 and the ratio of labeled nodes is 4%. The difference is particularly significant for
nodes with very low degree (e.g. < 5). On average, DP-GCN’s accuracy on these nodes
is 13.27% lower than that on nodes with degree greater than 5. Since the prediction on
a low-degree node heavily relies on its small number of neighbors in the graph, it is more

susceptible to the adding/dropping of neighboring edges.

Number of Node Clusters. The number of node clusters controls the balance between
improving privacy with aggregation and retaining useful graph connection information. In DP-
GCN, adapting a higher number of node clusters can preserve more fine-grained connection
information during the training process. Meanwhile, with more clusters, the influence of
Laplacian noise injection increases because each entry in the cluster adjacency matrix has a

smaller value. Interestingly, we observe that influence of increasing node clusters is closely

132

correlated to the quality of node features.

We perform the ablation study on the Cora dataset with two controlled variables: the
number of node clusters and the number of node features. The results are presented in
Figure 8.4d In the first study, all 1433 node features are used for clustering, training,
and training and testing, and increasing the number of clusters improves the performance
of DP-GCN. In the second study, we create less powerful node features by taking only a
randomly sampled subset of 30 features for clustering, training, and testing. In this case,
having more node clusters reduces DP-GCN’s accuracy. When the node features are less
powerful, DP-GCN relies more on the graph connection information to make predictions and
therefore having an adjacency matrix that is more robust to noise is more important than

preserving fine-grained connection information.

8.3 CONCLUSION

Overall, in this chapter we propose the first differentially private GCN model (DP-GCN).
In particular, we show that based on the proposed hierarchical node clustering, DP-GCN is
able to guarantee edge differential privacy while preserving high data utility on different large
scale graph datasets. A series of ablation studies are conducted, from which we draw several
interesting conclusions. For instance, we observe that with more node clusters, the utility of
DP-GCN is improved, which leads to further discussion on how to reduce the cluster size
and create more informative clusters. Our theoretic analysis and empirical observations will

shed lights on future research towards training privacy preserving GCNs.

133

CHAPTER 9: CONCLUSION

This thesis studied the privacy risk in modern machine learning systems. We proposed
more pragmatic attacks and empirical measurement metrics to better understand the risk.
Based on this understanding, we designed three levels of privacy protections tailored to the
utility and privacy requirements of different applications. Specifically, this thesis made the
following contributions to help improve the community’s understanding on privacy risk in
machine learning systems.

First, we studied the influence of different adversarial knowledge in privacy attacks on
machine learning models. Traditionally, attacks on machine learning models are divided
into two categories: white-box attacks and black-box attacks. In white-box attacks, the
adversary has access to model parameters; and in black-box attacks, the adversary can only
access the model’s predictions on a limited number of queries. In this thesis, we analyzed
the influence of other adversarial knowledge, including training data distribution, model
structure, and the attack target. We demonstrated that the assumptions on the adversarial
knowledge play an important role in evaluating privacy risks of machine learning models. As
an example, we showed that, by targeting a few vulnerable records, it is possible to perform
high-precision black-box membership inference attacks on well-generalized machine learning
models, although these models are considered as having low-risk to black-box membership
inference attacks in general.

Second, this thesis categorized privacy protections into three distinct levels based on the
trade-off between utility and privacy. This categorization takes a novel approach to balance
the privacy-utility trade-off along two dimensions (1) what privacy protection criteria should
be applied and (2) whether the data is to be shared for general uses or specific applications.

Along the first dimension, we proposed test-based empirical obfuscations to provide privacy
protections for cases where achieving strong theoretical privacy guarantee is challenging. We
took system logs as an example under this category due to their high dimensionality and
strong utility requirements. We designed a general framework to support sharing system
logs while protecting user-specified sensitive attributes. The framework uses hypothesis tests
to identify potential leakage of the sensitive attributes and applies empirical obfuscations
until all the tests are passed. Although this approach does not provide strong theoretical
guarantee, it allows users to identify and mitigate substantial privacy risks before sharing
the data.

Along the second dimension, we proposed differentially private algorithms to support two

use cases of data sharing: (1) sharing synthetic data for general uses and (2) sharing a

134

machine learning model for a specific application. To support sharing of synthetic data, we
proposed a scalable differentially private data generative model that could generate better
quality and higher dimensional synthetic data compared to prior work. To support sharing of
differentially private models, we proposed the first differentially private graph convolutional
network for graph analysis.

Moving forward, the privacy and utility trade-off remains an intriguing problem with many
research opportunities. We conclude by discussing two open questions spurred by this work.

First, could we design algorithms to support different levels of privacy-utility balance in the
same dataset? This thesis categorized privacy protections into three levels based on the privacy
and utility requirements of a dataset. However, each dataset contains records from different
individuals, and these individuals may have various privacy preferences. Providing distinct
privacy protections for records in the same dataset is an open research problem. Research
along this direction would meet the increasingly diverse privacy and utility requirements of
modern machine learning applications.

Second, could we combine the test-based privacy protection with strong theoretical protec-
tions such as differential privacy? In this thesis, we designed test-based empirical obfuscations
to protect data with high utility requirements. Can we extend this approach to data that
require stronger privacy protections? For example, can we use tests to help determine the
appropriate privacy budget in differential privacy? Answering this question could help us
preserve better utility for applications where obtaining a tight theoretical privacy bound is

challenging.

135

REFERENCES

[1] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face recognition.” in bmuve, vol. 1,
no. 3, 2015, p. 6.

[2] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3061—
3070.

[3] M. de Bruijne, “Machine learning approaches in medical image analysis: From detection
to diagnosis,” 2016.

[4] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis,
“Machine learning applications in cancer prognosis and prediction,” Computational and
structural biotechnology journal, vol. 13, pp. 8-17, 2015.

[5] L. Sweeney, “Achieving k-anonymity privacy protection using generalization and suppres-
sion,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 571-588, 2002.

[6] C. Dwork, “Differential privacy: A survey of results,” in International Conference on
Theory and Applications of Models of Computation. Springer, 2008, pp. 1-19.

[7] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks
against machine learning models,” in 2017 IEEE Symposium on Security and Privacy
(SP). 1EEE, 2017, pp. 3-18.

[8] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property Inference Attacks
on Fully Connected Neural Networks using Permutation Invariant Representations,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2018, pp. 619-633.

[9] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Obfuscatory obscanturism: making work-
load traces of commercially-sensitive systems safe to release,” in 2012 IEEE Network
Operations and Management Symposium. TEEE, 2012, pp. 1279-1286.

[10] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson,
D. A. Stephan, S. F. Nelson, and D. W. Craig, “Resolving individuals contributing
trace amounts of dna to highly complex mixtures using high-density snp genotyping
microarrays,” PLoS genetics, vol. 4, no. 8, p. €1000167, 2008.

[11] E. A. Zerhouni and E. G. Nabel, “Protecting aggregate genomic data,” Science, vol.
322, no. 5898, pp. 44-44, 2008.

[12] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “Logan: evaluating privacy
leakage of generative models using generative adversarial networks,” arXiv preprint
arXiv:1705.07663, 2017.

136

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23

A. Salem, Y. Zhang, M. Humbert, M. Fritz, and M. Backes, “MI-leaks: Model and data
independent membership inference attacks and defenses on machine learning models,”
arXw preprint arXiw:1806.01246, 2018.

G. Ateniese, G. Felici, L. V. Mancini, A. Spognardi, A. Villani, and D. Vitali, “Hacking
Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine
Learning Classifiers,” CoRR abs/1306.4447, 2013.

M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy in
Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing,” in
Proceedings of the 2014 USENIX Security Symposium (USENIX Security). USENIX,
2014, pp. 17-32.

M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks that Exploit
Confidence Information and Basic Countermeasures,” in Proceedings of the 2015 ACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM, 2015,
pp- 1322-1333.

F. Tramér, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing Machine
Learning Models via Prediction APIs,” in Proceedings of the 2016 USENIX Security
Symposium (USENIX Security). USENIX, 2016, pp. 601-618.

B. Wang and N. Z. Gong, “Stealing Hyperparameters in Machine Learning,” in Pro-
ceedings of the 2018 IEEE Symposium on Security and Privacy (S€&P). TEEE, 2018.

T. Orekondy, B. Schiele, and M. Fritz, “Knockoff Nets: Stealing Functionality of Black-
Box Models,” in Proceedings of the 2019 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 1EEE, 2019.

D. Lowd and C. Meek, “Adversarial Learning,” in Proceedings of the 2005 ACM
Conference on Knowledge Discovery and Data Mining (KDD). ACM, 2005, pp.
641-647.

I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing Adversarial Exam-
ples,” in Proceedings of the 2015 International Conference on Learning Representations

(ICLR), 2015.

N. Papernot, P. D. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical Black-Box Attacks Against Machine Learning,” in Proceedings of the 2017
ACM Asia Conference on Computer and Communications Security (ASIACCS). ACM,
2017, pp. 506-519.

B. Biggio, B. Nelson, and P. Laskov, “Poisoning Attacks against Support Vector
Machines,” in Proceedings of the 2012 International Conference on Machine Learning
(ICML). JMLR, 2012.

137

[24] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li, “Manipulating
Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning,”
in Proceedings of the 2018 IEEE Symposium on Security and Privacy (S&P). 1EEE,
2018.

[25] O. Suciu, R. Marginean, Y. Kaya, H. D. III, and T. Dumitrag, “When Does Machine
Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks,” CoRR
abs/1803.06975, 2018.

[26] A. Machanavajjhala, J. Gehrke, and M. Gotz, “Data publishing against realistic adver-
saries,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 790-801, 2009.

[27] R. Bassily, A. Groce, J. Katz, and A. Smith, “Coupled-worlds privacy: Exploiting
adversarial uncertainty in statistical data privacy,” in Foundations of Computer Science
(FOCS), 2013 IEEE 54th Annual Symposium on. 1EEE, 2013, pp. 439-448.

[28] N. Li, W. Qardaji, and D. Su, “On sampling, anonymization, and differential privacy or,
k-anonymization meets differential privacy,” in Proceedings of the Tth ACM Symposium
on Information, Computer and Communications Security. ACM, 2012, pp. 32-33.

[29] J. Lee and C. Clifton, “Differential identifiability,” in Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
2012, pp. 1041-1049.

[30] F. Trameér, Z. Huang, J.-P. Hubaux, and E. Ayday, “Differential privacy with bounded
priors: reconciling utility and privacy in genome-wide association studies,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 1286-1297.

[31] N. Li, W. Qardaji, D. Su, Y. Wu, and W. Yang, “Membership privacy: a unifying
framework for privacy definitions,” in Proceedings of the 2013 ACM SIGSAC conference
on Computer €& communications security. ACM, 2013, pp. 889-900.

[32] E. Lui and R. Pass, “Outlier privacy,” in Theory of Cryptography. Springer, 2015, pp.
277-305.

[33] J. Gehrke, M. Hay, E. Lui, and R. Pass, “Crowd-blending privacy,” in Advances in
Cryptology-CRYPTO 2012. Springer, 2012, pp. 479-496.

[34] W. Qardaji, W. Yang, and N. Li, “Priview: practical differentially private release of
marginal contingency tables,” in Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. ACM, 2014, pp. 1435-1446.

[35] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao, “Privbayes:
Private data release via bayesian networks,” ACM Transactions on Database Systems
(TODS), vol. 42, no. 4, p. 25, 2017.

[36] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, “Differentially private generative
adversarial network,” arXiw preprint arXiw:1802.06739, 2018.

138

[37] J. Yoon, J. Jordon, and M. van der Schaar, “PATE-GAN: Generating synthetic
data with differential privacy guarantees,” in International Conference on Learning
Representations, 2019. [Online|. Available: |https://openreview.net/forum?id=
S1zk9iRqF7

[38] C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Foun-
dations and Trends® in Theoretical Computer Science, vol. 9, no. 3—4, pp. 211-407,
2014.

[39] C. Rath, “Usable privacy-aware logging for unstructured log entries,” in Availability,
Reliability and Security (ARES), 2016 11th International Conference on. IEEE, 2016,
pp. 272-277.

[40] J. Biskup and U. Flegel, “On pseudonymization of audit data for intrusion detection,”
in Designing Privacy Enhancing Technologies. Springer, 2001, pp. 161-180.

[41] J. Biskup and U. Flegel, “Transaction-based pseudonyms in audit data for privacy
respecting intrusion detection,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2000, pp. 28-48.

[42] E. Lundin and E. Jonsson, “Privacy vs. intrusion detection analysis.” in Recent Advances
in Intrusion Detection, 1999.

[43] J. Xu, J. Fan, M. Ammar, and S. B. Moon, “On the design and performance of prefix-
preserving ip traffic trace anonymization,” in Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement. ACM, 2001, pp. 263-266.

[44] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “Prefix-preserving ip address anonymiza-
tion: Measurement-based security evaluation and a new cryptography-based scheme,” in
Network Protocols, 2002. Proceedings. 10th IEEE International Conference on. 1EEE,
2002, pp. 280-289.

[45] J. Wilkes, “More Google cluster data,” Google research blog, Nov. 2011, posted at
http://googleresearch.blogspot.com/2011/11 /more-google-cluster-data.html.

[46] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces: format +
schema,” Google Inc., Mountain View, CA, USA, Technical Report, Nov. 2011, revised
2014-11-17 for version 2.1. Posted at https://github.com/google /cluster-data.

[47] B. Schneier and J. Kelsey, “Cryptographic support for secure logs on untrusted machines.”
in USENIX Security Symposium, vol. 98, 1998, pp. 53-62.

[48] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building an encrypted and
searchable audit log.” in NDSS, vol. 4, 2004, pp. 5—6.

[49] K. Wouters, K. Simoens, D. Lathouwers, and B. Preneel, “Secure and privacy-friendly
logging for egovernment services,” in Availability, Reliability and Security, 2008. ARES
08. Third International Conference on. IEEE, 2008, pp. 1091-1096.

139

https://openreview.net/forum?id=S1zk9iRqF7
https://openreview.net/forum?id=S1zk9iRqF7
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://github.com/google/cluster-data

[50] T. Pulls, R. Peeters, and K. Wouters, “Distributed privacy-preserving transparency
logging,” in Proceedings of the 12th ACM workshop on Workshop on privacy in the
electronic society. ACM, 2013, pp. 83-94.

[51] H. Nissenbaum and F. Brunton, “Vernacular resistance to data collection and analysis:
A political theory,” First Monday, vol. 16, no. 5, 2011.

[52] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 1310-1321.

[53] D. E. Bakken, R. Rarameswaran, D. M. Blough, A. A. Franz, and T. J. Palmer, “Data
obfuscation: Anonymity and desensitization of usable data sets,” IEEE Security €
Privacy, vol. 2, no. 6, pp. 34-41, 2004.

[54] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, “Candidate
indistinguishability obfuscation and functional encryption for all circuits,” in 2013
IEEE 54th Annual Symposium on Foundations of Computer Science. IEEE, 2013, pp.
40-49.

[55] N. Bitansky and V. Vaikuntanathan, “Indistinguishability obfuscation from functional
encryption,” in 2015 IEEFE 56th Annual Symposium on Foundations of Computer
Science. 1EEE, 2015, pp. 171-190.

[56] X. He, A. Machanavajjhala, and B. Ding, “Blowfish privacy: Tuning privacy-utility
trade-offs using policies,” in Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, 2014, pp. 1447-1458.

[57] Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang, H. Tang, C. A. Gunter, and
K. Chen, “Understanding membership inferences on well-generalized learning models,”
arXiw preprint arXw:1802.04889, 2018.

[58] M. Phillips and B. M. Knoppers, “The discombobulation of de-identification,” Nature
biotechnology, vol. 34, no. 11, p. 1102, 2016.

[59] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine learning:
Analyzing the connection to overfitting,” in IEFEE Computer Security Foundations
Symposium, 2018.

[60] M. Nasr, R. Shokri, and A. Houmansadr, “Machine learning with membership privacy
using adversarial regularization,” arXiv preprint arXiv:1807.05852, 2018.

[61] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models that remember
too much,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 587—-601.

[62] C. Dwork, “Differential privacy in the 40th international colloquium on automata,”
Languages and Programming, 2006.

140

[63] B. Efron, The jackknife, the bootstrap and other resampling plans. STAM, 1982.

[64] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations,” in Proceedings of the
26th annual international conference on machine learning. ACM, 2009, pp. 609-616.

[65] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.

[66] N. Murata, S. Yoshizawa, and S.-i. Amari, “Network information criterion-determining
the number of hidden units for an artificial neural network model,” IEEE Transactions
on Neural Networks, vol. 5, no. 6, pp. 865872, 1994.

[67] T. B. Sprague, “Shape preserving piecewise cubic interpolation,” 1990.

[68] Y. Zhang, Z. L. Liu, and M. Song, “Chinet uncovers rewired transcription subnetworks
in tolerant yeast for advanced biofuels conversion,” Nucleic acids research, vol. 43, no. 9,
pp. 4393-4407, 2015.

[69] C. Gentile and M. K. Warmuth, “Linear hinge loss and average margin,” in Advances
in Neural Information Processing Systems, 1999, pp. 225-231.

[70] A. Cauchy, “Méthode générale pour la résolution des systemes d’équations simultanées,”
Comp. Rend. Sci. Paris, vol. 25, no. 1847, pp. 536538, 1847.

[71] R. Watrigant, M. Bougeret, and R. Giroudeau, “The k-sparsest subgraph problem,”
2012.

[72] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall, Inc., 1988.

[73] J. T. Kost and M. P. McDermott, “Combining dependent p-values,” Statistics &
Probability Letters, vol. 60, no. 2, pp. 183-190, 2002.

[74] M. Lichman, “UCI machine learning repository,” 2013. [Online|. Available:
http:/ /archive.ics.uci.edu/ml

[75] Y. Wu, J. Padhye, R. Chandra, V. Padmanabhan, and P. A. Chou, “The local mixing
problem,” in Proc. Information Theory and Applications Workshop, 2006.

[76] Y. LeCun, C. Cortes, and C. J. Burges, “Mnist handwritten digit database,” ATE&T
Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, vol. 2, 2010.

[77] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: a system for large-scale machine learning.” in
OSDI, vol. 16, 2016, pp. 265—283.

141

http://archive.ics.uci.edu/ml

(78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[33]

[89]

M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of
deep learning: Passive and active white-box inference attacks against centralized
and federated learning,” in 2019 IEEE Symposium on Security and Privacy, SP
2019, San Francisco, CA, USA, May 19-23, 2019, 2019. [Online|. Available:
https://doi.org/10.1109/SP.2019.00065 pp. 739-753.

J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong, “Memguard: Defending against
black-box membership inference attacks via adversarial examples,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. ACM,
2019, pp. 259-274.

A. Johnson and V. Shmatikov, “Privacy-preserving data exploration in genome-wide
association studies,” in Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2013, pp. 1079-1087.

Y. Long, V. Bindschaedler, and C. A. Gunter, “Towards measuring membership privacy,”
arXiw preprint arXw:1712.09136, 2017.

“Amazon machine learning - predictive analytics with AWS,” https://aws.amazon.com/
machine-learning/, 2016, accessed: 2016-05-18.

“Prediction API - pattern matching and machine learning,” https://cloud.google.com/
prediction/, 2016, accessed: 2016-05-18.

“Machine learning | Microsoft Azure,” https://azure.microsoft.com/en-us/services/
machine-learning/, 2016, accessed: 2016-05-18.

F. Tramér, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine
learning models via prediction apis.” in USENIX Security Symposium, 2016, pp. 601—
618.

M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy in
pharmacogenetics: An end-to-end case study of personalized warfarin dosing,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014, pp. 17-32.

M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit con-
fidence information and basic countermeasures,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2015, pp.
1322-1333.

K. Fukunaga and D. M. Hummels, “Leave-one-out procedures for nonparametric error
estimates,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 11,
no. 4, pp. 421-423, 1989.

R. Kohavi, “Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid.”
in KDD, vol. 96. Citeseer, 1996, pp. 202—-207.

142

https://doi.org/10.1109/SP.2019.00065
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://cloud.google.com/prediction/
https://cloud.google.com/prediction/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/

[90]

[91]

[92]

193]

[94]

[95]

[96]
[97]

98]

[99]

[100]

[101]

[102]

103

D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” in
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 2007, pp. 1027-1035.

L. Rish, “An empirical study of the naive bayes classifier,” in IJCAI 2001 workshop on
empirical methods in artificial intelligence, vol. 3, no. 22. IBM New York, 2001, pp.
41-46.

S. F. Chen and J. Goodman, “An empirical study of smoothing techniques for language
modeling,” in Proceedings of the 34th annual meeting on Association for Computational
Linguistics. Association for Computational Linguistics, 1996, pp. 310-318.

N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,” Machine Learning, vol. 59,
no. 1-2, pp. 161-205, 2005.

D. J. MacKay, Information theory, inference and learning algorithms. Cambridge
university press, 2003.

H. Schiitze, “Introduction to information retrieval,” in Proceedings of the international
communication of association for computing machinery conference, 2008, p. 260.

D. Roth, “Learning in natural language,” Urbana, vol. 51, p. 61801, 1999.

J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 81-106,
1986.

W. Fan, H. Wang, P. S. Yu, and S. Ma, “Is random model better? on its accuracy and
efficiency,” in Data Mining, 2003. ICDM 2003. Third IEEE International Conference
on. 1EEE, 2003, pp. 51-58.

G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright, “A practical differentially
private random decision tree classifier,” in Data Mining Workshops, 2009. I[CDMW’09.
IEEE International Conference on. ITEEE, 2009, pp. 114-121.

N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regres-
sion,” The American Statistician, vol. 46, no. 3, pp. 175-185, 1992.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership Inference Attacks
Against Machine Learning Models,” in Proceedings of the 2017 IEEE Symposium on
Security and Privacy (S€6P). IEEE, 2017, pp. 3-18.

A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes, “ML-Leaks:
Model and Data Independent Membership Inference Attacks and Defenses on Machine
Learning Models,” in Proceedings of the 2019 Network and Distributed System Security
Symposium (NDSS). Internet Society, 2019.

S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “Towards Reverse-Engineering Black-
Box Neural Networks,” in Proceedings of the 2018 International Conference on Learning
Representations (ICLR), 2018.

143

[104]

[105]

[106]

[107]
|108]
[109]
[110]
[111]
[112]
[113]

[114]

[115]

[116]

[117]

[118]

J. Buolamwini and T. Gebru, “Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification,” in Proceedings of the 2018 Conference on Fairness,
Accountability, and Transparency (FAT*), 2018, pp. 77-91.

M. Kearns, S. Neel, A. Roth, and Z. S. Wu, “An Empirical Study of Rich Subgroup
Fairness for Machine Learning,” in Proceedings of the 2019 Conference on Fairness,
Accountability, and Transparency (FAT*). ACM, 2019, pp. 100-109.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J.
Smola, “Deep sets,” in Advances in neural information processing systems, 2017, pp.
3391-3401.

https:/ /archive.ics.uci.edu/ml/datasets/Census-Income+%28 KDD %29.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

H. C. Assistance, “Summary of the hipaa privacy rule,” Office for Civil Rights, 2003.

A. Salem, Y. Zhang, M. Humbert, M. Fritz, and M. Backes, “ML-Leaks: Model and
Data Independent Membership Inference Attacks and Defenses on Machine Learning
Models,” CoRR abs/1806.01246, 2018.

B. C. Ross, “Mutual information between discrete and continuous data sets,” PloS one,
vol. 9, no. 2, p. e87357, 2014.

A Hypothesis Testing Approach to Sharing Logs with Confidence. ACM, 2020.

M. Xu, A. Papadimitriou, A. Feldman, and A. Haeberlen, “Using differential privacy to
efficiently mitigate side channels in distributed analytics,” in Proceedings of the 11th
FEuropean Workshop on Systems Security. ACM, 2018, p. 4.

Y. Yang, Z. Zhang, G. Miklau, M. Winslett, and X. Xiao, “Differential privacy in data
publication and analysis,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. ACM, 2012, pp. 601-606.

M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in 2016 IEEE 16th
International Conference on Data Mining (ICDM). TEEE, 2016, pp. 859-864.

P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated log parsing for
large-scale log data analysis,” IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 6, pp. 931-944, 2018.

“Apache spark,” https://spark.apache.org/.

C. E. McCulloch and J. M. Neuhaus, “Generalized linear mixed models,” Encyclopedia
of biostatistics, vol. 4, 2005.

144

https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29
https://spark.apache.org/

[119] T. Kalibera, L. Bulej, and P. Tuma, “Benchmark precision and random initial state,”
in Proceedings of the 2005 International Symposium on Performance FEvaluation of
Computer and Telecommunication Systems (SPECTS 2005), 2005, pp. 484-490.

[120] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman, and R. Ricci, “Taming
performance variability,” in 13th { USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), 2018, pp. 409-425.

[121] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical test suite
for random and pseudorandom number generators for cryptographic applications,”
Booz-Allen and Hamilton Inc Mclean Va, Tech. Rep., 2001.

[122] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. Smola, “A kernel
two-sample test,” Journal of Machine Learning Research, vol. 13, no. Mar, pp. 723773,
2012.

[123] N. Mantel, “Chi-square tests with one degree of freedom; extensions of the mantel-
haenszel procedure,” Journal of the American Statistical Association, vol. 58, no. 303,
pp. 690-700, 1963.

[124] Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer, “Detecting violations of differential
privacy,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 475-489.

[125] Student, “The probable error of a mean,” Biometrika, pp. 1-25, 1908.

[126] M. A. Stephens, “Edf statistics for goodness of fit and some comparisons,” Journal of
the American statistical Association, vol. 69, no. 347, pp. 730-737, 1974.

[127] M. Bland, “Do baseline p-values follow a uniform distribution in randomised trials?”
PloS one, vol. 8, no. 10, p. 76010, 2013.

[128] R. A. Fisher, Statistical methods for research workers. Genesis Publishing Pvt Ltd,
2006.

[129] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property inference attacks
on fully connected neural networks using permutation invariant representations,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 619-633.

[130] S. Sebastio, K. S. Trivedi, and J. Alonso, “Characterizing machines lifecycle in google
data centers,” Performance Evaluation, vol. 126, pp. 39 — 63, 2018. [Online|. Available:
http://www.sciencedirect.com /science/article /pii/S016653161830004X

[131] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun, “Making sense
of performance in data analytics frameworks,” in 12th { USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), 2015, pp. 293-307.

145

http://www.sciencedirect.com/science/article/pii/ S016653161830004X

[132]

133

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Greevski, and D. Yuan, “Don’t get caught in
the cold, warm-up your {JVM}: Understand and eliminate {JVM} warm-up overhead
in data-parallel systems,” in 12th { USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), 2016, pp. 383-400.

S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest: efficient per-
formance prediction for large-scale advanced analytics,” in 15th { USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 16), 2016, pp. 363-378.

K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker, “Monotasks: Architecting for
performance clarity in data analytics frameworks,” in Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 2017, pp. 184-200.

O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang, “Cherrypick:
Adaptively unearthing the best cloud configurations for big data analytics,” in 14th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
17), 2017, pp. 469-482.

J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan, and
S. Stolfo, “On the feasibility of online malware detection with performance counters,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 559-570, 2013.

M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-based side-
channel attacks using hardware performance counters,” Applied Soft Computing, vol. 49,
pp. 1162-1174, 2016.

R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. Gunter, F. Zaffar, M. Caesar, and
N. Borisov, “Mining on someone else’s dime: Mitigating covert mining operations in
clouds and enterprises,” in International Symposium on Research in Attacks, Intrusions,
and Defenses. Springer, 2017, pp. 287-310.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in 2019 IEEE Symposium on Security and Privacy (SP), May
2019, pp. 1-19.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin et al., “Meltdown: Reading kernel memory from user space,” in
27th { USENIX} Security Symposium ({ USENIX} Security 18), 2018, pp. 973-990.

Y. Long, S. Lin, Z. Yang, C. A. Gunter, and B. Li, “Scalable differentially private
generative student model via pate,” arXiv preprint arXiv:1906.09338, 2019.

[. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672-2680.

146

[143] C. Dwork and V. Feldman, “Privacy-preserving prediction,” arXiv preprint
arXiw:1805.10266, 2018.

[144] 1. Mironov, “Renyi differential privacy,” in Computer Security Foundations Symposium
(CSF), 2017 IEEE 30th. 1EEE, 2017, pp. 263-275.

[145] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar, “Semi-
supervised knowledge transfer for deep learning from private training data,” in
International Conference on Learning Representations, 2017. [Online|. Available:
https://openreview.net /forum?id=HkwoSDPgg

[146] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and U. Erlingsson,
“Scalable private learning with PATE,” in International Conference on Learning

Representations, 2018. [Online|. Available: |https://openreview.net/forum?id=
rkZB1XbRZ

[147] E. Bingham and H. Mannila, “Random projection in dimensionality reduction: applica-
tions to image and text data,” in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2001, pp. 245-250.

[148] S. Gong, V. N. Boddeti, and A. K. Jain, “On the intrinsic dimensionality
of face representation,” CoRR, vol. abs/1803.09672, 2018. [Online|. Available:
http:/ /arxiv.org/abs/1803.09672

[149] C. Xu, J. Ren, Y. Zhang, Z. Qin, and K. Ren, “Dppro: Differentially private high-
dimensional data release via random projection,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 12, pp. 3081-3093, 2017.

[150] A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi, “Calibrating probability
with undersampling for unbalanced classification,” in 2015 IEEE Symposium Series on
Computational Intelligence. TEEE, 2015, pp. 159-166.

[151] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms,” arXiv preprint arXiww:1708.07747, 2017.

[152] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep
convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[153] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?”
arXiv preprint arXiw:1810.00826, 2018.

[154] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph neural
networks: A review of methods and applications,” arXiv preprint arXiv:1812.08434,
2018.

[155] L. Liu, J. Wang, J. Liu, and J. Zhang, “Privacy preservation in social networks with
sensitive edge weights,” in proceedings of the 2009 SIAM International Conference on
Data Mining. SIAM, 2009, pp. 954-965.

147

https://openreview.net/forum?id=HkwoSDPgg
https://openreview.net/forum?id=rkZB1XbRZ
https://openreview.net/forum?id=rkZB1XbRZ
http://arxiv.org/abs/1803.09672

[156] L. Liu, J. Wang, J. Liu, and J. Zhang, “Privacy preserving in social networks against
sensitive edge disclosure,” Technical Report Technical Report CMIDA-HiPSCCS 006-08,
Department of ..., Tech. Rep., 2008.

[157] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security and privacy-
preserving in edge computing paradigm: Survey and open issues,” IEFFE Access, vol. 6,
pp. 18209-18 237, 2018.

[158] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad,
“Collective classification in network data,” AI Magazine, vol. 29, no. 3, pp. 93-106,
2008. [Online|. Available: http://www.cs.iit.edu/ ml/pdfs/sen-aimag08.pdf

[159] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node embedding,”
2019.

[160] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning
irregular graphs,” SIAM Journal on scientific Computing, vol. 20, no. 1, pp. 359-392,
1998.

[161] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised learning
with graph embeddings,” CoRR, vol. abs/1603.08861, 2016. [Online|. Available:
http://arxiv.org/abs/1603.08861

[162] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in ICLR. OpenReview.net, 2017.

[163] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014, cite
arxiv:1412.6980Comment: Published as a conference paper at the 3rd International
Conference for Learning Representations, San Diego, 2015. [Online|. Available:
http:/ /arxiv.org/abs/1412.6980

[164] S. Lloyd, “Least squares quantization in pem,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129-137, March 1982.

148

http://www.cs.iit.edu/~ml/pdfs/sen-aimag08.pdf
http://arxiv.org/abs/1603.08861
http://arxiv.org/abs/1412.6980

	CHAPTER 1 Introduction
	The Foundation: Understanding Privacy Risk under Pragmatic Adversarial Models
	Three Levels of Privacy Protections
	Thesis Contributions and Organizations

	CHAPTER 2 Related Work
	Privacy Attacks on Machine Learning Models
	Differential Privacy and Rényi Differential Privacy.
	Empirical Privacy Protection Mechanisms
	Trade-Offs between Privacy and Utility

	CHAPTER 3 A Pragmatic Approach to Membership Inferences on Machine Learning Models
	Adversary Model
	Indiscriminate Attack
	Pragmatic Attack
	Adversary Knowledge

	Pragmatic Membership Inference Attack
	Attack Overview
	Building Reference Models
	Selecting Vulnerable Records
	Direct Inference
	Indirect Inference

	Evaluation
	Experimental Setup
	Dataset
	Models
	Direct Inference
	Selection of Vulnerable Records
	Indirect Inference
	Influence of Regularization
	Comparison with Indiscriminative Attacks

	Discussion
	Limitations
	Mitigation

	Conclusions

	CHAPTER 4 Towards Measuring Membership Privacy
	Problem Statement
	Differential Training Privacy
	Case Studies
	Datasets
	Machine Learning Models
	Attacks
	Evaluation Metrics
	Results

	Protections against Indirect Membership Attacks
	Risk
	Training Stability
	Training Stability of Classifiers
	An Upper Bound on DTP

	Reducing DTP
	Discussion
	Open Questions
	Conclusions

	CHAPTER 5 Black-Box Property Inference Attacks on Machine Learning Models
	Problem Statement
	Property Inference on ML Models
	Threat Models

	Methodology
	Black-Box Adversary
	Model-Agnostic Adversary
	Data-Agnostic Adversary
	Query Generation

	Evaluation
	Experiment Setup
	Black-Box Adversary
	Model-Agnostic Adversary
	Data-Agnostic Adversary
	Results Analysis

	Conclusion

	CHAPTER 6 A Hypothesis Testing Approach to Sharing Logs with Confidence
	Log Indistinguishability
	Problem Statement
	Log Indistinguishability
	Framework Overview

	Indistinguishability Tests
	A Testing-Based Approach
	Steps of Indistinguishability Testing
	Designing Indistinguishability Tests
	Interpretation of Test Results

	Protections with Log Obfuscation
	Case Studies
	Spark Event Log Dataset
	Hardware Performance Counter Dataset

	Conclusion

	CHAPTER 7 Scalable DP Generative Model via PATE
	 The G-PATE Method
	Training the Student Generator
	Differentially Private Gradient Aggregation for G-PATE

	Theoretical Guarantees
	Experimental Evaluation
	Experimental Setup
	Comparison with DP-GAN and PATE-GAN

	Conclusion

	CHAPTER 8 Differentially Private Graph Convolutional Neural Networks
	Differentially Private GCN
	Graph Aggregation via Node Clustering
	Noise-Resilient GCN Structure
	Differentially Private GCN
	Hierarchical Node Clustering

	Experiments
	Datasets
	Experimental Setup
	Evaluation of Node Clustering.
	Evaluation of DP-GCN
	Ablation Studies on DP-GCN

	Conclusion

	CHAPTER 9 Conclusion
	REFERENCES

