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Abstract—In machine learning Trojan attacks, an adversary
trains a corrupted model that obtains good performance on
normal data but behaves maliciously on data samples with certain
trigger patterns. Several approaches have been proposed to detect
such attacks, but they make undesirable assumptions about the
attack strategies or require direct access to the trained models,
which restricts their utility in practice.

This paper addresses these challenges by introducing a Meta
Neural Trojan Detection (MNTD) pipeline that does not make
assumptions on the attack strategies and only needs black-box
access to models. The strategy is to train a meta-classifier that
predicts whether a given target model is Trojaned. To train
the meta-model without knowledge of the attack strategy, we
introduce a technique called jumbo learning that samples a set
of Trojaned models following a general distribution. We then
dynamically optimize a query set together with the meta-classifier
to distinguish between Trojaned and benign models.

We evaluate MNTD with experiments on vision, speech,
tabular data and natural language text datasets, and against
different Trojan attacks such as data poisoning attack, model
manipulation attack, and latent attack. We show that MNTD
achieves 97% detection AUC score and significantly outperforms
existing detection approaches. In addition, MNTD generalizes
well and achieves high detection performance against unforeseen
attacks. We also propose a robust MNTD pipeline which achieves
around 90% detection AUC even when the attacker aims to evade
the detection with full knowledge of the system.

I. INTRODUCTION
Deep learning with Neural Networks (NNs) has achieved

impressive performance in a wide variety of domains, includ-
ing computer vision [32], speech recognition [22], machine
translation [42], and game playing [49]. The success of deep
learning has also led to applications in a number of security or
safety critical areas such as malware classification [26], face
recognition [51], and autonomous driving [8].

The development of such deep learning models often re-
quires large training sets, extensive computing resources, and
expert knowledge. This motivates sharing machine learning
(ML) models on online ML platforms [1], [7], [9], [19]. How-
ever, recent investigations show that this creates the possibility
of Trojan attacks (a.k.a. backdoor attacks) [23], [38], [15], [57]
in which an adversary creates a Trojaned neural network that
has state-of-the-art performance on normal inputs in evalua-
tion, but is fully controlled on inputs with a specific attacker-
chosen trigger pattern. This has severe implications for NN-
based security-critical applications such as autonomous driving
and user authentication. One study [23] demonstrated how
to generate a Trojaned traffic sign classifier that properly
classifies standard traffic signs, but, when presented with a
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Fig. 1: An illustration of Trojan attack on traffic sign classifiers.

stop sign containing a special sticker (i.e., the Trojan trigger),
activates the backdoor functionality and misclassifies it as a
speed limit sign, as illustrated in Figure 1. The trigger allows
the adversary to lead the model to misbehave, potentially
causing traffic accidents. Users of the model are unlikely to
realize the danger in advance because the Trojaned model
behaves well in normal cases. This motivates a strong demand
to detect Trojan attacks before their Trojan actions are invoked.

Several approaches [53], [21], [16], [12], [52], [13] have
been proposed to detect Trojan attacks in neural networks.
However, existing approaches make prior assumptions on the
attack strategy and/or require strong access to the model.
These assumptions and requirements make the approaches too
specific for certain application domains and less generalizable
to unforeseen attack strategies. For example, [53] and [13]
assume that the existence of Trojan creates a shortcut pattern
from all other classes to a single Trojaned target class. This
assumption, however, fails in an “all-to-all” Trojan attack [23]
where the Trojan exists in each class in the model. Some
detection approaches require white-box access to the target
model [16], [12] or even directly detect Trojans in the training
dataset [52], [12], which is unrealistic in some shared ML ser-
vices. Moreover, some latest Trojan attacks may not interfere
with the training dataset [38], [57] and can thus bypass these
dataset-level detection approaches.

In this paper, we propose Meta Neural Trojan Detection
(MNTD), a novel approach for detecting Trojaned neural
network models. In particular, we will train a meta-classifier,
which itself is a machine learning model. The meta-classifier
takes an NN (i.e., the target model) as input and performs a
binary classification to tell whether it is Trojaned or benign.
The meta-classifier is trained using shadow models, which
are benign or Trojaned NNs trained on the same task as
the target model. The shadow models may have much worse



performance than the target model since it requires only a
smaller clean dataset (i.e., without Trojan triggers). Since the
meta-classifier makes no assumption on the attack strategy
and uses machine learning to identify Trojans, our approach
is generic and applies to a variety of attack approaches and
application domains.

One major challenge in applying meta neural analysis is
how to provide the training set for the meta-classifier when
the attacker’s strategy is unknown. A simple way is to apply
one-class training, where a meta-classifier is trained using
only benign model samples and classifies a target model as
a Trojan if it differs from the benign ones. We find that
this approach sometimes works well, but, in other cases, we
cannot effectively train the meta-classifier properly without
negative examples. To address this issue, we propose jumbo
learning to model a general distribution of Trojan attack
settings, from which we can sample a “jumbo” training set
of diverse Trojaned shadow models. Then we will train the
meta-classifier to distinguish between benign models and the
jumbo set of Trojaned models.

A second challenge is to perform high-quality detection on
the target model with only black-box access to it. To address
this, we propose using the output of the target model on certain
queries as its representation vector to the meta-classifier. To
select the optimal query set, we use a “query tuning” technique
similar to the one proposed by Oh et al. [45]. In particular,
we start with a random query set and then optimize the query
set simultaneously with the meta-classifier parameters using a
gradient-based method. These fine-tuned queries allow us to
extract the maximum amount of information from the black-
box model.

The combination of the above techniques produces meta-
classifiers that achieve excellent performance in detecting
Trojaned models for a diverse range of machine learning
tasks (vision, speech, tabular records, and NLP) and attack
strategies. We demonstrate that with only a small clean training
set (2% of the size used to train the Trojaned model) and only
10 queries, the average detection AUC reaches 97% for the
tasks in our evaluation. Furthermore, we show that the trained
meta-classifier generalizes well to detect unforeseen Trojans
where the attack strategies are not considered in the jumbo
distribution.

Finally, we consider the case in which a strong adaptive
attacker knows key parts of the MNTD system such as the
detection pipeline and meta-classifier parameters. We design
a robust version of MNTD where we pick part of the system
randomly at running time and fine-tune the other part. Thus,
the attacker has no information about the randomly chosen
part of the system and cannot tailor his attack accordingly.
We demonstrate that the robust MNTD system performs well
in detecting adaptive attacks with around 90% AUC, at a small
cost of performance in detecting normal Trojan attacks.

Our contributions can be summarized as follows:
• We propose MNTD, a novel, general framework to detect

Trojaned neural networks with no assumption on the
attack strategy.

• We propose jumbo learning to model a distribution of
Trojan attacks and train the meta-model together with an
optimized query set.

• We demonstrate the effectiveness and generalizability
of our approach through comprehensive evaluation and
comparison with the state-of-the-art defense approaches
on different types of Trojan attacks with a diverse range
of datasets.

• We survey and re-implement existing works on detecting
Trojaned NNs and adapt them to different tasks and
datasets. We show that the proposed MNTD significantly
outperforms these prior works in practice.

• We evaluate MNTD against strong adaptive attackers and
show that it is able to achieve a 90% detection AUC
score even when the attackers have whitebox access to
the defense pipeline.

II. BACKGROUND

A. Deep Neural Networks
A typical neural network is composed of a sequence of

layers (F1, F2, . . . , Fn), where each layer Fi is a differentiable
transformation function. Given input x, the output of the neural
network f is calculated by:

f(x; θ) = Fn(Fn−1(. . . (F2(F1(x))))) (1)

where θ denote the parameters of the model. The most popular
task for using deep neural networks is classification, where a
model is required to predict which class an input instance
belongs to. Suppose there are c different classes, then the
output of the model would be f(x; θ) ∈ Rc, where f(x; θ)k is
the confidence score indicating the likelihood that the instance
belongs to the k-th class. In order to train a neural network,
we need a dataset {(xi, bi)} which consists of a set of input
samples xi and their corresponding ground truth labels bi.
During the training process, we will train the neural network
to minimize the error rate over the training set by minimizing
a differentiable loss function L(f(x; θ), b) between the model
output f(x; θ) and the ground truth label b.

θ∗ = argmin
θ

∑
i

L
(
fθ(xi), bi

)
(2)

Since the loss function and all the transformation functions in
the network are differentiable, we can calculate the gradient of
the loss function with respect to the parameters using back-
propagation. Then we can minimize the loss function using
gradient-based optimization techniques.

B. Meta Neural Analysis
Unlike traditional machine learning tasks which train over

data samples such as images, meta neural analysis trains a
classifier (i.e., meta-classifier) over neural networks to predict
certain property of a target neural network model. Meta neural
analysis has been used to infer properties of the training
data [20], [3], properties of the target model (e.g., the model
structure) [45], and membership (i.e., if a record belongs to
the training set of the target model) [48].
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Fig. 2: The general workflow of meta neural analysis on a binary
property.

In Figure 2, we show the general workflow of meta neural
analysis. To be able to identify a binary property of a target
model, we first train a number of shadow models with and
without the property to get a dataset {(f1, b1), . . . , (fm, bm)},
where bi is the label for the shadow model fi. Then we use
a feature extraction function F to extract features from each
shadow model to get a meta-training dataset {(F(fi), bi)}mi=1.
Finally, we use the meta-training dataset to train a meta-
classifier. Given a target model ftarget, we just need to feed the
features of the target model F(ftarget) to the meta-classifier to
obtain a prediction of the property value.

C. Trojan Attacks on Neural Networks

A Trojan attack (a.k.a. backdoor attack) on a neural network
is an attack in which the adversary creates a malicious neural
network model with Trojans. The Trojaned (or backdoored)
model behaves similarly with benign models on normal inputs,
but behaves maliciously as controlled by the attacker on
a particular set of inputs (i.e., Trojaned inputs). Usually, a
Trojaned input includes some specific pattern—the Trojan
trigger. For example, Gu et al. [23] demonstrate a Trojan attack
on a traffic sign classifier as in Figure 1. The Trojaned model
has comparable performance with normal models. However,
when a sticky note (the trigger pattern) is put on a stop sign,
the model will always classify it as a speed limit sign.

The injected Trojan may have different malicious behavior.
The most common behavior is single target attack where the
classifier always returns a desired target label on seeing a
trigger pattern, e.g., classifying any sign with the sticker as
a speed limit sign. An alternative malicious behavior, all-to-
all attack, will permute the classifier labels in some way. For
example, in [23] the authors demonstrate an attack where a
trigger causes a model to change the prediction of digit i to
(i+ 1) (mod 10).

Various approaches have been proposed to train a Trojaned
model. One direct way is to inject Trojaned inputs into the
training dataset (i.e., poisoning attack) [23], [15], [36], so that
the model will learn a strong relationship between the trigger
pattern and the malicious behavior. Alternatively, several ap-
proaches have been proposed without directly interfering with

(a) Modification (b) Blending (c) Parameter (d) Latent

Fig. 3: Trojaned input examples of four Trojan attacks. The figures
are taken from the original papers in [23],[15],[38],[57] respectively.
The trigger patterns in (a), (c), (d) are highlighted with red boxes.
The trigger pattern in (b) is a Hello Kitty graffiti that spreads over
the whole image. Note that parameter attack and latent attack shares
the same strategy for generating trigger patterns while their attack
setting is different.

the training set [38], [57]. In this paper, we will focus on four
types of commonly adopted Trojan attacks:

Modification Attack. This is a poisoning attack proposed
by Gu et al. [23]. The attacker selects some training samples,
directly modifies some part of each sample as a trigger pattern,
assigns desired labels and injects the sample-label pairs back
into the training set. An example of the trigger pattern is shown
in Figure 3a.

Blending Attack. This is another poisoning attack proposed
by Chen at al. [15]. The attacker also poisons the dataset with
malicious sample-input pairs. However, instead of directly
modifying part of the input, the adversary blends the trigger
pattern into the original input (e.g., mixing some special
background noise into a voice command). An example is
shown in Figure 3b.

Parameter Attack. This is a model manipulation attack that
directly changes the parameters of a trained model without
access to the training set [38]. The attack consists of three
steps: 1) the adversary generates an optimal trigger pattern
w.r.t. the model using gradient-based approach; 2) the adver-
sary reverse-engineers some inputs from the model; 3) the
adversary adds the malicious pattern to the generated data and
retrains the model with desired malicious behavior. Note that
the attacker can only choose the trigger shape and location but
not the exact pattern. The trigger pattern is generated by the
algorithm. An example is shown in Figure 3c.

Latent Attack. In this attack [57], the attacker releases a
“latent” Trojaned model that does not show any malicious
behavior until the user fine-tunes the model on his own task.
The attack is achieved by first including the user’s task in the
training process, then generating the trigger pattern, injecting
the Trojan behavior into the model, and finally removing the
trace of user’s task in the model. The exact trigger pattern
here is also generated. attacker can only determine its shape
and location but not the exact pattern. An example is shown
in Figure 3d.

III. THREAT MODEL & DEFENDER CAPABILITIES
In this section, we will first introduce our threat model. Then

we introduce our goal as a defender and our capabilities.
A. Threat Model

In this paper, we consider adversaries who create or dis-
tribute Trojaned DNN models to model consumers (i.e., users).
The adversary could provide the user with either black-box
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TABLE I: A comparison of our work with other Trojan detection works in defender capabilities and detection capabilities.

Defender Capabilities Attack Detection Capabilities
Detection Black-box No Access to No Need of Model Manip- Large-size All-to-all Binary

Level Access Training Data Clean Data ulation Attacks Trigger Attack Goal Model
MNTD Model 3 3 7 3 3 3 3

Neural Cleanse [53] Model 7 3 7 3 7 7 7
DeepInspect [13] Model 3 3 3 3 3 7 7

Activation Clustering [12] Dataset 7 7 3 7 3 3 3
Spectral [52] Dataset 3 7 3 7 3 3 3
STRIP [21] Input 3 3 7 3 3 7 3

SentiNet [16] Input 7 3 7 3 7 3 3

access (e.g., through platforms such as Amazon ML [1]) or
white-box access to the NN models. The Trojaned model
should have good classification accuracy on validation set, or
otherwise it will be immediately rejected by the user. However,
on Trojaned input, i.e., inputs containing Trojan triggers, the
model will produce malicious outputs that are different from
the benign ones.

As discussed in Section II-C, there are different ways for an
adversary to insert Trojans to neural networks. As a detection
work, we consider that the adversary has maximum capability
and arbitrary strategies. That is, we assume that the adversary
has full access to the training dataset and white-box access
to the model. He may apply an arbitrary attack approach to
generate the Trojaned model. The trigger pattern may be in
any shape, location and size. The targeted malicious behavior
may be either a single target or all-to-all attack.

In this paper, we focus on software Trojan attacks on neural
networks. Thus, hardware Trojan attacks [17], [35] on neural
networks are out of our scope.

B. Defender Goal
Trojan attacks can be detected at different levels. A model-

level detection aims to make a binary decision on whether a
given model is a Trojaned model or not. An input-level detec-
tion aims to predict whether an input will trigger some Trojan
behavior on an untrusted model. A dataset-level detection
examines whether a training dataset suffers from poisoning
attack and has been injected with Trojaned data.

Similar to [53], [13], we focus on model-level detection of
Trojan attacks as it is a more challenging setting and more
applicable in real world. We further discuss the differences of
these three detection levels in Section IX.

C. Defender Capabilities
To detect Trojan attacks, defenders may have differences in

the following capabilities/assumptions:
• Assumption of the attack strategy. A defender may have

assumptions on the attack approach (e.g., modification
attack), Trojan malicious behavior (e.g. single-target at-
tack) or attack settings (e.g, the trigger pattern needs to
be small).

• Access to the target model. A defender could have white-
box or black-box access to the target model. With white-
box access, the defender has all knowledge of the model
structure and parameters; with black-box access, the
defender can only query the model with input data to
get the output prediction probability for each class. This

definition of black-box model is widely used in existing
work [45], [14], [52], [21].

• Access to the training data. A defender may need access
to the training data of the target model for the detection,
especially to detect a poisoning Trojan attack.

• Requirement of clean data. A defender may need a set of
clean data to help with the detection.

In this paper, we consider a defender with few assumptions.
Our defender only needs black-box access to the target model,
has no assumptions on the attack strategy, and does not need
access to the training set. But our defender does need a small
set of clean data as auxiliary information to help with the
detection, which is also required by previous works [53], [21],
[16]. However, we assume the clean dataset is much smaller
than the dataset used by the target model and the elements
are different. This may be the case of an ML model market
provider who is willing to vet the models in their store or
a model consumer who does not have enough training data,
expertise or resources to train a high-performing model as the
pretrained ones.

D. Existing Detection of Trojan Attacks
Several approaches have been proposed to detect Trojans

in neural networks. We discuss the defender capabilities and
detection capabilities and compare them with our system
MNTD in Table I, including two model-level detections Neural
Cleanse(NC) [53] and DeepInspect(DI) [13], two dataset-
level detections Activation Clustering (AC) [12] and Spectral
Signature [52], and two input-level detections STRIP [21]
and SentiNet [16]. We include the detailed discussion on the
existing works in Appendix A.

IV. META NEURAL TROJAN DETECTION (MNTD)
We show the overall workflow of MNTD system in Figure 4.

Given a clean dataset and a target model, the MNTD pipeline
consists of three steps to determine whether the model is
Trojaned:

1) Shadow model generation. We generate a set of benign
and Trojaned shadow models in this step. We train the
benign models using the same clean dataset with different
model initialization. For the Trojaned models, we propose
a generic Trojan distribution from which we sampled a
variety of Trojan settings, and apply poisoning attack to
generate different Trojaned models.

2) Meta-training. In this step, we will design the feature
extraction function to get representation vectors of the
shadow models and train the meta-classifier to detect
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Fig. 4: The workflow of our jumbo MNTD approach with query-tuning. The solid lines represent the training process and dashed ones show
the test process.

Trojans using the representation vectors. We propose to
choose a set of queries to extract important representation
from the shadow models and use the resulting vectors as
the input to the meta-classifier. We jointly optimize the
meta-classifier and the query set in multiple iterations and
effectively improve the performance of the trained meta-
classifier.

3) Target model detection. Given a target model, we will first
leverage the optimized query set to extract the represen-
tation of the model. We then feed the representation to
the meta-classifier to determine whether the target model
is Trojaned or not.

In the following, we first introduce our approach to shadow
model generation - the jumbo learning in Section IV-A. Then,
in Section IV-B we introduce the way to perform meta-training
having the set of benign and Trojaned shadow models, as
well as a baseline meta-training algorithm which only uses
benign shadow models. Finally, we introduce the target model
detection step in Section IV-C.

A. Shadow Model Generation - Jumbo Learning
Suppose the task is a c-way classification and the input

dimension is dx. The first step of our defense pipeline is to
generate a set of benign and Trojaned shadow models, based
on which the defender can later train the meta-classifier to
distinguish between them. The benign shadow models can
be generated by training on the clean dataset with different
model parameter initialization. The important part is how to
generate Trojaned shadow models. We hope to generate a
variety of Trojaned models so that the trained meta-classifier
can generalize to detect different types of Trojans. This is
essential because we assume that the attacker may apply any
attack strategy.

To this end, we propose jumbo learning, which models a
generic distribution of Trojan attack settings and generates
a variety of different Trojaned models. In jumbo learning,
we will first sample different Trojan attack settings. We
parametrize the attack setting as a function I which is general

to different types of data and attacks. Let x ∈ Rdx denote
the benign input with ground truth label y ∈ {1, . . . , c}.
In order to trigger the Trojan to output the malicious label
yt ∈ {1, . . . , c}, the adversary will modify the input into x′

with the Trojan function I such that:

x′, y′ = I(x, y;m, t, α, yt) (3)

x′ = (1−m) · x+m ·
(
(1− α)t+ αx

)
(4)

y′ = yt (5)

where m ∈ {0, 1}dx is the mask for the trigger (i.e., shape
and location), t ∈ Rdx is the pattern and α is the transparency
inserted to x. This function I is generally applicable to
different Trojan attack settings and tasks. For example, in a
modification attack, m is a small pattern and α = 0; in a
blending attack m = 1 everywhere and 1− α is the blending
ratio; on audio data m refers to the time period for inserting
the Trojaned audio signal. We will sample random m, t, α, yt
to get different Trojan attack settings. In Figure 5, we show
some examples of the sampled Trojan triggers on the MNIST
dataset.

Having the sampled attack settings, we will train a model
with respect to each Trojan setting. We propose to apply the
data poisoning attack that injects a proportion p of malicious
data into the clean dataset. That is, we extract a proportion p
of data samples from the dataset we have, apply Eqn.3 to get
their Trojaned versions, then inject them back to the dataset
to train the shadow models.

The jumbo learning pipeline is shown in Algorithm 1. In
order to generate the set of Trojaned shadow models, we first
randomly sample the Trojan attack settings (line 3). Then we
poison the dataset (line 4-8) according to the setting and train
the Trojaned shadow model (line 9). We repeat the process
multiple times to generate a set of different Trojaned models.
The sampling algorithm (line 3) and model training algorithm
(line 9) will be different for different tasks.

Note that the Trojan distribution defined by Eqn.3 does not
capture all kinds of Trojans. We will evaluate how the trained
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Algorithm 1: The pipeline of jumbo learning to gen-
erate random Trojaned shadow models.

Input: Dataset D = {(xi, yi)}ni=1, number of Trojaned
shadow models to train m.

Output: models: a set of m random Trojaned shadow
models.

1 models← [];
2 for u = 1, . . . ,m do
3 m, t, α, yt, p = generate random setting();
4 Dtroj ← D;
5 indices = CHOOSE(n, int(n ∗ p));
6 for j in indices do
7 x′j , y

′
j ← I(xj, yj ;m, t, α, yt);

8 Dtroj ← Dtroj
⋃

(x′j , y
′
j);

9 fu ← train shadow model(Dtroj);
10 models.append(fu);
11 return models

Fig. 5: Examples of different Trojan patterns generated by our jumbo
learning on the MNIST dataset. The trigger patterns in the first five
examples are highlighted with red bounding boxes. The last example
is a data sample blended with random pixels.

meta-classifier performs in detecting the unforeseen Trojaned
models in Section VII. In addition, it is possible that some
future Trojans may occur which are not in the format as Eqn.3.
In that case, we can modify the jumbo distribution to include
the new type of Trojans. Therefore, we conclude that jumbo
learning is a generic way to generate a variety of Trojaned
models.

B. Meta-training

The defender will perform the meta-training algorithm
based on the set of shadow models generated by jumbo
learning. Our meta-training consists of two goals: 1) find a
feature extraction function to extract representation vectors of
the shadow models and 2) train a meta-classifier to distinguish
between benign and Trojaned shadow models. In the follow-
ing, we will first introduce our designs of the feature extraction
function and the meta-classifier. Then we introduce query-
tuning, a meta-training algorithm to jointly optimize the two
components. Finally we will talk about a baseline algorithm
when the defender does not apply jumbo learning and only
have a set of benign shadow models.

Feature Extraction Function Design We propose to feed a
set of queries to the shadow model and use the output vector
as its representation features. We have two intuitions for this
design. First, Trojaned models will behave differently with
benign models (i.e., have different distributions of outputs) on
some query inputs. For example, their outputs differ a lot on
inputs with Trojan triggers. Second, we can get the model
output without accessing its internal structure. This allows us
to detect Trojans in black-box scenarios.

Formally speaking, Let {(fi, bi)}mi=1 denote the shadow
model dataset, where fi : Rdx → {1, . . . , c} is the shadow
model and bi is a binary label indicating whether fi is Trojaned
(bi = 1) or benign (bi = 0). We will choose a set of k query
inputs X = {x1, . . . ,xk} where xi ∈ Rdx (we will discuss
how these query inputs are chosen later). We will feed the
queries into the shadow model fi and get k output vectors
{fi(x1), . . . , fi(xk)}. By concatenating all the output vectors,
we can get a representation vector Ri(X) as the feature of
the shadow model fi:

F(fi) = Ri(X) = [[fi(x1)|| . . . ||fi(xk)]] ∈ Rck (6)

where [[·|| · ||·]] stands for the concatenation operation. We use
Ri to denote Ri(X) if it does not lead to misunderstanding.

Meta-classifier Design Let META(Ri; θ) ∈ R denote the
meta-classifier where θ denotes the parameter of META. We
propose to use a two-layer fully connected neural network
as the meta-classifier. The meta-classifier will take in the
feature vector Ri and output a real-valued score indicating
the likelihood of fi to be Trojaned.

Meta-Training Algorithm In meta-training, we would like
to find the optimal values in the query set X and meta-
classifier parameters θ. One simple solution is to randomly
choose the query set X , pre-calculate all the representation
vectors Ri and only optimize the meta-classifier. Having Ri
and corresponding label bi, the meta-training is simply to
minimize the loss of a binary classifier via gradient-based
optimization:

argmin
θ

m∑
i=1

L

(
META(Ri(X); θ), bi

)
(7)

where L(·, ·) is the loss function using binary cross entropy.
This approach achieves a not bad performance in Trojan
detection. However, the randomly sampled inputs may not help
distinguish the benign and Trojaned models because Trojaned
models behave similarly with benign models on most inputs.
Therefore, we can improve the performance by finding the
optimal query inputs to provide the most useful information
in the representation vectors.

To this end, we propose a query-tuning technique to find the
best query set for feature extraction, which is similar with the
technique in Oh et al. [45]. The main idea is to jointly optimize
the query set and the meta-classifier in order to minimize the

6



training loss. The optimization goal thus becomes:

argmin
θ

X={x1,...,xk}

m∑
i=1

L

(
META(Ri(X); θ), bi

)
(8)

Note that the query set {x1, . . . ,xk} does not appear explicitly
in the optimization goal, but are included in the calculation of
Ri(X).

To optimize the goal in Eqn. 8, a key observation is that
the entire calculation flow is differentiable: we first feed the
query inputs into the shadow models, then use their output
as the representation vectors of shadow models, and finally
feed them into the meta-classifier. Since the shadow models
and the meta-classifier are differentiable, we can directly
calculate the gradient of the loss with respect to the input
vectors {x1, . . . ,xk}. Thus, we can still apply the standard
gradient-based optimization technique for solving Eqn. 8. In
particular, we will first randomly sample each xi from a
Gaussian distribution. Then we iteratively update xi and θ
with respect to the goal in Eqn. 8 to find the optimal query
set. This workflow is illustrated in the right part of Figure 4.

Note that during the training process we need to access the
internal parameters of the shadow models for calculating the
gradient. However, this does not violate the black-box setting
because the shadow models are trained by us and we can for
sure access their parameters. During the inference process, we
only need to query the black-box target model with the tuned
inputs {x1, . . . ,xk} and use the output for detection.

Baseline Meta-training algorithm without jumbo learning
The previous meta-training algorithm requires a set of Tro-
janed shadow models generated by jumbo learning. In the fol-
lowing, we will introduce a baseline meta-training algorithm
which requires only benign shadow models and thus does not
need jumbo learning.

We assume that the defender has only benign shadow
models to train the meta-classifier. The standard way to train
a machine learning model with only one-class data is novelty
detection, where the model is trained to determine whether an
input is similar with its training samples. As an example, one-
class SVM [41] will train a hyper-plane which separates all the
training data from the origin while maximizing the distance ρ
from the origin to the hyper-plane. An example of one-class
SVM is shown in Appendix B.

In practice, we propose to use one-class neural network [11]
which generalizes the one-class optimization goal to neural
networks, so that our meta-classifier can still be the two-layer
network structure. The optimization goal in one-class neural
network with query-tuning is:

min
θ,ρ

X={x1,...,xk}

1

2
·l2(θ)+

1

ν
· 1
m

m∑
i=1

ReLU
(
ρ−META(Ri(X); θ)

)
−ρ

(9)
where l2(θ) stands for the sum of Frobenius norm of all the
parameters in the meta-classifier. We will use a gradient-based
approach to do meta-training and find the optimal query set X
and model parameters θ which minimize the goal as in Eqn. 9.

C. Target Model Detection
Let X∗ = {x∗1, . . . ,x∗k} and θ∗ denote the optimal query

set and parameters obtained by meta-training. Given a target
model ftgt, we can apply the optimized feature extraction
function and meta-classifier to determine whether it is Tro-
janed or not. In particular, we first calculate its representa-
tion vector Rtgt = [[ftgt(x

∗
1)|| . . . ||ftgt(x∗k)]]. Then we can

determine whether ftgt is Trojaned according to the meta-
classifier’s prediction META(Rtgt; θ∗).

V. EXPERIMENT SETUP
In this section, we will introduce the experiment setting.

We first introduce the datasets we use, followed by the
attack and defense setting in the experiments. Finally we
introduce the setting of baselines which we compare with. Our
code is publically available at https://github.com/AI-secure/
Meta-Nerual-Trojan-Detection.

A. Dataset
We conduct our evaluation on a variety of machine learning

tasks, covering different types of datasets and neural networks.
For the vision tasks, we use the standard MNIST [33] and
CIFAR10 [31] datasets. MNIST is a dataset of grayscale hand-
written digits 0-9 and CIFAR10 is a dataset of RGB images of
10 classes. For the speech task we use the SpeechCommand
dataset (SC) containing one-second audio command of 10
classes. For the tabular data we use the Smart Meter Electricity
Trial data in Ireland dataset (Irish) [2]. It consists of electricity
consumption over weeks of two types of users (residential vs.
commercial). For the natural languange data we use the Rotten
Tomatoes movie review dataset (MR) [29] which consists of
movie reviews and the task is to determine whether a review is
positive or negative. We provide detailed introduction of each
dataset and network structure in each task in Appendix C.

As discussed in Section III-C, we assume the defender only
has a small set of clean data to help with the detection and the
data is different from the model training set (which is owned
by the attacker). Therefore, for each dataset, we randomly
sample 50% of the training set as owned by the attacker and
2% of the training data as the defender’s clean dataset.

B. Attack Settings
Here we introduce the attack setting that are modelled

in our jumbo distribution as in Section IV-A. Unforeseen
attack strategies will be evaluated in Section VII, which
include parameter and latent attack (since they will not poison
the training dataset) and all-to-all attack (since the jumbo
distribution only considers single-target attack).

For each dataset except MR, the attacker will generate 256
target models using modification attack and blending attack
respectively. On the discrete MR dataset only modification
attack applies. In the following we describe the attack setting
for both approaches.

Trigger mask m For blending attack, the pattern size is the
same as the input, so m = 1 everywhere. For modification
attack, trigger mask differs in different tasks. On MNIST
and CIFAR10, we use a square pattern with random size
from 2 × 2 to 5 × 5 at random location; on SC, the pattern
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will be a consecutive part at random place, whose length
is randomly sampled from {0.05, 0.1, 0.15, 0.2} seconds; on
Irish, the pattern will be a consecutive part at random place,
whose length is randomly sampled from {1, 2, 3, 4, 5} hours;
on MR, we will add a random phrase with 1 or 2 words at
random place.

Trigger pattern t The pattern value will be generated in the
same way for modification and blending attack. On MNIST
and CIFAR10, each pixel value is uniformly sampled from
[0, 1]; on SC and Irish, each signal value is uniformly sampled
from [0, 0.2]; on MR, each word is uniformly sampled from
the vocabulary.

Transparency α There is no transparency for modification
attack, so α = 0; for blending attack we uniformly sample α
from [0.8, 0.95].

Malicious label yt The malicious label for each Trojaned
model is uniformly chosen from the output set of each task,
e.g. from digit 0-9 for MNIST or from the 10 types of
commands for SC.

Data poisoning ratio p The proportion of injected data in
the data poisoning is uniformly sampled from [0.05, 0.5] for
all the tasks and attacks.

Besides the Trojaned model, we also train 256 benign target
models using the attacker’s dataset to evaluate the detection
performance. These benign models are trained using the same
setting except for different model parameter initialization.

C. Defense Settings
In jumbo MNTD, the defender will generate 2048 Tro-

janed models using jumbo learning and 2048 benign models
to train the meta-classifier. The defender will also generate
256 Trojaned and benign models for validation. In one-class
MNTD, only benign models are trained. The Trojaned models
are generated in the same way as the attacker, except for the
following difference:

1) The models here are trained using the defender’s dataset,
whose size is much smaller than the attacker’s dataset.

2) The trigger shape will be either small or the same size as
the input. There is 20% probability that the trigger shape
is the same as the input; otherwise it is sampled in the
way as modification attack before.

3) The transparency α will be sampled conditional on the
trigger shape. If the trigger shape is the same as the
input, then the α is uniformly sampled from [0.8, 0.95];
otherwise, α will be 0 with 25% probability and otherwise
uniformly sampled from [0.5, 0.8].

In addition, we ensure that the attack settings which already
exist in the attacker’s Trojan models will not be sampled again
in the training of defender’s shadow models.

We use the Adam optimizer [30] with learning rate 0.001
to train all the models, meta-classifiers and tune the queries.
We choose the query number to be k = 10 as it already works
well in our experiment (i.e., we do not need to choose a larger
number of queries). In practice, we find the performance is not
sensitive to this choice.

TABLE II: The classification accuracy and attack success rate for
the shadow and target models. -M stands for modification attack and
-B stands for blending attack.

Models
Shadow Model Target Model

Accuracy Success
Rate Accuracy Success

Rate
MNIST 95.14% - 98.47% -
MNIST-M - - 98.35% 99.76%
MNIST-B - - 98.24% 99.68%
CIFAR10 39.31% - 61.34% -
CIFAR10-M - - 61.23% 99.65%
CIFAR10-B - - 59.52% 89.92%
SC 66.00% - 83.43% -
SC-M - - 83.20% 98.66%
SC-B - - 83.56% 98.82%
Irish 79.71% - 95.88% -
Irish-M - - 94.17% 95.78%
Irish-B - - 93.62% 92.79%
MR 72.61% - 74.69% -
MR-M - - 74.48% 97.47%

Note that our pipeline does not apply directly to the MR
task which has discrete input. We introduce the adaptation of
our approach in this case in Appendix D.

D. Detection Baselines
In our evaluation, we compare with four existing works on

Trojan attack detection as our baselines: Activation Clustering
(AC), Neural Cleanse (NC), Spectral Signature (Spectral) and
STRIP. We do not compare with DeepInspect [13] as the
authors have not releases the code and their pipeline is rather
complicated. We do not compare with SentiNet [16] as it only
works on image dataset and the time cost for model-level
detection is high. We introduce the details in comparing these
approaches in Appendix E.

VI. EXPERIMENTAL EVALUATION

In this section, we present the results of using our pipelines
to detect Trojaned models.

A. Trojan Attacks Performance
We first show the classification accuracy and attack success

rate of the shadow models and target models in Table II.
Accuracy is evaluated on normal input and attack success rate
is evaluated on Trojaned input. On Irish dataset, we use Area
Under ROC Curve (AUC) as the metric instead of accuracy
since this is a binary classification task on unbalanced dataset.
The defender will not perform the modification and blending
attacks, so we only show the accuracy of the benign shadow
models.

We can see that the attacker successfully installs Trojans
in the target models. The accuracy is similar with the benign
target models, while achieving a high attack success rate in
all the tasks. In addition, we also see an obvious accuracy
gap between benign shadow models and target models. This
matches our assumption that the model consumer cannot train
a high-quality model based on his small dataset. Therefore,
he needs to use the shared model instead of training a model
using his own clean dataset.
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TABLE III: The detection AUC of each approach. -M stands for modification attack and -B stands for blending attack.

Approach MNIST-M MNIST-B CIFAR10-M CIFAR10-B SC-M SC-B Irish-M Irish-B MR-M
AC [12] 73.27% 78.61% 85.99% 74.62% 79.69% 82.86% 56.14% 93.48% 88.26%
NC [53] 92.43% 89.94% 53.71% 57.23% 91.21% 96.68% 7 7 7

Spectral [52] 56.08% ≤50% 88.37% 58.64% ≤50% ≤50% 56.50% ≤50% 95.70%
STRIP [21] 85.06% 66.11% 85.55% 81.45% 89.84% 85.94% ≤50% ≤50% 7

MNTD (One-class) 61.63% ≤50% 63.99% 73.77% 87.45% 85.91% 94.36% 99.98% ≤50%
MNTD (Jumbo) 99.77% 99.99% 91.95% 95.45% 99.90% 99.83% 98.10% 99.98% 89.23%

B. Detection Performance
Using the setup in Section V, we compare our jumbo

MNTD approach and one-class MNTD approach with the four
baseline approaches. We use the AUC as the metric to evaluate
the detection performance. The results are shown in Table III.
We use 7 to show that the approach cannot be applied on the
experiment setting.

As the discussion in Section III-D goes, all the baseline
approaches have some assumptions on the attacks, so they
only work on a few tasks and cannot keep high performance
through all the tasks. On the other hand, we would like to
point out that Spectral and STRIP are not aimed to perform
model-level Trojan detection and we design the pipeline to
adjust them to detect Trojaned models (i.e., to average score
for each data in the training set). Therefore, it is unfair to
compare our results with theirs directly and claim that their
works do not work well, but it does show that no existing
work can achieve a good performance on the task of model-
level Trojan detection.

As a comparison, our Jumbo MNTD approach achieves over
90% detection AUC in all but one of the experiments that cover
different datasets and attacks and the average detection AUC
reaches over 97%. In addition, this approach outperforms all
the baseline approaches except for the NLP task (89.23% vs.
95.70% of Spectral). However, Jumbo MNTD does not need
to access the training dataset as Spectral does and only queries
the embedding layer; we consider the results comparable with
that of the baselines. On the other hand, our one-class approach
is good on some tasks but fails on others. On some tasks it is
even worse than random guesses. We leave the interpretation
of this interesting phenomenon as our future work. We include
the ROC curve of the detection performance as well as the
isolation experiments of query tuning in Appendix F.

C. Impact of Number of Shadow Models
In Figure 6, we demonstrate the impact of using different

number of shadow models in training the meta-classifier on the
MNIST-M and CIFAR10-M tasks. Our approach can achieve a
good result even with a small number of shadow models (e.g.,
only 128 benign models + 128 Trojaned models). With more
shadow models, the accuracy continues to grow. Defenders
with different computational resources can make a trade-off
between the number of shadow models and the detection
performance based on their needs. We include more discussion
on the efficiency of our approach in Section VI-D.

D. Running Time Performance
We compare the detection running time of each approach on

the MNIST-M task in Table IV. The experiment is run on one
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Fig. 6: Detection AUC with respect to the number of shadow models
used to train the meta-classifier on MNIST-M (left) and CIFAR10-M
(right).
TABLE IV: Running time required to detect one target model on
MNIST-M.

Approach Time (sec)
AC 27.13
NC 57.21

Spectral 42.55
STRIP 738.5
MNTD 2.629× 10−3

MNTD (offline preparation time) ∼ 4096× 12 + 125

NVIDIA GeForce RTX 2080 Graphics Card. The running time
of our pipeline contains two parts - the offline training part
which includes shadow model generation and meta-classifier
training, and the inference part that detects Trojaned target
models. It takes around 12 seconds to train each shadow model
and 125 seconds to train the meta-classifier. Therefore, the
offline part needs 4096× 12 + 125 seconds, which is around
14 hours. On the other hand, in the inference part we only need
to query the target model with our tuned queries and apply the
meta-classifier, which is very efficient and takes only 2.63ms.

As a comparison, we see that the running time to detect
Trojans using baseline approaches varies between 27 seconds
to 738 seconds. We would like to emphasize that we only
need to perform the offline part once for each task. That is,
as long as we have trained the meta-classifier on MNIST, we
can apply it to detect any Trojaned MNIST model. It takes
only several milliseconds to apply the trained MNTD on one
target model. In contrast, other approaches have to re-run their
entire algorithm whenever they are provided with a new model.
Therefore, our approach is more efficient when the defender
needs to detect Trojans on a number of target models on
the same task. Moreover, as demonstrated in Section VI-C,
the model consumer could also generate a smaller number
of shadow models to make a trade-off between computation
overhead and Trojan detection performance.

VII. GENERALIZATION ON UNFORESEEN TROJANS
In this section, we will evaluate jumbo MNTD using Tro-

janed models that are not modelled by the jumbo distribution
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TABLE V: Examples of unforeseen Trojan trigger patterns and the detection AUC of jumbo MNTD on these Trojans.

Trojan MNIST CIFAR-10
Shape Pattern Mask Trojaned Example Detection AUC Pattern mask Trojaned Example Detection AUC

Apple 96.73% 89.38%

Corners 98.74% 93.09%

Diagonal 99.80% 97.57%

Heart 99.01% 93.82%

Watermark 99.93% 97.32%

in the training process. Unless specified, we will train 256 Tro-
janed models for each attack setting. We empirically verified
that all the attack settings are successful to install Trojans in
the model.
A. Generalization on Trigger Patterns

We first evaluate the meta-classifier using unforeseen trigger
patterns. We collect some Trojan shapes on vision tasks used
in previous works [38], [21] as well as some newly designed
Trojan shapes, as shown in Table V. A significant difference
between these shapes and those in jumbo learning is that they
will change a large number of pixels; in contrast, the patterns
in jumbo learning change at most 5×5 pixels. For each pattern
type, we use the same mask but with randomly generated pixel
values. We train the Trojaned models with these patterns and
apply the jumbo MNTD pipeline to detect them.

The detection results are shown in Table V. We can see that
the trained meta-classifier achieves similar detection results as
before. This shows that our detection approach generalizes
well to a variety of trigger patterns even if they are not con-
sidered in the training process. We provide further experiment
results on the generalization to unforeseen trigger patterns in
Appendix F.
B. Generalization on Malicious Goals

All the models in the jumbo distribution aims at the single
target attack, i.e., change the label of a Trojaned input to be a
specific class. Here, we consider another type of malicious be-
havior, all-to-all attack. In particular, for a c-way classification
model, the label of a Trojaned input which originally belongs
to the i-th class will be changed to the ((i + 1) mod c)-th
class. We will evaluate whether our meta-classifier can detect
Trojaned models with all-to-all attack. For MNIST, we adopt
the same setting as in [12] and add a four-pixel pattern at the
right bottom corner. For other tasks, we use the same attack

TABLE VI: The detection AUC of each approach against all-to-all
Attack.

Approach MNIST CIFAR10 Irish
AC 100.00% 77.41% 90.94%
NC 51.46% 52.34% 7

Spectral 84.36% ≤50% 68.02%
STRIP 62.60% ≤50% ≤50%

MNTD (One-class) 97.09% 70.38% 99.98%
MNTD (Jumbo) 99.95% 98.62% 100.00%

setting as the modification attacks on them and change the
attack goal to be all-to-all attack. We empirically find that the
all-to-all attack cannot work on SC and MR (the attack success
rate is low), so we do not include them as in the detection task.

The results are shown in Table VI. We see that NC and
STRIP cannot perform well in detecting these kinds of Trojans,
as we have discussed in Section III-D. Our approach still
achieves a good performance in detecting this unforeseen type
of malicious goal, reaching over 98% detection AUC for all
the three tasks. AC outperforms us on MNIST by 0.05% while
we outperform them by 20% and 10% on the other two tasks.
In addition, we do not require access to the dataset as AC
does. These results show that our detection pipeline requires
a weak assumption and is general to different tasks.
C. Generalization on Attack Approaches

In the jumbo distribution we use poisoning attack and
change the training dataset to generate Trojaned models.
However, we introduced four types of attacks in Section II-C
of which only modification attack and blending attack will
insert Trojan by poisoning the dataset. In this section, we
will evaluate how the meta-classifier performs in detecting the
other two kinds of unforeseen attack approaches.

We evaluate the two attacks on vision tasks since we
empirically find that the attack success rate is usually low on
other tasks. For parameter attack, we add a 4× 4 pattern for
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TABLE VII: The detection AUC of MNTD and neural cleanse on
parameter attack (denoted by -P) and latent attack (denoted by -
L). Other input-level and dataset-level detection techniques are not
included as they cannot be applied in detecting these attacks.

Approach MNIST-P MNIST-L CIFAR10-P CIFAR10-L
NC ≤50% 95.02% 53.12% 83.79%

MNTD(one-class) ≤50% 98.83% ≤50% ≤50%
MNTD(Jumbo) 99.99% 99.07% 98.87% 92.78%

MNIST and 8× 8 for CIFAR10. For latent attack, we follow
the same setting in [57] and add a 5×5 pattern for both tasks.
The shadow and target models in latent attack are fine-tuned
to the user’s task before we perform our detection.

The results are shown in Table VII. Note that the attack will
not poison the training dataset, so AC, Spectral and STRIP
cannot be applied to detect such Trojans. We see that our
model can detect these Trojaned models well. In addition, we
emphasize that the latent attack appears after we first proposed
our pipeline and we did not tailor our method in order to detect
it. This shows that our approach has good generalizability in
detecting unforeseen Trojan attack approaches.

D. Generalization on Model Structures
In Section VI-B, we evaluate MNTD with the assump-

tion that the defender knows the target model architecture.
However, in some cases the defender may not have such
knowledge. This problem might be solved by existing tech-
niques which infer the structure of a black-box model [45].
Nevertheless, we would like to evaluate how MNTD performs
when generalizing to unforeseen model structures.

We perform our evaluation on the more complicated dataset
ImageNet [18], as many different structures have been pro-
posed to achieve a good performance on ImageNet. In par-
ticular, we use its subset on dog-vs-cat, which is a binary
classification task between dogs and cats, containing 20,000
training cases and 5,000 testing cases. Here we assume that
the defender owns 10% of the training set instead of 2% in
previous assumption, since the ImageNet models are more
difficult to train; the attacker still owns 50%.

To evaluate the generalization to unforeseen model struc-
tures, we use six different structures in the model pool: (1)
ResNet-18 [24], (2) ResNet-50 [24], (3) DenseNet-121 [25],
(4) DenseNet-169 [25], (5) MobileNet v2 [47] and (6)
GoogLeNet [50]. We use one of the six structures as the
target model at a time. The attacker will generate 32 target
models of the structure, 16 benign and 16 Trojaned using
jumbo distribution. The defender will train 64 shadow models
(32 benign and 32 jumbo Trojaned) for each of the other five
structures, which generates 640 shadow models in total. He
will use these shadow models to train the meta-classifier and
detect whether the target models contain Trojan or not. Thus,
the target model structure will never be seen in the training
of the meta-classifier. The experiment is repeated for each of
the six structures.

The results are reported in Table VIII. We see that all the
AUCs are higher than 80%, showing a good transferability
even on complicated tasks like ImageNet. Note that here we

TABLE VIII: The detection AUC of MNTD on unforeseen model
structures on ImageNet Dog-vs-Cat. The meta-classifier for each
model structure are trained using all models except the ones in target
model structure.

ResNet-18 ResNet-50 DenseNet-121
81.25% 83.98% 89.84%

DenseNet-169 MobileNet GoogLeNet
82.03% 87.89% 85.94%

only use 64 models for each structure to train the meta-
classifier due to time efficiency. According to Section VI-C,
the results in Table VIII could be further improved by training
more shadow models. The results demonstrate that MNTD
is applicable to complicated tasks and generalizes well to
unforeseen model structures.

E. Generalization on Data Distribution

In previous studies, we assume that the data collected by the
defender follows the same distribution as the model’s training
data. In this section, we study the case where the defender use
alternative data which is similar but not the same distribution.
We consider two alternatives for MNIST and CIFAR dataset -
USPS digit dataset [27] and TinyImageNet dataset [18]. The
USPS dataset includes 16× 16 grayscale images of digit 0-9.
It contains 7291 train and 2007 test images. We will reshape
the images into 28 × 28 so that it is same as MNIST. The
TinyImageNet contains 64× 64 images of 200 classes where
each class has 500 training, 50 validation and 50 test images.
We hand-picked 10 classes to correspond to the labels in
CIFAR-10. The chosen classes are shown in Appendix G. We
reshape the images into 32× 32 to be the same as CIFAR-10.

In the experiments, we will train the shadow models using
the USPS and TinyImageNet dataset instead of the 2% of
MNIST and CIFAR-10 dataset. The models trained on these
alternative datasets can achieve 81.63% accuracy on MNIST
and 33.97% on CIFAR-10. Then we train a meta-classifier and
evaluate them on the target models of MNIST-M, MNIST-
B, CIFAR10-M, CIFAR10-B as in Table III. We find that
the meta-classifier using USPS achieves 98.82% detection
AUC on MNIST-M and 99.57% on MNIST-B; meta-classifier
using TinyImageNet achieves 83.41% AUC on CIFAR10-M
and 93.78% on CIFAR10-B. We can see that the the meta-
classifier still achieves good detection performance, though it
is slightly worse compared with the case when we use the
same data distribution. This shows that the defender can use
an alternative dataset to train the shadow models.

VIII. ADAPTIVE ATTACK AND COUNTERMEASURE
In this section, we consider a strong attacker who adapts

their approach to evade MNTD and then extend our technique
to be robust to such attacks.

A. Strong Adaptive Attack
We consider a strong attacker who wishes to evade MNTD.

We assume that the adversary has full knowledge of the de-
tection pipeline, including the specific parameters of the meta-
classifier META and the tuned query input set {x1, . . . ,xk}.
The goal of the attacker is to construct a Trojaned model that
will be classified as benign by our MNTD.
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TABLE IX: The detection AUC of MNTD-robust and its detection performance against strong adaptive attack.

Approach MNIST-M MNIST-B CIFAR10-M CIFAR10-B SC-M SC-B Irish-M Irish-B MR-M
MNTD-robust 99.37% 99.54% 96.97% 84.39% 96.61% 91.88% 99.92% 99.97% 96.81%
MNTD-robust
(under attack) 88.54% 81.86% 94.83% 75.60% 88.86% 90.45% 97.27% 88.79% 94.78%

With full knowledge of the MNTD system, the attacker can
evade the detection by incorporating the prediction of MNTD
in its training process. Suppose the original training loss for a
Trojaned model f is Ltrain and the goal is:

min
f

Ltrain(f) (10)

For example, on classification tasks, Ltrain is the mean cross
entropy loss between model predictions and ground truth
labels over all the benign and Trojaned data. We denote Lmal
to be output of the meta-classifier on f . Recall that:

Lmal(f) = META(F(f); θ) (11)
F(f) = [[f(x1)|| . . . ||f(xk)]] (12)

Large Lmal indicates that the model is evaluated as Trojaned
by the MNTD system. Since the attacker has full knowledge of
the detection system, he can calculate Lmal during training and
aims to keep it small. In particular, the attacker can explicitly
add Lmal into the training process and change the training
goal as:

min
f

Ltrain + λ · Lmal (13)

where λ is a chosen parameter balancing model performance
and evasion success rate. With full knowledge of the MNTD
system, the attacker can perform back-propagation to optimize
the loss function directly. In practice, we use λ = 1.0 which
works well for the adaptive attacks and we find the result
not sensitive to this choice. In particular, the Trojaned model
can always evade the detection of MNTD using the attack
while incurring only negligible decrease in model accuracy
(i.e., utility) and attack success rate.

B. Countermeasure - MNTD-robust

The key point in the strong adaptive attack is that the
adversary has full access to the meta-classifier parameters
and query inputs. Hence, he can intentionally optimize the
Trojaned model to make it look benign to the meta-classifier.
In practice, the defender can avoid it by keeping the model
parameters as a secret. Nevertheless, we will propose a robust
version of our system, MNTD-robust, to counteract the strong
attacker with full knowledge of our system.

The core idea of MNTD-robust is that during test time we
will set part of the system parameters to be random values.
Hence, the attacker cannot know what the parameters are and
thus cannot calculate the exact value of Lmal. In particular, in
MNTD-robust we will: 1) sample a random meta-classifier by
setting its parameters values to be random numbers sampled
from the normal distribution; 2) use our training set of shadow
models to tune the queries only, while keeping the random
meta-classifier unchanged; 3) we will use the tuned inputs

along with the random meta-classifier to analyze a model and
classify it as benign or Trojaned.

To guarantee that the attacker does not know the random
parameters of the meta-classifier, the defender can re-sample
them for each detection task. This would increase the detection
cost since the defender needs to retrain the meta-classifier
whenever the parameters are sampled. But as discussed in
Section VI-D, the expensive part of MNTD is to train the
shadow models, which needs only be done once; training the
meta-classifier is comparatively fast. Additionally, a random
meta-classifier could be reused for verifying an entire batch
of models to be classified as Trojaned or benign; as long as the
adversary does not know the random parameters, the defense
remains robust.

From the attacker’s side, he still wants to generate Trojaned
models which can evade the detection with full knowledge of
MNTD-robust. However, this time he does not know the ran-
dom parameters of the meta-classifier and the corresponding
query set. Hence, we assume that the attacker will first sample
the random parameters of the meta-classifier on his own and
tune the queries. Then he can apply the same technique as
in Section VIII-A to generate the Trojaned model which can
evade his own meta-classifier well. We will evaluate if this
Trojaned model can evade the defender’s meta-classifier.

C. Evaluation Results
We evaluate MNTD-robust over all the Trojaned tasks as

in Section VI-B and show the results in Table IX. The first
row is the detection performance of MNTD-robust on normal
Trojaned models (without adaptive attack) and the second row
is its detection performance against adaptive attack.

From the first row, we see that the detection performance of
our robust MNTD does not downgrade much in normal sce-
nario where there is no adaptive attack (MNTD-robust versus
MNTD (Jumbo) in Table III). From the second row, we see
that the robust version of MNTD works much better against
adaptive attacks. In some cases the detection performance even
increases, which means that the intentional evasion on the
attacker-chosen meta-classifier actually makes the Trojaned
model easier to detect. By comparison, if we do not add the
precautions with randomness, the simple MNTD system will
be bypassed by all these strong adaptive attacks.

IX. DISCUSSION & LIMITATIONS

Trojan Attack Detection Levels. In this paper, we focus
on the model-level Trojan attack detection. Other works may
investigate in input-level detection [21], [16] or dataset-level
detection [12], [52]. These are all feasible ways to prevent
users from AI Trojans. However, we consider model-level
detection the most generally applicable approach. The reason
is that dataset-level detection can only detect the Trojans that
perform poisoning attack to the dataset. They cannot work
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against attacks that directly modify model parameters. The
input-level detection requires the defender to perform detection
each time the input is fed to the model. This will decrease the
efficiency when deploying the model. As a comparison, a user
only needs to perform model-level Trojan detection one time.
As long as no Trojan is detected in the model, the user can
deploy it without any cost in the future.
Detection vs. Defense/Mitigation. In this paper, we focus on
detecting Trojan attacks. Defense/mitigation and detection on
Trojan attacks are two very related but orthogonal directions.
Existing defense or mitigation approaches perform Trojan
removal based on the assumption that the given models are
already Trojaned. However, this is problematic in practice as,
in most cases, DNN models provided by the model producers
are benign. It is unreasonable to perform Trojan removal on
benign models which requires extensive computation and time
overhead. Moreover, as shown in [53], blindly performing
mitigation operations can result in substantial degradation in
the model’s prediction accuracy for benign inputs. Therefore,
Trojan detection should be considered as a prerequisite before
conducting Trojan mitigation. Once a model is identified
as Trojaned model, the mitigation can be executed more
confidently to avoid a waste of computation and time.
Meta-classifier on other ML models In the paper, we mainly
detect AI Trojans on neural networks. We do not include
other ML models in our discussion mainly because there is
no current research showing that they suffer from backdoor
attacks. We emphasize that our technique can be applied to
any differentiable ML models that contains a numerical logit
vector in its calculation.

X. RELATED WORK

Trojan Attacks. Several recent research [39], [23], [38],
[15], [36], [28] has studied software Trojan attacks on neural
networks. As discussed in Section II-C, Trojans can be created
through poisoning the training dataset or direct manipulation
of model parameters. For example, Gu et al. [23] study
backdoor poisoning attacks in an outsourced training scenario
where the adversary has full knowledge of the model and train-
ing data. Comparably, Chen et al. [15] also use data poisoning
but assume the adversary has no knowledge of the training data
and model. On the other hand, [39] directly manipulates the
neural network parameters to create a backdoor, while [38]
considers Trojaning a publicly available model using training
data generated via reverse engineering. Bagdasaryan et al. [4]
demonstrated that any participant in federated learning can
introduce hidden backdoor functionality into the joint global
model. Besides software Trojans, Clements et al. [17] devel-
oped a framework for inserting malicious hardware Trojans in
the implementation of a neural network classifier. Li et al. [35]
proposed a hardware-software collaborative attack framework
to inject hidden neural network Trojans.
Trojan Attack Detection. Several Trojan attack detection
approaches have been proposed [53], [21], [16], [12], [40].
These approaches can be categorized into input-level detec-
tion [21], [16], [40], model-level detection [53] and dataset-

level detection [12]. We discussed the differences of these
detection levels in Section IX.

Trojan Attack Defense/Mitigation. To the best of our knowl-
edge, there are few evaluated defenses against Trojan at-
tacks [37], [52]. Fine-Pruning [37] removes potential Trojans
by pruning redundant neurons less useful for normal classi-
fication. However, the model accuracy degrades substantially
after pruning [53]. The defense in [52] extracts feature repre-
sentations of input samples from the later layers of the model
and utilizes a robust statistics tool to detect the malicious
instances as outliers from each label class. As discussed
in Section IX, Trojan attack detection and defense are two
orthogonal directions. One can first use our approach to detect
if a model is Trojaned, then use any of the defenses to remove
or mitigate the Trojans.

Poisoning Attacks. Poisoning attacks for machine learning
models has been well studied in the literature [6], [34], [44],
[56]. As discussed in Section II-C, several Trojan attacks
create Trojans through injecting poisoning samples. Those
attacks can thus be seen as variants of poisoning attacks.
However, most conventional poisoning attacks seek to degrade
a model’s classification accuracy on clean inputs [5], [46]. In
contrast, the objective of Trojan attacks is to embed backdoors
while not degrading the model’s prediction accuracy on clean
inputs.

Property Inference. Property inference attacks [3], [20], [43]
aim to infer certain properties about the training dataset or the
model of a target model. However, as illustrated in Section IV,
detecting Trojaned model using property inference is not a
trivial task. We thus propose jumbo learning to construct
Trojaned shadow models. Besides, existing work considers
white-box access to the target model while we consider black-
box access. The work of [43] focuses on inference against
collaborative learning, which has a different setting as ours.

XI. CONCLUSION

In this paper, we presented MNTD, a novel framework to
detect Trojans in neural networks using meta neural analysis
techniques. We propose jumbo learning to generate shadow
models without the knowledge of the attacker’s approach. In
addition, we provide a comprehensive comparison between
existing Trojan detection approaches and ours. We show that
MNTD outperforms all the existing detection works in most
cases and generalizes well to unforeseen attack strategies. We
also design and evaluate a robust version of MNTD against
strong adaptive attackers. Our work sheds new light on the
detection of Trojans in neural networks.
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[16] Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and Dan Boneh.
Sentinet: Detecting physical attacks against deep learning systems. arXiv
preprint arXiv:1812.00292, 2018.

[17] Joseph Clements and Yingjie Lao. Hardware trojan attacks on neural
networks. arXiv preprint arXiv:1806.05768, 2018.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[19] Eric Florenzano. Gadientzoo, 2016.
[20] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov.

Property inference attacks on fully connected neural networks using
permutation invariant representations. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
619–633. ACM, 2018.

[21] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith C Ranas-
inghe, and Surya Nepal. Strip: A defence against trojan attacks on deep
neural networks. arXiv preprint arXiv:1902.06531, 2019.

[22] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In 2013 IEEE inter-
national conference on acoustics, speech and signal processing, pages
6645–6649. IEEE, 2013.

[23] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Identifying vulnerabilities in the machine learning model supply chain.
arXiv preprint arXiv:1708.06733, 2017.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[25] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[26] Wenyi Huang and Jack W Stokes. Mtnet: a multi-task neural network
for dynamic malware classification. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 399–418. Springer, 2016.

[27] Jonathan J. Hull. A database for handwritten text recognition re-
search. IEEE Transactions on pattern analysis and machine intelligence,
16(5):550–554, 1994.

[28] Yujie Ji, Xinyang Zhang, and Ting Wang. Backdoor attacks against
learning systems. In 2017 IEEE Conference on Communications and
Network Security (CNS), pages 1–9. IEEE, 2017.

[29] Yoon Kim. Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882, 2014.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[31] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. Technical report, Citeseer, 2009.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[33] Yann LeCun, Corinna Cortes, and Christopher J Burges. The MNIST
database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 2018.

[34] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data
poisoning attacks on factorization-based collaborative filtering. In
Advances in neural information processing systems, pages 1885–1893,
2016.

[35] Wenshuo Li, Jincheng Yu, Xuefei Ning, Pengjun Wang, Qi Wei,
Yu Wang, and Huazhong Yang. Hu-fu: Hardware and software collabora-
tive attack framework against neural networks. In 2018 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 482–487. IEEE,
2018.

[36] Cong Liao, Haoti Zhong, Anna Squicciarini, Sencun Zhu, and David
Miller. Backdoor embedding in convolutional neural network models
via invisible perturbation. arXiv preprint arXiv:1808.10307, 2018.

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning:
Defending against backdooring attacks on deep neural networks. In In-
ternational Symposium on Research in Attacks, Intrusions, and Defenses,
pages 273–294. Springer, 2018.

[38] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural
networks. In 25nd Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-221,
2018. The Internet Society, 2018.

[39] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017
IEEE International Conference on Computer Design (ICCD), pages 45–
48. IEEE, 2017.

[40] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu
Zhang. Nic: Detecting adversarial samples with neural network invariant
checking. In 26th Annual Network and Distributed System Security
Symposium, NDSS, pages 24–27, 2019.

[41] Larry M Manevitz and Malik Yousef. One-class svms for document
classification. Journal of machine Learning research, 2(Dec):139–154,
2001.

[42] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher.
Learned in translation: Contextualized word vectors. In Advances in
Neural Information Processing Systems, pages 6294–6305, 2017.

[43] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Inference attacks against collaborative learning. arXiv
preprint arXiv:1805.04049, 2018.
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APPENDIX

A. Detailed Discussion on Existing Detection Approaches

We find that existing approaches have different assump-
tions on the defender and detection capabilities. For example,
dataset-level works require access to the training set and
cannot detect model manipulation attacks which do not poison
the dataset; works inspired by anomaly detection cannot detect
all-to-all attacks where all the labels suffer from the same
level of attack so that there is no anomaly. In the following
we introduce the assumptions and capabilities of existing
detection approaches.

Neural Cleanse(NC) [53] and DeepInspect(DI) [13] work
on the same level with us. NC observes that in a Trojaned
model, there exists a short-cut modification (i.e. the trigger
pattern) to change any input to be predicted as the Trojan
label. Therefore, it calculates such modification for each label
and checks if there exists a short-cut which is much smaller in
size than the modifications of other labels. DI improves upon
the approach by using model inversion to get some training
data. Then they use GAN to generate the modifications and
apply the same algorithm to check short-cut as in NC. Both
approaches cannot be applied to detect all-to-all attack where
the pattern itself cannot lead to certain Trojan label, so the
short-cut no longer exists. They cannot be applied to detect

Learned frontier
Training data
Test data (normal)
Test data (novelty)

Fig. 7: An illustration of the idea of one-class SVM.

Trojans in binary classification tasks because their short-cut
check algorithm requires at least three classes. In addition,
NC performs not well in detecting large-size triggers [13].

Activation Clustering (AC) [12] and Spectral Signature [52]
work on the dataset-level detection. AC performs a two-
class clustering over the feature vector of the training data
to separate benign data and Trojaned data (if exists). Spectral
calculates a signature score for each data in the training set
to remove the ones which possibly contain a Trojan trigger.
These approaches perform detection on the dataset level, so
they need access to the training data and cannot be applied
to detect model manipulation attacks which do not poison the
dataset. AC also requires white-box access to calculate the
feature vector.

STRIP [21] and SentiNet [16] detects Trojans on the input
level. STRIP adds up the input with other clean data. The
network will give a confident answer on the mixed input if
it contains the Trojan pattern; otherwise the network will be
confused. SentiNet uses computer vision techniques to find
salient parts in the image, which are possibly the Trojan trigger
pattern. It then copies the parts to other images to check if it
can change the output of other images. Both approaches need
a set of clean data to detect Trojans. STRIP cannot detect all-
to-all attacks where the model cannot give a confident answer
even if it sees the trigger pattern on the blended input. SentiNet
requires white-box access to detect salient part and cannot
detect large-size trigger via saliency check.

B. One-Class SVM

In Figure 7, we illustrate an example of the one-class SVM
model. The model is only provided with a set of training
data in one class, and tries to find the decision boundary that
captures all the training data tightly. The test set consists of
data in the class and data outside the class, and the goal is to
distinguish between the two classes.

C. Dataset Details and Network Structures

Computer Vision. We use the standard MNIST [33] and
CIFAR10 [31] datasets for computer vision tasks. MNIST
contains 70,000 handwritten digits with 60,000 samples used
for training and 10,000 samples for testing. Each data sample
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TABLE X: The model structure for each dataset in our evaluation.
Each convolutional layer and linear layer are followed by a ReLU
activation function except the last linear layer.

MNIST CIFAR10
Conv (16× 5× 5, pad=0) Conv (32× 3× 3, pad=1)

MaxPool (2× 2) Conv (32× 3× 3, pad=1)
Conv (32× 5× 5, pad=0) MaxPool (2× 2)

MaxPool (2× 2) Conv (64× 3× 3, pad=1)
Linear (512) Conv (64× 3× 3, pad=1)
Linear(10) MaxPool (2× 2)

Linear (256)
Linear (256)
Dropout (0.5)

Linear (10)
Irish MR

LSTM (100, layer=2) Word Embedding (300)
Attention Conv (100× {3, 4, 5} × 300)
Linear (1) Concatenation

Dropout (0.5)
Linear(1)

SC
MelSpectrogram Extraction

LSTM (100, layer=2)
Attention

Linear (10)

is a 28x28 grayscale image. CIFAR10 consists of 60,000
32x32 RGB images in 10 classes, with 50,000 images for
training and 10,000 images for testing. For MNIST, we adopt
the same CNN structure as in [23]. For CIFAR10, we use the
same CNN structure as in [10].
Speech. We use the SpeechCommand dataset (SC) ver-
sion v0.02 [54] for the speech task. The SC dataset consists
of 65,000 audio files, each of which is a one-second audio
file belonging to one of 35 commands. We use the files of ten
classes (“yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”,
“stop”, “go”) as [55] does and it gives 30,769 training samples
and 4,074 testing samples. Given the audio signal files, we first
extract the mel-spectrogram of each file with 40 mel-bands.
Then we train an Long-Short-Term-Memory (LSTM) network
over all the mel-spectrograms.
Tabular Records. We use the Smart Meter Electricity Trial
data in Ireland dataset (Irish) [2] for tabular data tasks. The
Irish dataset consists of the electricity consumption of 4,710
users in 76 weeks. Each record has 25,536 columns with each
column being the electricity consumption (in kWh) of users
during 30 minute intervals. Each user is labeled as residential
or SME (Small to Medium Enterprise). We split the dataset to
have 3,768 users (80% of all users) in the training set and 942
(20%) in the test set. For the training set we use the data in
the first 46 weeks (60% of the total time length) while for the
test set we use the data in the last 30 weeks (40%). We use
the electricity consumption in each week as the feature vector
and view the vectors of all the weeks as a time series. Then
we train an LSTM model to predict whether a given electricity
consumption record belongs to a residential user or an SME.
Natural Language. We use the same Rotten Tomatoes
movie review dataset (MR) as Kim [29] for natural language
processing tasks. The MR dataset consists of 10,662 movie
review sentences. The task is to determine whether a movie
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Fig. 8: The detection ROC curve of different approaches on MNIST-
M (left) and CIFAR10-M (right).

review is positive or negative. Following the convention of
the previous work [29], we use 90% of the data for training
and the rest for testing. We use the same model structure as
Kim [29] except that we use a pretrained and fixed Gensim
model as the word embedding layer. A pretrained embedding
layer provides a better performance given the limited training
data we use.

For reproduction, the model structures for the evaluation on
each dataset are presented in Table X. The hyperparameters
of the layers are shown in the parenthesis following the layer
name. For convolutional layers, the number of filters, filter
width and filter height, as well as the padding are listed. For
linear layers, we omit the input size and only show the output
size.

D. Defense on Discrete Data

On the MR task, the input words are in discrete token
space. Therefore, we cannot use gradient-based approach to
do query-tuning. However, for most neural networks with
discrete input space, the input will first be mapped to some
continuous embedding space (e.g., word2vec in NLP). Thus,
we will optimize the “query set” over the embedding space
to in the same way as before. During inference, we directly
feed the tuned embedding vectors to the target model to get
predictions. The trade-off is that under this setting, we need
white-box access to the embedding layer of the target model.
We adopt this setting in the NLP tasks.

E. Detection Baselines Implementation Details

At the time of writing, only the source code of NC is
released. Moreover, all the baselines only evaluate with CNN
models on computer vision datasets in their work, except for
AC where CNN models on NLP dataset are also evaluated. To
compare our approaches with these baselines, we re-implement
them with Pytorch.

Since AC and Spectral are dataset-level detection and STRIP
is input-level detection, we will tailor them to detect model-
level Trojans to compare them with our pipeline. AC works on
the dataset level and uses an ExRe score to indicate whether
the dataset is Trojaned. We use this score to indicate the Trojan
score for the model. Spectral assigns a score to each training
sample. We use the average score of all the training data to
indicate the score of the model being Trojaned. STRIP predicts
whether an input data is Trojaned, we use their approach to
calculate a score for each training sample and take the average
to indicate the likelihood of a Trojaned model.
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Fig. 9: The comparison of detection AUC with and without query tuning. -M stands for modification attack and -B stands for blending
attack.

(a) Jumbo (b) One-class

Fig. 10: Example of tuned-queries in MNIST. To make the pattern
more clear, we magnify the contrast of the jumbo query by 5 times.

F. Other Experiment Results

ROC Curve of detection We show the ROC curve of the
detection performance for different approaches on MNIST-M
and CIFAR10-M as in Figure 8.

Effectiveness of Query Tuning
We compare the results of Jumbo MNTD with and without

query tuning in Figure 9. The results show that query tuning is
highly effective; the AUC scores drop as much as 30% in the
worst case if we use untuned queries instead. We can interpret
the improvement by an analogy to feature engineering: we
would like to obtain shadow model features with the most
distinguishability for the meta-model to do classification. In
query-tuning the feature engineering is done by tuning the
queries.

We show some of the tuned queries on the MNIST-M task in
Figure 10. We observe that the tuned query in jumbo learning
focuses more on local patterns, while the tuned query in one-
class learning contains more global and digit-like pattern.
We speculate that it is because most Trojaned models in
jumbo learning use small local pattern, so this query can
help distinguish between benign model and jumbo Trojaned
models. On the other hand, the one-class learning needs to fit
the benign models best, so the query looks like normal benign
input.

Generalization on Trigger Patterns In the jumbo distribu-
tion we assume that the trigger patterns are all consecutive
patterns (e.g., one square pattern in vision task). Now we will
evaluate the meta-classifier using Trojans with non-consecutive
patterns. These patterns will never appear in the jumbo distri-

(a) Test patterns. (b) Examples of training patterns.

Fig. 11: The unforeseen trigger pattern used in evaluation (left) and
examples of the trigger patterns used in jumbo training (right) on
MNIST and CIFAR.

TABLE XI: The detection AUC of jumbo MNTD on Trojaned
models with unforeseen trigger pattern.

MNIST CIFAR10 SC Irish MR
100.00% 96.97% 93.21% 100.00% 94.32%

bution. In particular, we modify one pixel at each of the four
corners and use it as the trigger pattern for vision tasks (see
Figure 11a). For SC, we modify the signal value in the first
0.25 second, middle 0.5 second and last 0.25 second to be
0.1. For Irish, we modify the usage from 9:00 am to 10:00
am on every weekday to be 0. For MR, we add a “yes” at the
beginning and an “oh” at the end of the sentence.

The results are shown in Table XI. We see that the meta-
classifier achieves the similar performance as when detecting
the triggers that we have seen. This shows that the trained
meta-classifier generalizes well even if the trigger patterns are
not considered in the training process.

G. Label mapping of TinyImageNet

The classes we choose in TinyImageNet which correspond
to the labels in CIFAR-10 are shown in Table XII. Note that,
the ‘airplane’ class corresponds to the images of rockets and
‘horse’ corresponds to the images of camels, since the Tiny-
ImageNet does not contain images of airplanes and horses.
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TABLE XII: The classes in CIFAR-10 and corresponding class
picked in TinyImageNet.

class in CIFAR-10 class in TinyImageNet
airplane n04008634

automobile n02814533
bird n02002724
cat n02123045

deer n02423022
dog n02085620
frog n01641577
horse n02437312
ship n03662601
truck n03796401

18


	Introduction
	Background
	Deep Neural Networks
	Meta Neural Analysis
	Trojan Attacks on Neural Networks

	Threat Model & Defender Capabilities
	Threat Model
	Defender Goal
	Defender Capabilities
	Existing Detection of Trojan Attacks

	Meta Neural Trojan Detection (MNTD)
	Shadow Model Generation - Jumbo Learning
	Meta-training
	Target Model Detection

	Experiment Setup
	Dataset
	Attack Settings
	Defense Settings
	Detection Baselines

	Experimental Evaluation
	Trojan Attacks Performance
	Detection Performance
	Impact of Number of Shadow Models
	Running Time Performance

	Generalization on Unforeseen Trojans
	Generalization on Trigger Patterns
	Generalization on Malicious Goals
	Generalization on Attack Approaches
	Generalization on Model Structures
	Generalization on Data Distribution

	Adaptive Attack and Countermeasure
	Strong Adaptive Attack
	Countermeasure - MNTD-robust
	Evaluation Results

	Discussion & Limitations
	Related work
	Conclusion
	References
	Appendix
	Detailed Discussion on Existing Detection Approaches
	One-Class SVM
	Dataset Details and Network Structures
	Defense on Discrete Data
	Detection Baselines Implementation Details
	Other Experiment Results
	Label mapping of TinyImageNet


